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Abstract: The dispersion relation for noninteracting excitons and the influence of perturbative
corrections are examined in the case of pentacene structure. The values of exchange integrals are
determined by nonlinear fits to the experimental dispersion data, obtained by the inelastic electron
scattering reported in recent experiments. We obtain theoretical dispersion curves along four different
directions in the Brillouin zone which possess the same periodicity as the experimental data. We also
show that perturbative corrections are negligible since the exciton gap in the dispersion relation is
huge in comparison to the exchange integrals.
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1. Introduction

In the last few decades organic molecular solids have been a matter of intense theoretical and
experimental study, due to their potential applications in novel organic devices [1,2]. The recent
advances in experimental methods have provided detailed insight into their microscopic properties [3].
Among the energetically lowest excitations in such systems are Frenkel excitons; electron–hole pairs of
small radius [4]. The general theory of Frenkel excitons in molecular crystals is described in detail in
Reference [5], and some references on applications and progress are provided in References [6–9].

The method of inelastic electron scattering was used for direct measurement of the exciton
band structure within the reciprocal a∗b∗ plane of pentacene at room temperature (T = 300 K) in
Reference [3]. Results of measurements along four different directions in the Brillouin zone were
presented and, on that basis, the authors of Reference [3] argued that the model of noninteracting
Frenkel excitons is inapplicable for description of pentacene (see also Reference [10] for measurements
at T = 20 K and Reference [11] for similar experiments on picene). They also suggested that
charge-transfer (CT) excitons must be included in the model Hamiltonian of pentacene in order
to achieve better agreement with experiments. Following these experiments, a significant theoretical
work was conducted in order to obtain the properties of pentacene from first principles, i.e., starting
from many-body electron–hole Hamiltonians [12–16].

The present paper deals with the problem of obtaining exciton dispersion in pentacene by relying
on a correspondence between the Paulion Hamiltonian and anisotropic XXZ Heisenberg ferromagnets.
Unlike previous theoretical work, based on many-body Hamiltonians containing electron and hole
creation and annihilation operators, we present calculations based on an effective Hamiltonian [17–19].
In other words, we start from Frenkel excitons as low lying degrees of freedom and obtain an effective
form of their interactions, which are considered to the one-loop order.

Whereas our results confirm that exciton dispersion in pentacene cannot be satisfactorily described
within the Frenkel model alone, they also suggest that the influence of other excitations may not be as
large as originally proposed.
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The paper is organized as follows. The model Hamiltonian and pentacene structure are introduced
in Section 2, while exciton dispersion in noninteracting model is obtained in Section 3. Finally, we
discuss the effects of exciton–exciton interactions within the two-level model in Sections 4 and 5.

2. Model Hamiltonian and Pentacene Structure

The basic Hamiltonian that governs the dynamics of excitons in a two-level system (only one
electronically excited molecular state is considered) is given by:

H = H0 + ∆ ∑
n

P+
n Pn −

X
2 ∑

n,λ
P+

n Pn+λ

− Y
2 ∑

n,λ
P+

n PnP+
n+λPn+λ, (1)

where P+
n and Pn are standard Pauli operators on site n, and X and Y are parameters describing

hopping and interactions of excitons, respectively [5,20]. Using the exact one-to-one correspondence
between Pauli and spin operators in the case of S = 1/2 [21], we obtain the anisotropic (XXZ)
Heisenberg Hamiltonian in an external field:

H = − Ix

2 ∑
n,λ

S−n S+
n+λ −

Iz

2 ∑
n,λ

Sz
nSz

n+λ − µH∑
n

Sz
n, (2)

where {λ} denotes vectors connecting neighboring sites, z1 is the number of nearest neighbors, and:

Iz = Y, Ix = X, µH = ∆− Izz1

2
. (3)

Equivalently, the inverse relations are:

∆ =
Izz1

2
+ µH, Y = Iz, X = Ix,

H0 = − IzNz1

8
− NµH

2
. (4)

Due to the isomorphism of the spin and Paulion Hilbert spaces on every lattice site and the
relations in Equations (3) and (4), the original problem of exciton dynamics governed by Equation (1)
can be completely mapped onto the equivalent effective spin model in Equation (2). It should be noted
that this correspondence is purely formal—it will allow us to investigate the exciton system with the
help of a vast number of existing theoretical tools developed for spin systems [21–29]. According to
Reference [5], the Pauli Hamiltonian of Equation (1), which is as we have shown here equivalent to
the anisotropic Heisenberg Hamiltonian of Equation (2), can be used in the description of pentacene.
This fact will enable us to examine the dispersion of noninteracting excitons as well as the influence of
their interactions with a leading order (one-loop) approximation. One should also note that, in many
practical cases, the set of neighboring sites connected with hopping integrals splits into several subsets,
determined by the lattice structure and values of the hopping parameters.

We shall analyze now the pentacene structure. A schematic sketch of a pentacene thin film
lattice is shown in Figure 1. The lattice parameters within the ab layer of the single crystal of
pentacene are |a| = 6.27 Å, |b| = 7.78 Å, ^(a, b) = 87.8◦ [30]. The central motive in Figure 1
has three types of neighbors: two neighbors at points λ1 = {a,−a} coupled trough the exchange
integral I1, two neighbors at points λ2 = {b,−b} coupled through the exchange integral I2 and
four neighbors at points λ3 = { a+b

2 , −a+b
2 ,− a+b

2 ,−−a+b
2 } coupled via the exchange integral I3.

As we have already noted, the transition from Pauli to Heisenberg Hamiltonian requires anisotropic
exchange integrals. Therefore, each of the mentioned exchange integrals splits into x and z components:
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Ij → (Ix
j , Iz

j ), where j = 1, 2 or 3. The results from a recent paper [31] showed that the most important
hopping paths in the pentacene crystal are in the planes perpendicular to the c∗ axis. Thus, to a good
approximation, the real pentacene crystal can be effectively described by a two dimensional model.
Finally, by following common practice [3], we shall present numerical results for the approximate
pentacene lattice, defined by the additional constraint a · b = 0.

Figure 1. Schematic presentation of the pentacene lattice. A pair of exchange integrals corresponds to
each set of the lattice vectors {a,−a}, {b,−b}, and { a+b

2 , −a+b
2 ,− a+b

2 ,−−a+b
2 } (see the text).

3. Dispersion of Noninteracting Excitons

Bearing in mind the remarks on pentacene structure from the previous section, we obtain the
Hamiltonian of Equation (2), adapted to the pentacene structure, which in the Bloch approximation is:

H = H′0 −
1
2 ∑

j
Ix
j ∑

n,λj

B†
nBn+λj +

1
2 ∑

j
Iz
j ∑

n,λj

B†
nBn

+ µH∑
n

B†
nBn

= H′0 −
Ix
1
2 ∑

n,λ1

B†
nBn+λ1 +

Iz
1
2 ∑

n,λ1

B†
nBn (5)

−
Ix
2
2 ∑

n,λ2

B†
nBn+λ2 +

Iz
2
2 ∑

n,λ2

B†
nBn

−
Ix
3
2 ∑

n,λ3

B†
nBn+λ3 +

Iz
3
2 ∑

n,λ3

B†
nBn

+ µH∑
n

B†
nBn,

where B†
n (Bn) are Boson creation (annihilation) operators. The same Hamiltonian in k space has

the form:

H̃ = H̃′0 −
Ix
1
2 ∑

k
B†

kBkz1γ1(k) +
Iz
1z1

2 ∑
k

B†
kBk

−
Ix
2
2 ∑

k
B†

kBkz2γ2(k) +
Iz
2z2

2 ∑
k

B†
kBk (6)

−
Ix
3
2 ∑

k
B†

kBkz3γ3(k) +
Iz
3z3

2 ∑
k

B†
kBk

+ µH∑
k

B†
kBk,
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where z1 = z2 = 2, z3 = 4 and the corresponding geometric factors are defined by:

γ1(k) =
1
2 ∑

λ1

eik·λ1 =
1
2

(
eik·a + e−ik·a

)
= cos(k · a), (7)

γ2(k) =
1
2 ∑

λ2

eik·λ2 =
1
2

(
eik·b + e−ik·b

)
= cos(k · b), (8)

γ3(k) =
1
4 ∑

λ3

eik·λ3

=
1
4

(
eik· a+b

2 + e−ik· a+b
2 + eik· a−b

2 + e−ik· a−b
2

)
(9)

=
1
2

cos
[

k · (a + b)
2

]
+

1
2

cos
[

k · (a− b)
2

]
= cos

(
k · a

2

)
cos

(
k · b

2

)
.

From:
H̃ = H̃′0 + ∑

k
E(k)B†

kBk, (10)

we obtain the dispersion relation:

E(k) = Ix
1

[
Iz
1

Ix
1
− cos(k · a)

]
+ Ix

2

[
Iz
2

Ix
2
− cos(k · b)

]
+ 2Ix

3

[
Iz
3

Ix
3
− cos

(
k · a

2

)
cos

(
k · b

2

)]
+ µH.

That is:

E(k) = ∆− Ix
1 cos(k · a)− Ix

2 cos(k · b)

− 2Ix
3 cos

(
k · a

2

)
cos

(
k · b

2

)
, (11)

where we have defined the exciton gap:

∆ = Iz
1 + Iz

2 + 2Iz
3 + µH. (12)

The exciton dispersion law of Equation (11) is plotted along (100) in Figure 2. Note that the
orthogonality condition a · b = 0 allows us to determine Ix

1 = 5.7 meV and Ix
3 = 23.4 meV by fitting

Equation (11) to experimental data along this direction only (see Reference [32] for a discussion on
the determination of exchange integrals from dispersion relations in a similar context). The value
∆ = 1.83 eV is taken from [33]. The last parameter Ix

2 = 3.4 meV is extracted from the experimental
data on exciton dispersion along the (210) direction (see Figure 3). By using this set of parameters,
we have plotted the exciton dispersion along the (110) and (120) directions and compared them to the
experimental data from Reference [3]. Since we have used a single set of model parameters, the plotted
dispersion law displays the unique limit ∆− Ix

1 − Ix
2 − 2Ix

3 = 1.7741 eV as |k| → 0 for all four directions
in the Brillouin zone. This is clearly seen from Figures 2–5. Finally, a 3D plot of the exciton dispersion
E(kx, ky) is given in Figure 6.
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Figure 2. Exciton dispersion along the (100) direction. Experimental data are taken from Reference [3].
The theoretical curve is obtained for: ∆ = 1.83 eV [33], Ix

1 = 5.7 meV and Ix
3 = 23.4 meV.
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Figure 3. Exciton dispersion along the (210) direction. Experimental data are taken from Reference [3].
The theoretical curve is obtained for: Ix

2 = 3.4 meV and the remaining parameters are the same as in
Figure 2.

The disagreement between the dispersion of excitons predicted by the noninteracting Frenkel
model and the experimental data, which is evident from Figures 2–5, should be attributed to the
existence of other excitations (CT excitons) in the system, according to Reference [3]. Specifically, the
difference between the theoretical curve and experiment was the most prominent along the (120)
direction in Reference [3], since the calculated and measured dispersions do not share the same
periodicity. Even though the agreement between theory and experiment is the best for the (100)
direction, the theoretical curves presented here possess the same periodicity as the experimental data
within the Brillouin zone, for all four directions. Thus, the influence of CT excitons may not be as large
as originally suggested in Reference [3].
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Figure 4. Exciton dispersion along the (120) direction. Experimental data are taken from Reference [3].
The parameters used for the theoretical fit are as in Figures 2 and 3.
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Figure 5. Exciton dispersion along the (110) direction. Experimental data are taken from Reference [3].
The parameters used for the theoretical fit are as in Figures 2 and 3.

-1

0

1

-1

0

1

1.775

1.8

1.825

1.85

-1

0

1

-1

0

1

Figure 6. Exciton dispersion in three dimensions. The parameters used for the theoretical fit are as in
Figures 2 and 3.

The exciton dispersion in Reference [3] is given by:

E(k) = E0 + ta cos(k · a) + tb cos(k · b)

+ 2tab cos
(

k · a
2

)
cos

(
k · b

2

)
. (13)
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Since the effective mass of excitons in pentacene is large [34], the hopping parameters in
Equation (1) are positive and small, such that the corresponding Heisenberg Hamiltonian of
Equation (2) describes a ferromagnet. By comparing Equations (11) and (13) we find:

ta = −Ix
1 < 0, tb = −Ix

2 < 0, tab = −Ix
3 < 0. (14)

Therefore, without fitting the dispersion to experimental data, we conclude that ta, tb, and tab
must be negative, which is in accordance with Reference [3].

4. Perturbative Corrections

In the previous section we saw that the model of noninteracting excitons gives a dispersion law
which lies within error bars for almost the entire Brillouin zone. The question, which naturally follows
this observation is: could the agreement between theory and experiment be improved by including
the effects of exciton–exciton interactions? By answering this question we could provide additional
support for the hypothesis proposed for the first time in Reference [3], according to which additional
excitations (CT excitons) need to be taken into account for the correct description of pentacene.

A careful examination of traditional methods for studying the effects of interactions in models
based on the Pauli/Heisenberg Hamiltonians of Equations (1) and (2) reveals that they possess certain
flaws. To avoid them, we employ the perturbation theory developed in References [35,36]. The main
advantage of this method is that Boson representations of spin operators are unnecessary. In other
words, exciton–exciton interactions, which are partially hidden in the spin Hamiltonian and partially
in the corresponding Hilbert space, are explicitly given through interaction pieces of the Lagrangian.
Therefore, perturbative corrections may be calculated more systematically. This is extremely important
for S = 1/2 spin Hamiltonians, since 1/S is not a small parameter that can control perturbative
calculations.

As it is well known, the Lagrangian that reproduces the Landau–Lifshitz equation is [18,37,38]:

Leff = Σ
∂tU1U2 − ∂tU2U1

1 + U3 − F2

2
∂αUi∂αUi + ΣµHU3, (15)

where two excitation fields are collected into the unit vector U := [U1 U2 U3]T ≡ [π(x), U3(x)]T,
Σ = NS/V, and F is a constant to be determined later.

The corresponding free part of the Lagrangian is:

Lfree =
Σ
2

[
∂tπ

1π2 − ∂tπ
2π1

]
+

F2

2
π · ∂α∂απ + ΣµHπ2, (16)

and the interaction part up to a quartic approximation (which is sufficient for one-loop calculations) is:

Lint =
F2

8
π2∂α∂απ2 − F2

8
π2π · ∂α∂απ. (17)

To obtain the Hamiltonian suitable for a perturbative calculation, we apply canonical quantization
and incorporate the structure of the lattice presented in Figure 1. Basically, this means that we wish
to construct the free Hamiltonian with lattice exciton fields that reproduces the exciton dispersion of
Equation (11):

H0 = − υ0

2m ∑
x

ψ†D2ψ + µHυ0 ∑
x

ψ†ψ, (18)
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where υ0 = ab, ψ and ψ† satisfy canonical commutation relations for Schrodinger fields, and D2 and m
are the discrete Laplacian and a parameter defined in such a way that Equation (18) reproduces the
dispersion in Equation (11). It can be readily checked that D2 is given by:

D2 = ∇2
(3) +

1
2
|λ1|2
|λ3|2

Ix
1

Ix
3
∇2

(1) +
1
2
|λ2|2
|λ3|2

Ix
2

Ix
3
∇2

(2), (19)

where:

∇2
(j)φ(x) :=

4
zj|λj|2 ∑

λj

(
φ(x + λj)− φ(x)

)
,

j = 1, 2, 3 (20)

are the discrete Laplacians for the three sets of neighbors (see Figure 1) and:

m =
1

Ix
3 |λ3|2

≡ Σ
2F2 . (21)

Further, it is useful to introduce the eigenvalues of the discrete Laplacians. They are given by:

∇2
(j)e

ik·x = −k̂2
(j)e

ik·x,

k̂2
(j) :=

2D
|λj|2

(
1− γj(k)

)
, (22)

and the exciton dispersion is obtained from Equation (18) by a Fourier transform, which may be
written as:

E(k) = µH+ δ1 + δ2 + δ3 +
Ix
3 |λ3|2

2

[
k̂2
(3) +

1
2
|λ1|2
|λ3|2

Ix
1

Ix
3

k̂2
(1) +

1
2
|λ2|2
|λ3|2

Ix
2

Ix
3

k̂2
(2)

]
≡ ∆ +

k̂2

2m
, (23)

where δj = Iz
j − Ix

j . Thus, the Hamiltonian of Equation (18) is equivalent to the Bloch Hamiltonian of

Equation (10). Note that the discrete Laplacian D2, which defines local changes of the excitation fields,
depends on the ratios Ix

1 /Ix
3 and Ix

2 /Iz
3 . Thus, the full symmetry of the pentacene lattice, which reflects

itself through the energies of free excitons, can be implemented within the effective model only by the
right choice of exchange integrals. The exciton–exciton interactions, which modify exciton dispersion
to the one-loop level, can now be written as (see References [35,36]):

Hint = H(a)
4 + H(b)

4 , (24)

with:

H(a)
4 =

F2

8
v0 ∑

x
π2(x)π(x) ·D2π(x), (25)

H(b)
4 = − F2

8
v0 ∑

x
π2(x)D2π2(x),

and:

ψ =

√
2
Σ

[
π2 + iπ2

]
. (26)

Now we can calculate the one-loop correction to the exciton dispersion. It is determined by
the one-loop self energy which, in turn, may be calculated by the diagrammatic rules introduced
in References [35,36]. In short, we see from Equation (25) that the excitons interact via derivative
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couplings, so that internal and external lines on Feynman diagrams carry eigenvalues of the discrete
Laplacians [17]. These are denoted by colored propagator lines. The exciton propagator, written in
Matsubara formalism, is given by:

D(x− y, τx − τy) = 〈T
{

ψ(x, τx)ψ
†(y, τy)

}
〉0 (27)

=
1
β

∞

∑
n=−∞

∫
q

eiq·(x−y)−iωn(τx−τy)

E(q)− iωn
,

where: ∫
q
≡
∫

IBZ

dDq
(2π)D , (28)

and IBZ denotes the first Brillouin zone.
Within the one-loop approximation, there are four types of diagrams. They can be easily

evaluated to:

4( )a =
kk

pp

kk

pp

+4( )a 4( )a =
1
S

v0

2m0

∫
p
〈nq〉0

[
k̂2 + p̂2

]
, (29)

4( )b =
kk

pp

kk

pp

+4( )b 4( )b = − 1
S

v0

2m0

∫
p
〈np〉0 k̂− p

2
, (30)

with k̂2 defined in Equation (23) and 〈np〉0 denoting the free exciton Bose distribution. An explicit
expression for the exciton self-energy is found by using the relation:

∫
q
〈nq〉0 p̂− q 2

(j) =
∫

q
〈nq〉0

[
p̂ 2
(j) + q̂ 2

(j) −
|λj|2

2D
p̂ 2
(j) q̂ 2

(j)

]
,

and is given by:

Σ(k) =
k̂2
(3)

2m
A3(T) +

k̂2
(1)

2m
A1(T) +

k̂2
(2)

2m
A2(T). (31)

The temperature dependent factors Aj(T) are:

A1(T) =
a2

2D
|λ1|2
|λ3|2

Ix
1

Ix
3

v0

∫
q
〈nq〉0q̂ 2

(1),

A2(T) =
b2

2D
|λ2|2
|λ3|2

Ix
2

Ix
3

v0

∫
q
〈nq〉0q̂ 2

(2), (32)

A3(T) =
2|λ3|2

2D
v0

∫
q
〈nq〉0q̂ 2

(3).
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They are dimensionless quantities that capture the effects of exciton–exciton interactions in
two-level system by renormalizing the exchange integrals Ix

j → Ix
j (T). Finally, the renormalized

exciton energies are [18]:
ER(k) = E(k)− Σ(k), (33)

and the influence of exciton–exciton interactions at one-loop order can be seen in Figure 7.

280 285 290 295 300

0.0

0.5

1.0

1.5

2.0

T�K�

Figure 7. Renormalizing factors Aj(T) defined in Equation (32).

As noted in the Introduction, the experimental data on exciton dispersion along the (100) and
(110) directions at lower temperatures are available [10]. One can see from Figures 8 and 9 that the
effective model of Equation (18), with parameters ∆ = 1.90 eV [33], Ix

1 = 5.7 meV, Ix
2 = 3.4 meV,

and Ix
3 = 23.4 meV gives an exciton dispersion that satisfyingly agrees with the experimental one.

The only difference between the two sets of parameters, describing experimental data obtained at
300 K and 20 K, is the value of the parameter ∆, which originates from the change of magnetic fieldH
in Equation (2).
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Figure 8. Exciton dispersion along the (100) direction. Experimental data are taken from Reference [10].
The theoretical curve is obtained for: ∆ = 1.90 eV [33], Ix

1 = 5.7 meV, Ix
2 = 3.4 meV and Ix

3 = 23.4 meV.
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Figure 9. Exciton dispersion along the (110) direction. Experimental data are taken from Reference [10].
The theoretical curve is obtained for: ∆ = 1.90 eV [33], Ix

1 = 5.7 meV, Ix
2 = 3.4 meV and Ix

3 = 23.4 meV.

5. Discussion

As seen from Figure 7, the influence of exciton–exciton interactions is negligible at room
temperatures. There are two main reasons for this. First, the exciton gap is huge—nearly two orders
of magnitude larger than the greatest exchange integral. Second, excitons are derivatively coupled
via interactions that are of the type occurring in the nonlinear σ models. Since these interactions
include Laplacians, they tend to vanish at low energies. In fact, recent studies [39,40] have shown that
scattering amplitudes in a system governed by such interactions disappear as the momenta of particles
tend to zero. This interpretation is similar to the one given by Dyson in his analysis of ferromagnetic
systems [41,42]. On the other hand, since the scattering amplitudes tend to zero regardless of exciton
gap (i.e., the fictitious external magnetic field of the corresponding ferromagnetic system), it contradicts
the “hard sphere” picture of exciton dynamics from Reference [20].

It is important to compare results from the present paper to the ones obtained by solving
the Bethe–Salpeter (BS) equations for a many-body electron-hole system [13,14]. First, the exciton
dispersion obtained here is closer to experimental values. This is clearly seen by comparing Figures 2–5
from present paper to the results of Cudazzo et al. (see Figure 3 in Reference [13]). Second, the
exciton dispersion obtained with the help of the effective model in the present paper is much more
robust against perturbative corrections. This may also be seen from Figures 3 and 4 in Reference [13];
the dispersion obtained using flat HOMO-LUMO bands yields exciton dispersion close to 3.5 eV, while
those obtained using HOMO-LUMO with full dispersion are between 1.77 eV and 1.8 eV along the
(100) direction.

To conclude, we have analyzed the exciton dispersion in pentacene relying on the correspondence
between the Pauli (Equation (1)) and Heisenberg (Equation (2)) Hamiltonians. By fitting exchange
integrals to the experimental data, we have obtained exciton dispersion that possesses the same
periodicity as the experimentally observed one. Also, our results provide an indirect confirmation that
the 2D model is indeed a minimal one that describes available experimental data on exciton dispersion.
Further, we have shown that exciton–exciton interactions produce negligible effects to the one-loop
order. Due to that, we suggest that the influence of CT excitons in pentacene, which need to be taken
into account, may be less important than indicated in previous studies. It would be interesting to see
experimental data on exciton dispersion along c∗ axis and how this data would fit into the existing
models. Also, it is important to understand how to improve the calculations based on BS equations
to reach better agreement with experimental data on exciton dispersion and to test that approach for
all four directions of the Brillouin zone considered in Reference [3]. Therefore, further experimental
and theoretical work is necessary before drawing the final conclusion regarding the influence of CT
excitons in pentacene.
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9. Tošić, B.; Pantić, M.; Lazarev, S. Exciton concentrations in thin films. J. Phys. Chem. Solids 1997, 58, 1995–1999.
[CrossRef]

10. Roth, F.; Schuster, R.; Knig, A.; Knupfer, M.; Berger, H. Momentum dependence of the excitons in pentacene.
J. Chem. Phys. 2012, 136, 204708. [CrossRef] [PubMed]

11. Roth, F.; Mahns, B.; Büchner, B.; Knupfer, M. Exciton character in picene molecular solids. Phys. Rev. B 2011,
83, 165436. [CrossRef]

12. Cudazzo, P.; Gatti, M.; Rubio, A. Excitons in molecular crystals from first-principles many-body perturbation
theory: Picene versus pentacene. Phys. Rev. B 2012, 86, 195307. [CrossRef]

13. Cudazzo, P.; Gatti, M.; Rubio, A.; Sottile, F. Frenkel versus charge-transfer exciton dispersion in molecular
crystals. Phys. Rev. B 2013, 88, 195152. [CrossRef]

14. Cudazzo, P.; Sottile, F.; Rubio, A.; Gatti, M. Exciton dispersion in molecular solids. J. Phys. Condens. Matter
2015, 27, 113204. [CrossRef] [PubMed]

15. Kronik, L.; Neaton, J.B. Excited-State Properties of Molecular Solids from First Principles. Annu. Rev.
Phys. Chem. 2016, 67, 587. [CrossRef] [PubMed]

16. Sharifzadeh, S.; Darancet, P.; Kronik, L.; Neaton, J.B. Low-Energy Charge-Transfer Excitons in Organic Solids
from First-Principles: The Case of Pentacene. J. Phys. Chem. Lett. 2013, 4, 2197–2201. [CrossRef]

17. Weinberg, S. The Quantum Theory of Fields II; Cambridge University Press: Cambridge, UK, 2010.
18. Wen, X.G. Quantum Field Theory of Many Body Systems; Oxford University Press: Oxford, UK, 2007.
19. Brauner, T. Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body

Systems. Symmetry 2010, 2, 609–657. [CrossRef]
20. Agranovich, V.; Toshich, B. Collective Properties of Frenkel Excitons. Sov. Phys. JETP 1968, 26, 104–162.
21. Tyablikov, S.V. Methods in the Quantum Theory of Magnetism; Springer: New York, NY, USA, 1967.
22. Frbrich, P.; Kuntz, P. Many-body Green’s function theory of Heisenberg films. Phys. Rep. 2006, 432, 223.

[CrossRef]
23. Auerbach, A. Interacting Electrons and Quantum Magnetism; Springer: New York, NY, USA, 2012.

http://dx.doi.org/10.1038/nature02498
http://www.ncbi.nlm.nih.gov/pubmed/15118718
http://dx.doi.org/10.1038/nmat1500
http://dx.doi.org/10.1103/PhysRevLett.98.037402
http://www.ncbi.nlm.nih.gov/pubmed/17358724
http://dx.doi.org/10.1038/srep06945
http://www.ncbi.nlm.nih.gov/pubmed/25374150
http://dx.doi.org/10.1016/j.physrep.2014.12.001
http://dx.doi.org/10.1016/S0022-3697(97)00118-2
http://dx.doi.org/10.1063/1.4723812
http://www.ncbi.nlm.nih.gov/pubmed/22667582
http://dx.doi.org/10.1103/PhysRevB.83.165436
http://dx.doi.org/10.1103/PhysRevB.86.195307
http://dx.doi.org/10.1103/PhysRevB.88.195152
http://dx.doi.org/10.1088/0953-8984/27/11/113204
http://www.ncbi.nlm.nih.gov/pubmed/25738755
http://dx.doi.org/10.1146/annurev-physchem-040214-121351
http://www.ncbi.nlm.nih.gov/pubmed/27090844
http://dx.doi.org/10.1021/jz401069f
http://dx.doi.org/10.3390/sym2020609
http://dx.doi.org/10.1016/j.physrep.2006.07.002


Materials 2018, 11, 2219 13 of 13

24. Manousakis, E. The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the
cuprous oxides. Rev. Mod. Phys. 1991, 63, 1. [CrossRef]

25. Nolting, W.; Ramakanth, A. Quantum Theory of Magnetism; Springer: New York, NY, USA, 2009.
26. Sandvik, A.W.; Kurkijärvi, J. Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 1991,

43, 5950. [CrossRef]
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