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Abstract: This paper analyzes the nonlinear buckling and post-buckling characteristics of the porous
eccentrically stiffened functionally graded sandwich truncated conical shells resting on the Pasternak
elastic foundation subjected to axial compressive loads. The core layer is made of a porous material
(metal foam) characterized by a porosity coefficient which influences the physical properties of the
shells in the form of a harmonic function in the shell’s thickness direction. The physical properties
of the functionally graded (FG) coatings and stiffeners depend on the volume fractions of the
constituents which play the role of the exponent in the exponential function of the thickness direction
coordinate axis. The classical shell theory and the smeared stiffeners technique are applied to
derive the governing equations taking the von Karman geometrical nonlinearity into account.
Based on the displacement approach, the explicit expressions of the critical buckling load and the
post-buckling load-deflection curves for the sandwich truncated conical shells with simply supported
edge conditions are obtained by applying the Galerkin method. The effects of material properties,
core layer thickness, number of stiffeners, dimensional parameters, semi vertex angle and elastic
foundation on buckling and post-buckling behaviors of the shell are investigated. The obtained
results are validated by comparing with those in the literature.

Keywords: porous materials; truncated conical sandwich shell; metal foam core layer; non-linear
buckling analysis; orthogonal stiffener; elastic foundation

1. Introduction

Functionally graded (FG) materials are microscopically nonhomogeneous materials with smoothly
and continuously varying mechanical properties in the preferred directions. The advantages of
functionally graded material (FGM) include avoiding crack, avoiding delamination and eliminating
residual stress. In micromechanics, FGM is considered to contain porosity during the production
process, these porosities could be characterized to obtain the expected material properties such as the
local density and to obtain the expected structural performance. Furthermore, porous materials such as
metal foams have excellent energy-absorbing capability forming an important category of lightweight
materials. As a result, porous materials have been considered in a wide range of application in practice
for structures subjected to dynamic or impact loadings.
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Truncated conical shells have been utilized in various engineering activities such as aerospace
engineering, marine and ocean engineering structures, components of missiles and spacecrafts and
nuclear reactors. Metallic sandwich structures are widely used in the aviation industry as well as
in ship and railway engineering because of their low density, high specific strength, and effective
energy absorption. The buckling and post-buckling behaviors of FG shells in cylindrical and conical
forms under mechanical and thermal loads are prominent topics, drawing the considerable attention
of many researchers. Huang and Han [1] used Donell shell theory to study the stability characteristics
of functionally graded shells in cylindrical forms subjected to axially compressive loads employing
the Ritz energy method. Naj et al. [2] analyze the instability of FG truncated conical shells under
the coupling of thermal and mechanical loadings using the first-order shell theory. Sofiyev and
his colleagues [3-10] published many studies on linear and nonlinear buckling of FG cylindrical
and conical shells. By applying the Galerkin method and smeared stiffeners technique, Duc and his
colleagues [11-17] investigated buckling and post-buckling behaviors of FG cylindrical and conical
shells reinforced by eccentrically stiffeners (ES). Using the same approach, Bich et al. [18-20] examined
the buckling behaviors and dynamic stability characteristics of eccentrically stiffened FG cylindrical
shells and panels. Recently, Dung et al. [21,22] presented the theoretical solution for the buckling
behaviors of FG truncated conical shells under different of mechanical loadings such as uniformly
distributed loads and axially compressive loads. Dung and Chan [23] analyzed the orthogonally
stiffened FG truncated conical shells in terms of the mechanical stability. Dung et al. [24] analyzed the
nonlinear post-buckling behaviors of the eccentrically orthogonal stiffened FG truncated conical shells.

There are a few studies on the buckling of FG porous plates and beams in the available literature.
Magnucki and Stasiewicz [25] examined the buckling features of beams with porosity considering
the total potential energy using elastic formulations. Magnucka-Blandzi [26,27] mathematically
modeled a porous sandwich plate to determine critical in-plane compressed loads. The work of
Magnucka-Blandzi [28] focused on axis-symmetrical deflection and buckling of simply supported
circular porous—cellular plates under lateral uniformly distributed pressures and compressive pressures
in the radial direction uniform. Static buckling and bending features of FG beams with porosity
taking the shear deformation into account are studied by Chen et al. in [29]. Kitipornchai et al. [30]
studied elastic buckling and free vibration behaviors of closed-cell beams made of metal foam and
reinforced by graphene platelets. Jabbari et al. [31] examined the buckling behaviors of an FG thin
circle-shaped plate made of saturated porous materials. In another study, he also examined the
buckling behaviors of a porous circular plate subjected to radial loadings employing the higher-order
shear deformation theory [32]. To control the formation of porous structures, fabrication parameters
need to be managed. In microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS), we can improve the physical characteristic of micro/nano-scale structures by tailoring the
architecture of porous materials. Examination and assessment of size-effects in NEMs structural
problems, many researchers have been focused on size-dependent mechanical models [33-36].
Size effect plays important role in micron and sub-micron scales of metallic materials. Size effects in
elastic-plastic functionally graded materials (FGMs) have been reported in work of Mathew et al. [37],
Martinez-Paneda et al. [38,39].

From the above-mentioned literature context, it can be seen that there are very few studies focused
on linear and non-linear stability of eccentrically stiffened FGM truncated conical shells. To the best
of our knowledge, there are no publications on the nonlinear stability behaviors of the eccentrically
stiffened functionally graded truncated conical sandwich shells with the porous core layer. The aim
of the present paper is to meet this demand. The porous material core layer of the shell is made of
metal foam. The outer and inner layers, eccentrically orthogonal stiffener systems are made of FGM.
The shell is supported by Pasternak elastic foundation and subjected to the axial compressive load.
The classical shell theory, the smeared stiffener technique, and the Galerkin method are applied to
come up with explicit expressions of the critical buckling load and the post-buckling load-deflection
curves for sandwich truncated conical shells with simply supported edge conditions. The effects of
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material properties, the number of stiffeners, geometry parameters, and elastic foundation on stability
behaviors of the shell are also examined.

2. Model Configurations and Elastic Foundations

A porous eccentrically stiffened functionally graded truncated conical sandwich shells (PSTC)
is considered with the geometry configurations and the coordinate system being shown in Figure 1.
In which, « denotes the semi-vertex angle, R denotes the small base radius of the shell, L denotes the
slant height and / denotes the shell thickness.

The shell consists of inner and outer layers (layers 1 and 3) made of FGM of the thickness /g, and
the porous core layer (layer 2) of the thickness /i¢ore. The PSTC is located in a curvilinear coordinate
(x,6,z) in which x and z axis share the origin at the vertex of the conical shell and together form a
plane through the symmetry line of the shell. x axis exists along the shell slant and z axis is at right
angles to the slant line. It is noted that the origin is located in the mid-surface of the shell and x
denotes the virtual slant height from the vertex to the adjacent base of the shell. Corresponding to
x,0 and z axes, there are three displacements components 1, v, and w of a point in the mid-surface,
respectively. The displacement along the z axis (w) is also called the deflection of the PSTC which is
also the primary variable of this work.

Y

Figure 1. Geometry configurations and coordinates of the PSTC.

The space between FG stiffeners is assumed to be constant and closely spaced in the outer face
of the PSTC. The Young moduli of FG cover layers and stiffeners vary according to a simple power
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distribution through the z direction with the exponent is the volume fraction of the constituents, and
the Young moduli of the core follow a simple cosine rule of a symmetric distribution defined as follows:

k
EC + Emc(zz"’hﬁ?;’hcore at — % S A S _hczure

Ey, = En {1 — e cos(%) at — % <z< hc% (1a)

k
E. + Emc(_zz+2ig+hcnre> at hcﬁre <z< %

h = hcore + hFG
1b
{ 0<e <1 (1b)
Reinforced stiffeners are considered in two following cases.
Case 1: Inside FGM stiffener
22\ 2 h h
Es:Ec+Emc(2hs) atj§2§§+hs
AL h h (22)
E =E+Enc(%2)" ath<z<h+n
Case 2: Outside FGM stiffener
k
Eo=Ec+Ene(-5th)" at-h-n<z<-} o
k
E = EC+EmC(—2§,j;h) Tat—lon<z<-t

where:
hrg/2 is the FG coating thickness,

Emc - Em - Ec, Ecm - Ec - Em/

heore is the core layer thickness,

hs, hy denote stringers and rings thickness respectively,

e is the porosity coefficient of the core layer,

k, ky, and k3 are the shell, stringers, and rings volume fraction indexes respectively.
sh,m,c,r, and s denote shell, metal, ceramic, ring, and stringer respectively.

st denotes stiffeners in general, stiffeners are stringers and rings.

E., E;; are Young’s moduli of ceramic and metal.

Es, Es, and E; are the Young moduli of shell, stringer, and ring of materials respectively.

The Poisson’s ratios v of the shell and stiffeners materials are assumed to be independent of
thickness coordinate [6].

It is noted from Equations (1) and (2) that the continuous variations of the material properties are
satisfied between layers of the PSTC. From Equation (1), we can obtain equations for these different
cases, namely the FG sigmoid sandwich shell with (hcore = 0), the metal foam sandwich shell with FG
face sheets (e9 = 0), or the full metal shell (ey = k = 0).

The reaction of the elastic foundation on the conical shell is described by using the Pasternak
model. The shell-foundation interaction may be expressed as [40]

Pw 10w 1 ?w
) G)

—Kw-K(2s+ -2+ — "
ar = 2<3x2+x8x+x2sin2aa()2

where K; (N/m?3) and K, (N/m) respectively are the Winkler foundation stiffness and the shear
subgrade modulus of the foundation.
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3. Theoretical Formulations
From the Donnell shell theory, at a distance z from the mid-surface of the shell, the normal and
shear strains are given as follows [41]:

ex = €xm + zkx, €9 = €gm + zkg, Yxo = Vxom + 22kg 4)

in which €y, and €y, are the normal strains ‘g, is the shear strain at a point on the shell mid-surface,
and ky, kg, kyp are bending and twisting curvatures with respect to the x—axis, §—axis, and the plane
(x,0), respectively. Considering the von Karman geometrical nonlinearity, the strain-displacement
relations are defined as [41]

Ju 1(ow 2 1 Jw 2
Exm = ﬁ—i_f(W) ‘C’gm = xsmaae +3 +7C0t‘x+2xzsm a(T) ’

S 1 owaw 5
Tx0m = ysina 00 + + xsina dx 90’ ( )
ko — W o — 1 @_laﬂk 1 2w+ 1 ow
X T Ty M T T 2ginZ 4 062 xox’ "x0 = T Xsina 9x06 ' xZsina 90

The generalized Hooke law for the conical shell is presented as follows:

E(z) E(z) E(z)
h h h
ol = Ty (ex +veg), 05 = Ty (g +vex), 0o = (1+V)7x9 (6)
and for the stringer and ring stiffeners,
;t = Esey, Ugt = Ereq ()

The material of the stiffeners is similar to the material of the FG coating at the outer surface. If the
outside surface of the FG coating is ceramic-rich, the material of the stiffeners is ceramic, and vice versa.

Considering the change of stringers spacing, applying the Lekhnitskii smeared stiffener technique,
and omitting the twisting effects of the stiffeners, we can define the force and moment resultants of the
PSTC as follows:

h/2 h/2+hs h/2 h/2+hy h/2
Ny= [ oftdz+ d f oidz,  Nep= [ ofhdz+ = f o3dz, Ny = [ owpdz
—h/2 711/2 —h/2 (8)
h/2 h/2+hs h/2+h, h/2
My= [ zodtdz+ 5 (x) [ zoidz, f gz + 5 [ z03dz, My = [ zoypdz
—h/2 h/2 —h/2 h/2 —h/2
Introducing Equations (6) and (7) into Equation (8) we obtain [22]
Ny A1+ ,ilgx) A 0 Exm By1 + Ci(x) By, 0 |( ke
Ny o= A A + E“b’ 0 gom o+ By Bn+C 0 ko
Nxp 0 0 Ags Yxom 0 0 2Bgs | | kzo ©)
My Bi1 +C(x) B1» 0 Exm Dy + 51325) Dy, 0 1 ke
My o= By Bp+C 0 eom T D12 Dy + E3’b r 0 kg
Mx9 0 0 Bé6 Yx0m 0 0 2D66 i kxé}

in which the coefficients are presented in Appendix A.
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The nonlinear equations of equilibrium of the PSTC resting on Pasternak foundation using the
Donnell shell theory are given as follows [22]:

XNx,x + L Nxf),@ +Ny—Nyg=0

sina

1 Ne,g + XNXQIX + 2N, =0

sin«

XMy xx +2Myx + ﬁ (Mxe,xe + %MXG,G) + Ysin? ,XM9,99 — Mg,y — Npcotu (10)
+ (xwa,x + SiﬁNxGw,9> x + siﬁ (ngw,x + xsilnszew/e) ) + (xNgw’x),x

2 2
—xKjw + sz(%T%’ + %3—1’ + xZS'lmzaaaTZg) =0
where x, z and 6 following the comma symbol (, ) indicates the partial derivative with respect to x, z
and 6, respectively.

4. Prebuckling State Analysis

In this section, the PSTC is considered solely exposed to an axial compression P at the small base
x = x¢. The equilibrium equations of the PSTC in the membrane-like form is derived from Equation
(10) taking the symmetry of geometry and loading characteristics into account as follows:

0
ANy NY—N§=0, N%=0 —Njcota=0 (11)

xdx

Solving this system with condition

N = — 12
* cos & (12)
We obtain the prebuckling force resultants
N¢ = — PXo NO — NO — 1
* xcosa’ 0 0 N (13
or in another form
N? = P where P = 27px, sin« (14)
¥ ;xsin2a’ = STt

5. Nonlinear Stability Formulations

Introducing Equation (4) into Equation (9) we obtain the force and moment resultants in term of
displacements. The results are then substituted into Equation (10) in conjunction with Equation (14),
and we have the stability equations as follows:

Ri1(u) + R (v) + Riz(w) + G1a =0 (15)
§R21(1/l) + %22(0) + %23(&)) + Gy =0 (16)
Ra1(u) + Ra2(v) + Raz(w) + PRag(w) + Gz4 =0 (17)

where R;; with i = (1 —3) and j = (1 — 4) are linear differential operators and G;; with i = (1 - 3)
and j = 4 are nonlinear components, these values are listed in Appendix B. Equations (15)—(17) are
employed to compute the critical buckling load and analyze post-buckling behavior of the PSTC.
However, these equations are the coupling nonlinear partial differential equations whose difficulty
would be overcome in the following section.

6. Buckling and Post-Buckling Analysis

The PSTC is considered simply supported at two bases such that
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v=w=0, My=0 at x=x,x,+L (18)

The solution approximately satisfying Equation (18) are chosen as [22,24]

U= Ucoswsin%e
V= Vsinwcos "79 (19)

where 7 is the quantity of full-waves in the circumferential direction of the shell, and m is the number
of half-waves along x axis. U, V and W are the corresponding displacement amplitudes which would
be determined by then. In the integration domain given as xp < x < xp+Land 0 < 0 < 27,
Equations (15) and (16) are weighted by x and Equation (17) is weighted by x? before employing the
Galerkin method to the obtained results. We have

xo+L2m mr(x—xp)

Ji= [ [Qusin ”79 cos “— sinadfdx
Xo 0
Xo+L 27w

= [ [ Qycos™sin w sinadfdx (20)
X0 0
Xo+L2m

= [ [ Qssinsin w sinadfdx
Xo 0

where
Q1 = x[R11 (1) + R12(v) + Rz (w) + Gy

0 = x[§R21 (M) + ?Rzg(v) + %23(14)) + G24] (21)
O3 = xz[ﬁ?g(u) + R32(v) + Raz(w) + PR3g(w) + Gy

Introducing Equation (19) into Equation (21) and then the results into Equation (20), after
integrations and other manipulations, we obtain

Hy U + HypV + HizW + LigW? = 0 (22)
Hy U + HpV + HysW + LoyyW? = 0 (23)
Hz U + HzpV + (H33 + H34P)W + L34W2 + LasVW 4 L3gUW + L37W3 =0 (24)

where H;; and L;; are given in Appendix C.
We obtain the expression for U and V from Equations (22) and (23) as follows:

— HisHp—HipHpsypr o LiaHyy—LoaHyp 142
HipHo1—Hi1Hx H12H21*H1]]_1;‘122

V = Huls—HaHy o Loabhy —LigHy o2
HipHy —Hi1 Hpp HipHy —Hy1 Hpp

Substituting U and V into Equation (24) we obtain the following equation.

LasLogHyy —Las LygHpy — L Loa Hip+Lag L1a Hpp 3
HipHp1—Hip Hp + La7 )W

—Hz LygHyp+Hzy LyaHyp+Hsp Loa Hyy —Hzp L1 Hyy + Ly ) )

W

HypHyy —Hy1 Hpp
+ *L35H13H21+11~35ﬁ111H23* 36 H1pHos+LagHizHp (25)

Hs Hi3H: H31HypH. H. 5125217511522H
31 H13 Hop — Hay Hyp Hps — Hap His Hoy + Hap Hyg Hys _
+< HipHy—Hi1 Hpp + H33) W+ Hy PW =0
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Solving the Equation (25), the analytical expression of P is obtained as follows:

_ 1 L35L14H21 LasLoaHyy+LaeLoaHip—LasL14Hpp — Ly W2

H3 HipHy1—Hip Hyp
Ha1LogHip—Hyi LiaHop + HypLng Hoy —HapLoaHyy -
+ L fly —Hin 4 \w (26)
H L35H13H21* 35 H11Hos+LagHipHys —Lag Hiz Hyp
HipHy1—Hip Hp

H31H12H23 Hy HygHyy +HypHigHy —HypHy Hos gy )
H34 HioHy —Hy1 Hop 3
By then, the critical buckling load and the post-buckling load-deflection curve of the PSTC
subjected to axial compressive loads could be obtained from Equation (26).
Setting W — 0, Equation (26) yields the upper buckling compressive load as follows:

P = Pupper =

1 ( H31HypHys — H31HizHop + H3p HizHyy — H3zp HypHps
— Hz3 (27)

Hyy HipHy — Hi1Hpp

It is clear from Equation (26) and (27) that, the value of the buckling loads depends on m and 1, as a
result, it is worth considering the values of m and n in making these loads reaches the minimum values.

7. Numerical Results and Discussion

The geometric parameters of various model of truncated conical shell and stiffeners used in the
present study are listed in Table 1.

Table 1. The geometric properties for the stiffened (un-stiffenedt) truncated conical shells.

Model L/R R/h h (m) e heorelhpg  by=bs (m)  hy,=hs (m) n, ng
M1 0.2;0.5 100 0.01 1 to 80 - - - - -
M2 2 150 0.05 30 Otob 0.02 0.03 50 30
M3 2 150 0.01 45 0to8 - - - -
M4 2 80 0.012 30 3 0.02 0.012 35 25

7.1. Verification Study

To verify the present study, firstly, the dimensionless buckling axial compressive loads P* of
single layer pure isotropic (Stainless steel—SUS304) un-stiffened truncated conical shell by setting
(hpg = 0,e9 = 0) are compared with the results of Naj et al. [2] and Baruch et al. [42]. The results are
presented in Table 2, and in this particular case, the circular cylindrical shell of model M1 without
elastic foundation is considered. The material properties are v = 0.3, E;;; = 200 GPa. We determine

P* =P, /P, with P, = % [2] and is found from Equation (27).
—v

Table 2. Dimensionless buckling axial compressive loads of un-stiffened isotropic truncated conical
shells without elastic foundation.

L/IR = 0.2 LIR=0.5
o
Naj etal. [2]  Baruch etal. [42] Present (P”) Najetal. [2] Baruchetal. [42]  Present (P")
1° 1.005 (7) 1.005 (7) 1.0002 (1,12) 2 1.0017 (8) 1.002 (8) 1.0001 (2,17)
5° 1.006 (7) 1.006 (7) 1.0001 (1,12) 1.001 (8) 1.002 (8) 1.0002 (2,17)
10° 1.007 (7) 1.007 (7) 1.0002 (1,12) 1.000 (8) 1.002 (8) 1.0005 (2,17)
30° 1.0171 (5) 1.017 (5) 1.0017 (1,7) 0.987 (7) 1.001 (7) 1.0023 (2,15)
60° 1.148 (0) 1.144 (0) 1.1299 (1,1) 1.045 (7) 1.044 (7) 1.0150 (1,14)
80° 2.492 (0) 2.477 (0) 2.5091 (1,1) 1.004 (5) 1.015 (5) 1.0266 (1,4)

2 Buckling mode (m,1).

The next verification is performed for stiffened FGM sandwich truncated conical shells with metal
core (eg = 0), FG faces, and FG stiffeners (Model M2) resting on Pasternak’s foundation. The obtained
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results are presented in Table 3 and are compared with the linear critical loads P;; of Dung et al. [21].
In which, the Alumina has E; = 380 GPa, Aluminum has E,;;, = 70 GPa, and v = 0.3 for both
constituents. ky = k3 =k =1,K; =5 x 10° N/m?, and K> = 3 x 10* N/m. The expression P is
taken from Equation (27).

Table 3. Linear critical load of stiffened FG sandwich truncated conical shells.

P., (MN) Case 1 (Outside Stiffeners) Case 2 (Inside Stiffeners)
heorelhEg Dung et al. [21] Present Dung et al. [21] Present
0 19.46667 (8,18) 19.4667 (8,18) @ 19.14549 (7,21) 19.1455 (7,21)
0.5 16.12768 (8,16) 16.1277 (8,16) 15.79773 (6,22) 15.7977 (6,22)
1 14.09267 (8,16) 14.0927 (8,16) 13.76594 (6,22) 13.7659 (6,22)
2 11.74586 (8,15) 11.7459 (8,15) 11.42875 (6,22) 11.4288 (6,22)
3 10.43697 (8,16) 10.4370 (8,16) 10.12653 (6,22) 10.1265 (6,22)
4 9.60325 (8,16) 9.6033 (8,16) 9.29804 (6,22) 9.2980 (6,22)
5 9.02635 (8,16) 9.0264 (8,16) 8.72504 (6,22) 8.7250 (6,22)

2 Buckling mode (m,n).

Finally, Table 4 compares the present results with those of Deniz [43] for un-stiffened three-layered
FG/Metal/FG truncated conical shells (Model M3) subjected to an axial load without elastic foundation.
The database is used in this example: E; = 348.43 GPa; E;;, = 201.04 GPa; h = 0.01 m; « = 45°, L/R = 2;
R/h =150; K1 = Ky = 0; ¢9 = 0. The author analyzed non-linear stability based on the Donnell shell
theory with von Karman-type of kinematic non-linearity. Using stress approach and approximated
solution with two terms may cause the considerable discrepancy between two results.

Table 4. Comparisons of nondimensional critical axial loads (calculated by Equation (27)) for
un-stiffened three-layered FG/Metal /FG truncated conical shells with various ratio hcore /hrG.

k=1 k=2 k=5
P (GN) N . :

Deniz [43] Present Error Deniz [43] Present Error Deniz [43] Present Error
heore/hpc =0 1.244 1.2914 (6,22) @ 3.7% 1.314 1.3605 (6.22) 3.4% 1.390 1.4392 (6,22) 3.4%
heore/hpc =2 1.190 1.1459 (6,22) —3.8% 1.246 1.2021 (6,22) —3.7% 1.297 1.2649 (6,22) —3.8%
Neore/hpG =4 1.135 1.0915 (6,22) —3.8% 1.178 1.1321 (6,22) —3.5% 1.217 1.1713 (6,22) —3.9%
heore/hpG = 6 1.105 1.0654 (6,23) —3.6% 1.139 1.1086 (6,22) —2.7% 1.171 1.1307 (6,22) —3.6%
heore/hpG =8 1.085 1.0502 (6,23) —3.2% 1.113 1.0887 (6,22) —2.2% 1.140 1.0968 (6,22) -3.9%

2 Buckling mode (m,n).

From above three verifications, we can conclude that the results of the present study agree well
with the existing results in the available literature.

7.2. The PSTC on Pasternak Elastic Foundations

In the following subsections, the PSTC resting on Pasternak elastic foundations are considered.
FG materials of the coatings are a blend of Si3N4 (Silicon nitride-ceramic) and SUS304 (Stainless
steel-metal) with E. = 348.43 GPa and with E;, = 201.04 GPa and the metal foam of the core layer
has E,;;, = 201.04 GPa. The PSTC’s model is M3 with volume fraction indices k, = k3 = k = 1,
and foundation parameters K; = 6 x 10" N/m3, K; =4 x 10° N/m.

7.2.1. Effect of Porosity Coefficients ey and Thickness of Core Layer hore

Table 5 presents the critical buckling loads of the PSTC with different degrees of porosity, ficore /g
ratios, and the buckling mode parameters (mm,1). Furthermore, two cases of stiffeners arrangement,
namely outside and inside eccentrically FG stiffeners are considered. Figures 2 and 3 illustrate the
ratio heore/ hpg effect on the critical buckling loads and post-buckling load-deflection paths of the
shell, respectively.

From the figures, it can be seen that when oy / I ratios increase, the buckling loads decrease for
both cases of arranging stiffeners. Taking case 1, ¢y = 0.5 as an example, the critical load decreases by
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about 43% from Pr, = 161.4554 MN (with heore/hpg = 0) to Py = 112.5450 MN (with hicore / hpg = 20).
The stiffener arrangement has considerable influence on the critical buckling loads. Indeed, the P,
value of the PSTC reinforced by inside stiffeners is always smaller than that by outside stiffeners.

Figure 4 depicts the influence of porosity coefficients on the behaviors of the PSTC in the
post-buckling phase. From the figure, the loading capacity of the shell decreases when ¢j increases.
Figure 5 examines the relation between the critical buckling loads of the PSTC and the porosity
coefficients existed in the shell. It is found that with the increment of ¢, the critical buckling load P,
of the PSTC decreases. Indeed, the porosity affects the Young modulus of porous shells significantly as
can be seen from Equation (1).

Table 5. The critical buckling load P, of the PSTC for various ratios hcore / hFG.

Case 1: Outside Stiffener Case 2: Inside Stiffener

Py (MN)
80=0.2 80=045 80=0.8 60=O.2 8()=0.5 e0=0.8

heore/hpG = 0 1614554 (7,1) 1614554 (7,1) 1614554 (7,1) 1425447 (516) 142.5447 (5,16) 142.5447 (5,16)
heore/hpG = 0.5 152.0344 (7,1) 148.6324 (7,1) 1452239 (7,1)  133.1968 (5,15)  129.6503 (5,15)  126.1000 (5,18)
heore/hpG =1 1463406 (7,1)  140.9428 (7,1) 1355258 (7,1)  127.5050 (5,15) 121.9165 (5,15) 116.3167 (5,15)
heore/hpG =2 139.6989 (7,1) 131.9538 (7,1) 1241623 (7,1)  120.9373 (5,15)  112.9854 (5,15)  105.0065 (5,15)
heore/hpg =3 135.9469 (7,1) 126.8605 (7,1) 117.7094 (7,1) ~ 117.3071 (5,15)  108.0130 (5,15)  98.6459 (5,15)
heore/hrG = 4 133.5555 (7,1) 123.5999 (7,1) 113.5562 (7,1) ~ 114.9159 (5,15) 104.7698 (5,15) ~ 94.5725 (5,15)
heore/hpg =5 131.8897 (7,1) 121.3272 (7,1) 110.6618 (7,1) ~ 113.2905 (5,15)  102.5464 (5,15)  91.7425 (5,15)
heore/hpG = 10 127.8946 (7,1) 115.8633 (7,1) 103.6858 (7,1)  109.4029 (5,15)  97.2183 (5,15) 84.9488 (5,15)
heore/ hrG = 20 125.4750 (7,1) 112.5450 (7,1) 99.4363 (7,1) 107.0552 (5,15)  93.9934 (5,15) 80.8281 (5,15)

180 —————r——
Stiffeners g ; ':{;:353 1i- ES{J-U[}EE
—_ h,=h=0.012m AL DT
Z, 160% iy —3: Case 2 el=02
= [ B —4 Case 1, e0=08
iy " g h=0012m. R/H=80
i T N R ¢ L/R=2. =300
= “. v, v"‘ﬂ‘w?.'_
= \ _,)) !--u-..p_'ﬂ_’_#“’-
_O "\‘ (3”“ A b b b TL B TSP S
- A" .,
Eﬂ 120 (4{ L
) T
—"‘é \ “"-v—-v—v-q-—y-.v__.:.___'_'_: .
= . LT
M 100" Foundation '
Ki=6x10"N/m? \
K;=4=10°N/m I———
80 : : : : L 1 L 4 .
0 1 2 3 4 5 6 7 8 g 10
hcom/hFG

Figure 2. Effects of hcore/hpg and eg on critical load Pg; (ky = k3 =k =1). Case 1: Outside stiffener; Case 2:
Inside stiffener.
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Figure 3. Effects of leore /hpg on postbuckling load—deflection curves (Case 1,k =kz =k =1).
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Figure 4. Effects of ¢y on postbuckling load—deflection curves (Outside stiffener, ky = k3 =k =1).

7.2.2. Effect of Semi-Vertex Angle «

The buckling loads of the PSTC in relation with the semi-vertex angle « are presented in Table 6.
It could be noted from the table that when & increases, the critical buckling load of the PSTC decreases
remarkably. Indeed, with ey = 0.5 in case 1, the value of P, experiences a reduction from 171.8857 MIN
to 10.9997 MN (93.6%) when the value varies from 50° to 80°. This observation has also been
mentioned in Ref. [11,18]. The variation of critical axial compressive loads in relation with the
semi-vertex angle is plotted in Figure 6 for various porosity coefficients and both cases of stiffener
arrangements. Also, the influence of angle & on the equilibrium behaviors of the PSTC with outer
stiffeners in the post-buckling phase is presented in Figure 7. The figure also shows that, when the
value of angle « increases, P, decreases.
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Figure 5. Effects of ¢y on critical load P, (kp = k3 =k =1).

Table 6. Critical compression load P, for various semi-vertex angles «.

Case 1: Outside Stiffener

Case 2: Inside Stiffener

P, (MN)
i e0=0.2 0=0.5 e0=0.2 0=0.5
a=5° 1842470 9,1)  171.8857(9,1)  149.3844 (6,14)  136.8875 (6,14)
a=10° 178.8700 (8,5)  166.0860 (8,3) 1469110 (6,14)  133.9463 (5,14)
& =20° 1605859 (8,1)  150.1258(8,1)  135.1141(515)  123.7183 (5,15)
& =30° 1359469 (7,1)  126.8605(7,1)  117.3071(5,15)  108.0130 (5,15)
o = 45° 92.8172 (6,1) 86.9674 (6,1) 84.0426 (5,14) 78.3735 (5,14)
= 60° 50.6289 (5,1) 47.8436 (5,1) 48.4738 (4,13) 45.6781 (4,12)
a =70° 28.1649 (4,1) 26.8487 (4,1) 27.7523 (4,10) 26.5536 (4,9)
o = 80° 11.2994 (4,1) 10.9997 (4,1) 11.6098 (4,1) 11.3076 (4,2)
200 T I
h=0012m. R/h=80  —1:Case,e0=02
L~ ’ —2 Case1, 005
¢ L/R=2, heors/hr=3 Ce ], 000
> T Saad —3 Case 2,002
1 —4: Case 2, €0=05-
& W—
- [
Al S
?
S 100/
20
c
= .
2 gl Stiffeners )
53' h=h,=0.012m Foundatlczn .
b=b=002m  Ki=6x10'N/m*

10 2 % 4

a (%)

50 60 7

Figure 6. Effects of semi-vertex angle a on critical load P, (ky = k3 = k = 1). Case 1: Outside stiffener;

Case 2: Inside stiffener.
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Figure 7. Effects of semi-vertex angle & on postbuckling load—deflection curves (Outside stiffener,
mboxemphk; = k3 =k =1).

7.2.3. Effect of Geometrical Ratios

Effects of geometrical ratios L/R and R/h, on the buckling load P, of the PSTC are presented
in Table 7 and graphically illustrated in Figure 8. When L/R and R/h ratios increase, P, decreases
significantly. It is clear from the actual mechanical behavior of the structure that, in case of the shell
structure, the thinner or the longer the shell, the smaller the value P,. Indeed, in Table 7, in the
case of outside stiffeners, drawing the comparison between P, = 684.7950 MN (when R/h = 60,
L/R=1)and Py = 197.9920 MN (when R/h = 60, L/R = 2), the value of P, decreases by approximately
71.1%. This trend is also depicted in Figure 9 for the effect of R/h and L/R ratios on the post-buckling
equilibrium paths of the PSTC in the case 1. Thus, the bearing capacity of the shell is quite sensitive to
the variation of L/R and R/h ratios.

Table 7. Critical compression load P, for various values of L/R and R/h ratios.

P, (MN) R/h =60 R/h =80 R/h =100 R/h =200 R/h =300

Case 1: Outside stiffeners

L/R=1 684.7950 (39)  398.8262 (4,1) 2723611 (51)  93.1743 (6,1) 585103 (7,1)
L/R=15 3208777 (51)  197.8373(6,1)  139.0107 (6,1) 584647 (8,1)  42.7500 (9,1)
L/R=2 197.9920 (6,1)  126.8605 (7,1) 94.1463 (8,1)  47.0167(9,1)  37.0240 (9,7)
L/R=3 109.9757 (8,1) 77.4973 (8,6) 614766 (9,1)  37.9004 (9,10)  30.9346 (8,13)

Case 2: Inside stiffeners

L/R=1 648.9722 (3,11)  379.1878 (3,14)  255.0781 (4,14)  82.7254 (5,20)  50.4788 (6,23)
L/R=15 2975119 (4,12)  177.0668 (4,15)  122.2705 (5,16)  47.5955(6,20)  33.5999 (7,21)
L/R=2 1752790 (4,14)  108.0130 (5,15)  77.5981 (5,16)  35.7277(6,18)  26.9945 (7,19)
L/R=3 89.9204 (5,14)  60.0620 (6,15)  46.3523 (6,15)  26.2785(7,16)  21.2033 (7,16)
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Figure 8. Effects of R/h and L/R on critical load P, (Case 1, ky = ks =k =1).
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Figure 9. Effects of R/h and L/R on postbuckling load—deflection curves (Case 1, ky = k3 =k =1).

7.2.4. Effects of Volume Fraction Index

The critical buckling loads affected by the parameters k, k, and k3 are shown in Table 8. The critical
buckling loads vary according to the volume fraction index for two different values of the hiore/hirg
ratio depicted in Figure 10. From the figure, when the value of k increases, the critical loads P, increase.
The reason is that the portion of the ceramic constituent in shell structure increase when the value of k
increase. This is also confirmed by observing Figure 11, which depicts the load-deflection curves of the
PSTC with outside stiffeners in relation to the volume fraction index in the post-buckling phase.
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Table 8. Critical compression load P, for different values of volume fraction indexes.

Case 1: Outside Stiffener (k; = k3 = 1/k) Case 2: Inside Stiffener (k = k3 = k)
E()=0.2 60=0.5 E()=0.2 60=0.5

135.4442 (7,1) 1262111 (7,1) 105.4436 (5,16) 96.2521 (5,15)
135.9469 (7,1) 126.8605 (7,1) 117.3071 (5,15) 108.0130 (5,15)
137.5855 (7,1) 128.5525 (7,1) 125.4939 (5,15) 116.1792 (5,15)
137.9374 (7,1) 128.9140 (7,1) 127.4802 (5,15) 118.1596 (5,15)
1383158 (7,1) 129.3029 (7,1) 130.0065 (5,15) 120.6781 (5,15)

P (MN)

O e
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Kl =6X leNmz. bs:bFOOE’m — 3 Case 2. Ja’icors ?'FG:O
Ko=4x10°N/m  p,=n=25 —4:C092, Fare Pui=2

0 1 2 3 4 5 b 1 B 9 10
k

Figure 10. Effects of volume fraction indexes on critical load P, (ky, k3 = 1/k).
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Figure 11. Effects of volume fraction indexes on postbuckling load—deflection curves (Case 1).

Compression load 2 (MN)
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7.2.5. Effect of Stiffeners and Foundation

The effects of stiffeners and elastic foundations on the buckling loads P, of the PSTC are presented
in Table 9. It is noted that the higher the number of stiffeners being used, the higher the buckling load.
Indeed, for case 1 with K; = 6 x 107 N/m3, K, = 4 x 10° N/m, drawing the comparison between
P,y = 90.1237 MN (ns = n, =0) and P, = 161.2914 MN (ns; = n, = 50), we could recognize the
increment in the value of critical compressive load by about 79%. Furthermore, the critical compressive
loads P of the PSTC stiffened by rings are higher than that of the PSTC stiffened by stringers.

Table 9. Effects of stiffeners and foundation on buckling loads P;.

K;=0 K1=3x10" N/m® K1=6x10” N/m® K1=9x10” N/m®
Per (MN) _ _ 5 - 5 = 5
K>=0 K>=2x10" N/m K>=4x10 N/m K>=6x10° N/m
Case 1: Conical Shell Reinforced by Outside Stiffener

ns=0,n,=0 81.8418 (5,16) 86.4019 (7,4) 90.1237 (7 4) 93.8390 (7,3)
s =50, 1, =0 96.7739 (2,16) 110.7194 (4,17) 118.5695 (5,14) 124.6769 (5,14)

ns =0, ny =50 111.2085 (8,1) 114.4478 (8,1) 117.6871 (8,1) 120.9264 (8,1)

ns =25,n, =25 119.4573 (7,1) 123.1589 (7,1) 126.8605 (7,1) 130.5622 (7,1)

ns =50, n, = 50 153.6013 (6,9) 157.5907 (7,1) 161.2924 (7,1) 164.9940 (7,1)

Case 2: Conical Shell Reinforced by Inside Stiffener

ns=0,1n,=0 81.8418 (5,16) 86.4019 (7 4) 90.1237 (7 ,4) 93.8390 (7,3)
ns =50,n,=0 85.6480 (2,16) 101.4708 (3,17) 111.2717 (4,17) 120.2202 (4,17)

ns =0, n, =50 84.7967 (6,15) 89.6205 (6,15) 94.4443 (6,15) 99.2681 (6,15)
ns =25,n, =25 94.3881 (4,15) 101.8290 (5,15) 108.0130 (5,15) 114.1970 (5,15)
ns =50, n, =50 103.4412 (4,14) 112.0060 (4,14) 120.2306 (5,15) 126.4147 (5,15)

It is also noted that the presence of elastic foundations enhances the buckling loads. The buckling
load of the PSTC increases according to the increment of the foundation parameters. Indeed, for the
PSTC with orthogonal stiffeners with (n; = n, = 50) the value of P, rises by about 9.3% from
119.4573MN with the absence of elastic foundation to 130.5622MN with the presence of elastic
foundation: Ky = 9 x 107 N/m?; K; = 6 x 10° N/m).

Figure 12 depicts the effect of stiffeners quantity on the post-buckling equilibrium path P — W/h
of the PSTC. The value of the buckling loads is in a proportional relation with the quantity of the
stiffeners. The curve for the stiffeners-free case and ns = n, = 25 case bottoms and tops the graph,
respectively. The curves for n; - n, = 15 and ns = n, = 10 locate in the middle range. The effect of
foundation parameters on the post-buckling equilibrium paths P — W /h of the PSTC is also shown in
Figure 13. It is observed that when the foundation parameters Kj, K; increases, the curves gradually
rise, in other words, the post-buckling equilibrium loads increase. From the figure, the curve for
Ky =9 x10” N/m% K, = 6 x 10° N/m peaks, in other words, in this case, the buckling load at specific
deflection value W /h is the highest among all the cases considered. The buckling load for the case
with K3 = 6 x 10’ N/m3; K, = 4 x 10° N/m is greater than that for the case with K; = 3 x 107 N/m53;
Ky = 2 x 10° N/m in the post-buckling phase of the PSTC.
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Figure 12. Effects of stiffeners on postbuckling load—deflection curves (Case 1, ky = k3 =k =1).
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Figure 13. Effects of foundation on postbuckling load—deflection curves (Case 1,k =k3 =k =1).

8. Conclusions

The paper produces an analytical procedure to analyze the nonlinear instability of the porous
eccentrically stiffened functionally graded sandwich truncated conical shells surrounded by Pasternak
elastic foundations using displacement approach. The core is made of a porous material (metal foam)
with properties varying across its thickness according to a simple cosine law in term of a coefficient
related to plate’s porosity. The material properties of FG coatings and stiffeners are assumed to be
graded through the thickness direction according to a simple power law distribution in terms of
the volume fractions of the constituents. Two cases of stiffener arrangement: outside and inside
stiffened are considered. The smeared stiffeners technique with von Karman geometrical nonlinearity
and the classical shell theory are employed to bring about the governing equations. The Galerkin
method is employed to obtain theoretical expressions of load-deflection curves or the post-buckling
equilibrium paths. The numerical results show that the reinforced stiffeners, with volume fraction
index k, the length-to-radius ratio L/R, the radius-to-thickness ratio R/h, and foundation parameters
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K, K; significantly influence the buckling and post-buckling behaviors of the porous eccentrically
stiffened functionally graded truncated conical sandwich shells. The study also shows the profound
effects of the porosity coefficient ¢y and the core layer thickness on the critical buckling compressive
loads and load-deflection curves in the post-buckling phase of the shell. Moreover, the stiffener
arrangement has considerable influence on the critical buckling loads, the PSTC reinforced by outside
stiffeners is always stiffer than that reinforced by inside stiffeners.
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Elr = Echr + Emck;lﬁ/

— hr(hFG+hcore)+hr2 h 2 hr(hFG""hcore)
Ey = ch — Emc Wg_z + T 2kr2 )
_ 3hr(hFG+hcare)2+6hr2(hFG+hcove)+4hr3 h73 hrz(hFG+hcore) hr(hFG"!‘hcore)z
E3r = Ec 12 + Emc k3+3 + k3+2 + dkz+4
. E . _ 1- . _ _ E _ .
In Equation (9), A1 = Axn = 1733, Az = VA1, Aee = 5~ A11; Bui = By = 1725, Bio = vByy;
1— . _ _ _E _ . _ 1- . _ L h+h
Bes = “5"B11; D11 = Do = 1725, D1p = vD11; Des = “5-Di1; di(x) = Aox, do = 5, 65 = ks,
cY i . . . .
ey = hgh’, Ci(x) = =, Ccl = Eﬁ;—“obs, Cy = E%”, Ay = 2”2%"‘, in which n; is the number of stringers, n,

is the number of rings; b, are the width of rings, bs is the width of stringers; d; = d;(x) is the span
between stringers; d is the span between rings as shown in Figure 2; ¢, is the eccentricities of the
stringers, e, is the eccentricities of the rings to the mid-surface of the shell as shown in Figure 1.

Appendix B
In Equations (15)—(17)

h/2
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Eme | M _ 2Mic(hpGtheore) | hpg(hpg+hcore)® hogge® _ Cohcore® (2=8)
+Bpe | g - Zhaligghon) | rclipetien? | 4 p, | gyt - S

Case 1: Outside stiffener

hs
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2 2
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Case 2: Inside stiffener
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Eps = —E telse e 00 _p, ((he, ) ellathon) ),
o = g it tsctoniow? g (42 W) | wlgere?)

Elr = Echr + Emck;lﬁ/
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In Equation (9), A1; = Azz = 155, Ay = VAp; Ags = 5% Avy; Bip = By = & ,,z, Bz = vByy;
Bes = 5YB11; D1y = Dpp = = Vz/ Dy = vDyy; Do = 5¢Dyy; di(x) = Aox, dp = £, 65 = %,

e = %, Ci(x) = %9’ C(l) = E%Obs, Cy = E%h’, A = Z”ns%, in which 5 is the number of strmgers, n,
is the number of rings; b, are the width of rings, bs is the width of stringers; d; = d;(x) is the span
between stringers; d, is the span between rings as shown in Figure 2; e, is the eccentricities of the
stringers, e, is the eccentricities of the rings to the mid-surface of the shell as shown in Figure 1.

In Equations (15)—(17)
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Appendix C

In Equations (22)—(24)
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