
materials

Article

A Numerical Method to Model Non-linear Damping
Behaviour of Martensitic Shape Memory Alloys

Pouya Haghdoust *,† , Antonietta Lo Conte †, Simone Cinquemani † and Nora Lecis †

Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 1, I-20154 Milan, Italy;
antonietta.loconte@polimi.it (A.L.C.); simone.cinquemani@polimi.it (S.C.); nora.lecis@polimi.it (N.L.)
* Correspondence: pouya.haghdoust@polimi.it
† These authors contributed equally to this work.

Received: 8 October 2018; Accepted: 1 November 2018; Published: 3 November 2018
����������
�������

Abstract: This article investigates the efficiency of hybridizing composites with thin layers of
martensitic shape memory alloys for improvement of damping. The non-linear damping behaviour
of martensitic shape memory alloys is simulated using a modified version of Masing’s rules.
The model was implemented in a user subroutine of a finite element code, and validated by a
numerical simulation of experimental hysteresis loops at different maximum strain amplitudes.
The experimental free decay of hybridized glass fiber reinforced polymer beams was simulated
using the finite element model, including the validated model of the investigated materials.
The amplitude-dependent damping of the hybrid beams in free decay was reproduced successfully in
the numerical analysis and it was proven that the hybridization technique is efficient for improvement
of damping.
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1. Introduction

Shape Memory Alloys (SMA) are being used extensively for different purposes in this decade
and the research projects on them have a broad range, varying form metallurgical issues involved
in their damping mechanisms to research which investigates the technologies for SMA joining [1,2].
Also, their application field ranges from hybridizing techniques in composite structures in order to
customize specific material performances, to more advanced fields such as micro actuation systems.
In many studies, they have been used for vibration control purposes by employing an active or a
passive strategy [3–6].

A comprehensive review on this issue is available in [7]. In [8] Birman illustrated a two-step
approach in the strength and stiffness analyses of fibre reinforced particulate-matrix composites
obtained through a generalization of available micromechanical solutions available for three-phase
materials. The numerical analysis shows that adding stiff particles to the matrix results in a significant
enhancement of the transverse strength and stiffness. Balapgol et al. [9] investigated the natural
frequencies of a multilayer SMA laminated composite cantilever plate identifying the thickness of
the SMA layer, the position of the SMA layer, the temperature of the SMA and the span-to-depth
ratio all playing important roles in controlling the free vibration of the SMA/elastomer actuator.
The advantages of using the damping capacity of thermoelastic martensite in shape memory alloys
is discussed in [10]. In [11–14] martensitic SMA sheets were embedded into Glass Fiber Reinforced
Polymer (GFRP) beams to passively enhance the damping of the system. While the concept of
hybridization for enhancing the damping of the structures dates back to 40 years ago [15], SMA
hybridized systems are considered as newcomers in this field. However, since these materials receive
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more attention in the field of vibration control, more suitable numerical models are required in order
to study the damping behaviour of material and systems integrated with SMA materials.

Regardless of the different physical mechanisms involved, all real materials dissipate some
level of energy, no matter how little, during cycling deformation. Generally, such effect is highly
nonlinear and related to many factors such as temperature, frequency, strain, and strain rate, while
the linear behaviour assumption has only a limited application. A plot of instantaneous stress vs
instantaneous strain, for all values of time during a steady-state of forced vibration tests, is referred to
as a hysteresis cycle and is a well established experimental approach in classifying and quantifying the
internal damping behaviour of materials. Metals alloys, as well as severe high damping alloys, show
elliptical hysteresis cycles with linear damping, including viscous damping, hysteretic damping, and
linear rate depending damping, while the hysteresis cycles show a more sophisticated shape with a
nonlinear damping (Figure 1) [16]. In case of SMA materials, frequency and amplitude dependencies of
damping dependencies have been reported in many studies [12,17]. The intrinsic amplitude-dependent
damping is associated to two different phenomena: pseudo-elasticity and the dissipation of energy in
the martensitic state (Figure 2). The former occurs in SMA materials with an austenitic phase at their
operating regime, where the stress-induced martensite will generate the pseudo-elastic behaviour of
the material, while the latter occurs in the SMAs with a martensitic microstructure at operating regime.
The high damping values reported in this case were ascribed to the high density of mobile twins and
mobile interfaces [10].
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Figure 1. Schematic of a hysteresis cycle for materials with: (a) linear and (b) nonlinear damping.
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Figure 2. (a) Schematic of a pseudo-elastic behaviour. (b) Schematic of stress strain nonlinearity at low
strain ranges (less than 0.4%) in the martensitic state of a SMA alloy.

There are several numerical and experimental studies in the literature which investigate the
damping on the basis of a pseudoelastic behaviour of SMAs. Micromechanical models which consider
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phase transformation are extensively used in this case [18–22]. Nonetheless, stable martensitic
microstuctural conditions have more practical advantages for applications with limited stress and
strain fields, such as the application of the hybridized composites for passive damping [10], where the
phase transformation could cause micro-damage in the composite matrix.

The damping in the martensitic state has received less attention and accurate models are not
available. With the aim to model amplitude-dependent damping of SMA in martensitic phase,
and to use this model in numerical analysis of component made by hybrid composite [23], a classical
approach to model material damping is proposed. The techniques available in the literature in
order to model the material damping are usually limited to a linearity assumption. Adams and
Bacon [24] illustrated a damping evaluation process in which energy dissipation was described
as separable dissipations inside components. This was then developed and used in other works
such us [25,26]. In the case of high damping materials or large structures with high amplitude
vibrations the amplitude-dependent damping cannot be neglected and the linear assumption is no
longer accurate. In [27] the nonlinear forced vibration analysis of laminated composite beams is
investigated by developing numerical methods. In [28] four different damping models are compared,
and a solid model of linear viscoelasticity is proposed, as it is more suitable for investigating the
nonlinear damping.

This study applied a methodology based on modelling nonlinearity damping through the
modelling of a material’s hysteresis behaviours. A phenomenological model, based on a modified
version of Masing’s rules, has been developed to reproduce SMA’s hysteresis cycle at low strain ranges
when they are in a martensitic state. The model was implemented in a user material subroutine for
the Abaqus finite elements commercial code. To validate the material model, the hysteresis cycles
reproduced numerically were compared with the hysteresis cycles obtained through experiments at
different maximum strain levels. Finally, the validated model was used to simulate the free decay of
SMA/GFRP hybrid beams.

2. Materials

The SMA alloys under study are Ni40Ti50Cu10 and Cu66Zn24Al10. They were produced previously
in the laboratory by means of a vacuum induction using high purity metal powders [11,12].
The transformation temperatures, through the Differential Scanning Calorimetry (Q100 DSC,
TA Instruments, New Castle, England) are reported in Table 1. Both alloys are in a martensitic
phase at ambient temperature.

Table 1. Transformation temperatures of the SMA alloys.

Material M f (◦C) Ms (◦C) As (◦C) A f (◦C)

Ni40Ti50Cu10 32 49 52 61
Cu66Zn24Al10 50 63 60 68

The damping of these materials was investigated through cyclic tensile tests which were
performed on sheets sized 200 mm × 20 mm × 0.2 mm at room temperature and at a different
maximum strain amplitude, with an MTS hydraulic machine equipped with a 5 kN load cell. The strain
measurements were performed using a 50-mm extensometer gauge length at 0.05 Hz. More details on
the experimental tests are reported in [11,12].

Figure 3 shows the nonlinear stress–strain behaviour of the investigated materials at different
strain amplitudes. As assumption to formulate the damping model based on hysteresis cycles, at each
series of test at new value of maximum strain amplitude the irrecoverable strain observed before the
cycle stabilization has been neglected. The investigated amplitude range for two different materials are
determined from the strain amplitude range observed in vibrating condition as they are embedded in a
beam shape composite structure as reported in [11,12]. As the elastic modulus of Ni40Ti50Cu10 is lower
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than the elastic modulus of Cu66Zn24Al10, the strain range investigated in the case of Ni40Ti50Cu10

is higher than the one of Cu66Zn24Al10 . Both Ni40Ti50Cu10 and Cu66Zn24Al10 alloys exhibit a high
dependency of the total dissipated energy on strain, whereas the dependency on the frequency is
much smaller and can be neglected. The nonlinear behaviour observed accounts for a high level of
dissipated energy, in contrast with the small strain nonlinearity, also observed in typical constructional
metals [29], but associated with extremely thin loading–unloading loops. Moreover, the experimental
hysteresis cycles provide the following relevant evidence:

• at each maximum strain level the cycle is fully reversible and reproducible at each maximum
strain level;

• the cyclic loading path always follows the backbone curve;
• each new series of cycles at a given maximum strain is not affected by a previous series of cycles

at different maximum strain levels.
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a)  

b)  

Assumed backbone curve 
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Figure 3. Nonlinear stress–strain behaviour of the materials investigated at different strain amplitudes:
(a) NiTiCu, (b) CuZnAl.

Recently, this type of hysteresis has been classified as kinking nonlinear elastic hysteresis [11,30,31].
For a large class of solids, including graphite, titanium, magnesium, cobalt, and sapphire, it has been
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attributed to the formation of dislocation-based incipient kink bands with multiple parallel dislocation
loops, where dislocations segments of opposite signs are present on either side. The idea related to the
incipient kink bands is that there is a threshold stress needed to nucleate them and removing the load
results in their spontaneous collapse and a return of the microstructure to the virgin state.

With regard to the materials investigated, there is no experimental evidence that this mechanism
may be the physical origin of the energy dissipation, except that the actual coarse grained
microstructure dissipates more than the previously investigated fine-grained counterparts, and a
non-cyclic softening is observed after more than 100 cycles at the same maximum strain amplitude.

This study used the experimental hysteresis cycles with related properties, for Ni40Ti50Cu10 and
Cu66Zn24Al10 alloys, with the aim to model the nonlinear and frequency independent damping for
a small strain range (less than 0.4%) and moderate range of frequencies regardless of the internal
mechanisms [32].

3. Model of the Nonlinear Damping Behaviour

To model the nonlinear damping, viscoelastic material models such as Kelvin–Voigt, a standard
linear solid or Boltzmann’s models were used [28]. Although the mentioned models can model a
high dependency of the total dissipated energy on the strain, their sometimes poor accuracy and
difficulty to identify the model parameters are drawbacks. Few researchers have focused on the use
of phenomenological nonlinear damping models. Gottlieb and Habib [33] used a phenomenological
nonlinear damping model to understand the large amplitude vibrations of a spherical pendulum.
Eichler et al. [27] used a damping model containing a nonlinear term proportional to the square of the
vibration amplitude multiplied by the velocity. Recently, Amabili [34] derived a nonlinear damping
model based on a fractional standard linear solid material.

In this study, with the aim to model an amplitude-dependent damping for the materials
investigated, a frequency-independent phenomenological model for elastic hysteresis was developed
and fitted with the experimental results. The developed model is a modified version of Masing’s
theory as the principal hysteresis rule. Masing’s rules were originally introduced in 1926 [35] and then
extended by Karmer [36] in 1966 to four statements (Figure 4a):

1. For an initial loading in a cyclic test, the stress strain path follows the backbone curves:

σ = Fbb(ε) (1)

where Fbb(ε) is called backbone function.
2. If a stress reversal occurs at a point defined by (εrev, σrev), the stress strain path will be given by:

σ − σrev

2
= Fbb

(
ε − εrev

2

)
(2)

3. If the loading curve intersects the backbone curve, it follows the backbone curve until the
following stress reversal.

4. If an unloading or reloading curve crosses an unloading or reloading curve from the previous
cycle, the stress–strain curve follows that of the previous cycle.

A modified formulation of Masing’s second rule was suggested by G. Muravskii [37] as:

σ − σrev = ϕ (ε − εrev) (3)

where ϕ is called hysteresis function.
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Figure 4. (a) Masing’s rule for an irreversible stress–strain behaviour. (b) Schematic of the reference
hysteresis cycle of reference for the proposed hysteresis function.

Different researchers have introduced in literature several hysteresis functions, each of which
proposed particular behaviours [32,38]. For example, the one introduced by Puzrin and Burland [39]
and the one proposed by Pyke [40], where cycles become symmetrical after an increase in their number,
are suitable for describing the behaviour of granular materials. All the mentioned cases are developed
for materials with non-elastic hysteresis behaviours, relating to irreversible physical mechanisms.
The parameters of the hysteresis functions are obtained on the basis of Fbb function, calculated by using
the initial loading curve. Consequently, none of the mentioned material models can be implemented
to reproduce the nonlinear damping behaviour associated with an elastic hysteresis cycle as observed
in Ni40Ti50Cu10 and Cu66Zn24Al10 alloys.

As mentioned, in the case of elastic-hysteresis cycles, the initial loading curve (backbone curve)
is identical to the loading path of the hysteresis cycle, and a distinguished backbone curve is not
available. To solve this problem, the authors have proposed the following hysteresis function:

ϕ =
(Eav − Ein)

εmax
(ε − εrev)

2 + Ein(ε − εrev) (4)

where the parameters Eav, Ein, εmax represent, respectively, the average elastic modulus, the initial
elastic modulus, and the maximum strain (See Figure 4b) of the hysteresis cycle available with the
highest amplitude, which hereafter is mentioned as hysteresis of reference. The proposed function
guarantees lens shaped cycle as observed in the cyclic tensile tests for the materials investigated
(Figure 3). For a fixed εmax higher value of Eav − Ein would result in larger hysteresis cycles and a
consequent higher damping value. Considering Equation (4) as the hysteresis function, the elastic
modulus of the material for each strain increment would be equal to:

E(i) =
∆σ(i)

∆ε(i)
=

2(Eav − Ein)

εmax
(εp,(i) − εrev) + Ein (5)

To model the behaviour observed for the investigated materials, using the proposed model,
a user subroutine SMA-UMAT.for of Abaqus Finite Element (FE) commercial code was developed,
and following rules were implemented:

• Hook’s law which related stress to strains for elastic isotropic materials in a plane stress condition
was implemented to calculate stress at each increment (Equations (6)–(9)).
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 σ1

σ2

τ12

 =

Q11 Q12 0
Q12 Q11 0

0 0 Q33


 ε1

ε2

γ12

 (6)

Q11 =
E(i)

1 − ν2
12

(7)

Q12 =
ν12E(i)

1 − ν2
12

(8)

Q33 = G21 =
E(i)

2(1 + ν12)
(9)

• The actual elastic properties for each strain increment, were calculated according to Equation (5),
based on the principal strain with highest absolute value (εp,(i)) and the last reversal strain (εrev).
The actual principal strain is calculated from the strain values in standard direction (ε1, ε1, γ12) at
the beginning of the increment.

• Reversal points were detected from the sign change of the actual and previous principal strain
and principal strain increments. In both cases the principal strain with highest absolute value is
considered. Taking this into consideration results in the symmetrical behaviour of the model with
respect to the origin of the axes.

The flowchart of the subroutine developed is presented in Figure 5.
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Figure 5. Flowchart of the SMA-UMAT.for subroutine.
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4. Validation of the Material Model

The parameters of the modified Masing model (Equation (4)) were identified through the
experimental reference hysteresis cycles presented in Figure 6 which corresponds to the largest cycles
in Figure 3 , for Ni40Ti50Cu10 and Cu66Zn24Al10, respectively, and are reported in Table 2.

 Ni40Ti50Cu10  Cu66Zn24Al10 

Ein 

Ein 

Eav 

Eav 

𝜀𝑚𝑎𝑥  𝜀𝑚𝑎𝑥  

a)  b)  

Figure 6. Hysteresis cycles of reference: (a) Ni40Ti50Cu10, (b) Cu66Zn24Al10.

Table 2. Parameters of the modified Masing model.

Material Ein (GPa) Eav (GPa) εmax (%)

Ni40Ti50Cu10 28.6 22.26 0.241
Cu66Zn24Al10 66.7 56.9 0.1486

For each composition, the validity of the developed model was proven by comparing the
numerical hysteresis loops with additional experimental hysteresis cycles at different amplitudes.
The numerical cycles were obtained by simulating, with a plain stress FE model of the specimen,
the same condition of experimental cyclic tensile tests explained in the previous section devoted to
Materials. The comparison between the experimental and numerical hysteresis loops is reported in
Figure 7a for tests on Ni40Ti50Cu10, and in Figure 7b for tests on Cu66Zn24Al10. Three experimental
and numerical cycles are represented in each case for comparison. By definition, amplitude of cycle
is considered equal to half of maximum stain level of the cycle. A good agreement between the
numerical and experimental results is observed. For more comparison, the corresponding loss factor
and average elastic modulus of both numerically and experimentally obtained cycles, were calculated
and compared. The loss factor corresponding to the hysteresis cycle is given by:

η =
∆U

2πUmax
(10)

where ∆U is the dissipated energy for each cycle, equal to the enclosed area of the hysteresis cycle,
and Umax is the maximum elastic energy stored for each cycle. The loss factors calculated for both
materials, and for the cycles with different amplitudes, are compared in in Tables 3 and 4. In both
cases, the experimental strain-dependent loss factor of the materials was replicated with a good degree
of accuracy.

The corresponding average elastic modulus of each hysteresis cycle was also obtained as :

Eav =
σmax

εmax
(11)
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where σmax and εmax are the maximum stress and strain of the hysteresis cycles respectively.
The average elastic modulus calculated, corresponding to experimental and numerical hysteresis
cycles, are compared in Tables 3 and 4. Obviously, for larger cycles lower values were obtained,
but excellent accuracy was achieved. The error was never more than 4%.

 

Cu66Zn24Al10 

Ni40Ti50Cu10  

a)  

b)  

Cycle strain amplitude [%] 

0.041  

0.069  

0.096 

0.028  

0.098  

0.072 

Cycle strain amplitude [%] 

Experimental      Numerical 

Experimental      Numerical 

Figure 7. Comparison between experimental and numerical hysteresis cycles: (a) Ni40Ti50Cu10;
(b) Cu66Zn24Al10.

Table 3. Comparison of the loss factor and average elastic modulus of Ni40Ti50Cu10, for numerical and
experimental hysteresis cycles.

Cycle Strain Amplitude
(%)

Loss Factor Elastic Modulus

Numerical Experimental Error Numerical Experimental Error
(-) (-) (%) (GPa) (GPa) (%)

0.041 0.051 0.049 4.08 26.06 25.24 3.24
0.054 0.064 0.055 16.36 25.20 24.20 4.13
0.069 0.077 0.068 13.23 24.34 24.21 0.53
0.078 0.084 0.082 2.43 23.88 23.87 0.04
0.089 0.091 0.082 10.97 23.38 24.05 2.78
0.096 0.096 0.091 5.49 22.98 23.41 1.83
0.12 0.104 0.106 1.88 22.26 22.29 0.13



Materials 2018, 11, 2178 10 of 15

Table 4. Comparison of the loss factor and average elastic modulus of Cu66Zn24Al10, for numerical
and experimental hysteresis cycles.

Cycle Strain Amplitude
(%)

Loss Factor Elastic Modulus

Numerical Experimental Error Numerical Experimental Error
(-) (-) (%) (GPa) (GPa) (%)

0.028 0.025 0.015 66.66 68.06 65.81 3.41
0.049 0.046 0.045 2.22 64.95 65.16 0.32
0.072 0.070 0.072 2.77 61.76 61.57 0.31
0.074 0.073 0.062 17.74 61.43 63.28 2 .92

5. Application to Hybrid Structures

5.1. Finite Element Model

In order to show the applicability of the model developed in reproducing an amplitude-dependent
damping in dynamic applications, the model was used to model the behaviour of Ni40Ti50Cu10 and
Cu66Zn24Al10 SMA layers of a hybrid composite, in the shape of a cantilever beam, in a free decay
condition. The free length of the beam was equal to 200 mm, the width amounted to 20 mm and the
thickness was 5.2 mm.

The architecture of the hybrid structures is shown in Figure 8. The core composite is a symmetric
angle-ply laminated of fiberglass/epoxy resin (3M-SP250 S29A) [+45/−45]18 which corresponds to
36 plies with angles of +45 and −45 in alternating sequences. Two layers of SMA alloys can be
identified, each 0.2 mm thick, inserted in the matrix glass fiber under the upper and bottom surfaces of
the hybrid cantilever beam. Plain and geometrically patterned layers with different dimensions were
used, optimized to avoid the delamination of the hybrid composite [41]. Figure 8a shows the hybrid
composite with the plain SMA layer, while Figure 8b,c shows the patterned layers with large and
small holes respectively. Beside the hybrid layups, the original non-hybrid layup was investigated
as a reference in order to compare damping improvements. The original layup is made only from
GFRP [+45/−45]22 in which SMA sheets are replaced by two plies of GFRP to obtain an almost
equivalent thickness. Seven different layups were taken into consideration, as summarized in Table 5.
For numerical simulations, seven different layups were reproduced in the Abaqus FE model. The GFRP
composite was modelled using 20 node brick elements with a reduced integration. For the hybrid
geometry, the thin SMA sheets were modelled with eight node shell elements on the top and bottom
surface of the GFRP core. The constraint between the upper and lower surface of the GFRP laminated
composite and the thin SMA sheet is a tie constraint. This constraint makes the motion of each node of
the SMA sheet equal to the motion of the closest node on the GFRP reference surface. The beam was
clamped at one end.
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Figure 8. Schematic of a cantilever beam with different hybrid layups. (a) Plain; (b) Large pattern;
(c) Small pattern.
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Table 5. Layups of the cantilever beams investigated.

Layup No. SMA Insert Pattern

Ref Layup –
Hyb Layup 1

Ni40Ti50Cu10

–
Hyb Layup 2 Large
Hyb Layup 3 Small
Hyb Layup 4

Cu66Zn24Al10

–
Hyb Layup 5 Large
Hyb Layup 6 Small

For the hybrid beam model, the SMA-UMAT.for subroutine was used for the SMA layers. For the
GFRP core, the Rayleigh damping coefficients were tuned to reproduce the constant damping observed
in the experimental test conducted in [12] and an elastic behaviour was assumed. A summary of the
material properties is reported in Table 6.

Table 6. Material properties used in the FEM model.

Material Elastic Modulus (GPa) Poisson’s Ratio Density (kg/m3)

GFRP 17
0.27

1880
Ni40Ti50Cu10 Hysteresis model 7400
Cu66Zn24Al10 Hysteresis model 6600

To model the free vibration of the system, in a dynamic implicit step, the free end in the models
was subjected to an impulse load. In all of the cases, the Hilber–Hughes–Taylor solver was used which
is a common implicit solver in the structural dynamics for the numerical integration and allows for
energy dissipation and second order accuracy on contrary to regular Newmark method [42]. The solver
parameters were set to: α = −0.005, β = 0.275625 and γ = 0.55, which guarantees to minimize the
added numerical damping while stabilizing the problem. For all of the analyses, a time-increment was
set equal to 0.0001 s corresponding to 10 kHz of the sampling rate. This ensured a perfect formation of
peaks in a free decay response and guaranteed a more accurate calculation of damping ratios.

The responses of the free ends of the models were recorded, and a transient response was used to
measure the damping ratio, using the logarithmic decay method as follows:

ζ =
δ

2π
=

ln
(

yi
yi+1

)
2π

(12)

where δ is the logarithmic decay and yi corresponds to the magnitude of a peak point in the time decay
function, and yi+1 corresponds to the magnitude of the peak point one cycle later in the time history.

5.2. Results and Discussions

The free decay of GFRP and hybrid beams are presented in Figure 9. The constant damping was
reproduced as expected. The higher damping ratio in the initial peaks relates to presence of higher
modes in the vibration of the system. Since the higher modes are damped in a short time, it was not
necessary to filter the responses. In the case of hybrid architectures, the amplitude-dependent damping
was reproduced successfully by implementing the proposed methodology. Figures 10 and 11 show
the comparison of amplitude-dependent damping of the hybrid architectures with the simple beam,
respectively, for Ni40Ti50Cu10 and Cu66Zn24Al10 embedded structures.
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Figure 9. Free decay of a simple beam. A constant damping is reproduced.

 

Figure 10. Comparison of the damping ratio as function of displacement for each architecture of
Ni40Ti50Cu10 hybrid composite.
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Figure 11. Comparison of the damping ratio as function of displacement for each architecture of
Cu66Zn24Al10 hybrid composite.

In the Ni40Ti50Cu10 hybrid beams (Figure 10), it was observed that the damping improvement was
more effective at higher amplitudes. This is aligned with the assumption of an amplitude-dependent
damping defined for SMA materials. The highest improvement was observed when using the plain
sheet. In this case, the rate of the damping ratio change is also higher than the rate observed when
a patterned sheet is used, but the drawback of this layup is given by the delamination. For all of
the different layups, at a certain point (amplitude less than 1 mm), hybrid structures exhibited lower
damping values compared to the simple GFRP beam. This is due to the fact that, Ni40Ti50Cu10 offers a
lower damping capacity at low amplitude vibration compared to the GFRP core material.

The Cu66Zn24Al10 hybrid layup follows the same behaviour (Figure 11) reported for the
Ni40Ti50Cu10 hybrid layup, while in general damping improvements in general are higher than
the one observed previously. The higher improvement lies in the higher average elastic modulus of
Cu66Zn24Al10 with respect to Ni40Ti50Cu10. Accordingly, even though the loss factors are slightly less
than the reported loss factors reported for Ni40Ti50Cu10, a higher elastic modulus will lead to higher
energy dissipation inside the Cu66Zn24Al10 hybrid beams.

6. Conclusions

A phenomenological model was developed, by implementing a modified Masing model for an
elastic hysteresis behaviour, in order to evaluate the amplitude-dependent damping of Ni40Ti50Cu10

and Cu66Zn24Al10 shape memory alloys in a martensitic state. The hysteresis cycle, for different
maximum strain amplitudes, was reproduced numerically for a sample under tensile test and the
results were validated with corresponding experimental data.

The validated material model was implemented in a user subroutine of the Abaqus FE Code, and
then used to simulate the free decay of the hybrid composite structure in the shape of encastred beams.

The amplitude-dependent damping of the beams was reproduced successfully, confirming that the
damping model can be used effectively for accurate numerical simulations of the dynamic behaviour
of complex hybrid composite structures.
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