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Abstract: This paper investigates the propagation of low-frequency S0 mode Lamb waves in plates
with quadratic nonlinearity through numerical simulations and experimental measurements. Both
numerical and experimental results manifest distinct ultrasonic nonlinear behavior which is mainly
presented by the second harmonics. Meanwhile, we find that both the acoustic nonlinearity parameter
and dispersion distance show the exponential decay trend with the increase of frequency-thickness.
Moreover, the results reveal that the frequency is key to affect the acoustic nonlinearity parameter and
dispersion distance with the same frequency-thickness. This study theoretically and experimentally
reveals that nonlinear Lamb waves of the low-frequency S0 mode are feasible to quantitatively
identify material weak nonlinearity in plates.
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1. Introduction

The safety and durability of the key engineering structures, e.g., airplanes, pressure vessels, and
high-speed trains, have been paid extensive attention to. Due to fatigue load, material degradation,
the initiation and propagation of micro-cracks, micro-voids, etc. can often occur in those engineering
structures in service life. Thus, there is an increasing demand to detect those small-scale defects using
non-destructive testing methods.

Because of the low sensitivity, conventional linear ultrasonic technology could be difficult to
detect the above defects [1–3]. However, nonlinear ultrasonic technologies [4–14] are dramatically
sensitive to material microstructures, which could be promising in overcoming this problem. Especially
nonlinear Lamb-wave detection techniques [15–39], which can be employed for long-range monitoring
and inspection in thin plate structures, have attracted extensive attention in the past two decades.

Many efforts have been devoted to characterizing the micro-crack detection and early material
degradation by higher harmonics of Lamb waves. Liu et al. [15] investigated experimentally the
nonlinear acoustic effect on the crack depth. Shen et al. [16] numerically analyzed the process of
Lamb waves interactions with fatigue cracks which can cause the nonlinear effect of higher harmonics
and mode conversion. Deng et al. [17,18] and Matsuda et al. [19] declared that the matching phase
velocities of fundamental and double frequency Lamb waves is necessary for an obvious second
harmonic generation. Some researchers discussed the appropriate mode pairs for generation of
the cumulative second harmonics in the circular tube damage/degradation quantitative assessment
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application [20,21]. Li et al. [22] found that the second harmonic generation of the circumferential
guided wave is more sensitive to changes in the interfacial properties. Bermes et al. [23,24] measured
second harmonic effects of Lamb waves in a metallic plate through a time-frequency representation
with a hybrid wedge generation and laser interferometric detection system. In most studies, the S1

and A1 [25,26] modes are commonly used as the fundamental waves because the phase velocities of
these two modes can be easily matched. Definitely, S0 and A0 modes [27–30] have great advantages
due to the higher energy and longer-distance propagation. Castaings et al. [29] studied the interaction
of the low order A0 and S0 with vertical cracks in aluminum plates. Hu et al. [30] investigated the
nonlinear effects of low-frequency S0 Lamb wave in thin plates with randomly distributed micro-cracks
through numerical simulations. Meanwhile, the nonlinear mixing wave method for Lamb waves has
also been developed to evaluate material nonlinearity and micro-cracks. Jiao et al. [31] reported the
application of nonlinear Lamb wave-mixing method to detect the micro-cracks in plates. Ishii et al. [32]
have theoretically investigated the non-collinear interaction of plate wave modes when the nonlinear
wave is propagating in elastic plates. Zhao et al. [33] applied one-way collinear mixing method to
numerically investigate the propagation of Lamb waves in thin plates with quadratic nonlinearity.

The low-frequency Lamb waves could introduce higher energy and a longer propagating distance.
However, the experimental studies on the S0 and A0 modes Lamb waves are still rarely reported.
It is also a challenge to select a feasible frequency for characterizing material weak nonlinearity
accurately and effectively by a low-frequency S0 mode Lamb wave. Therefore, in this work, we
aim to numerically and experimentally investigate the propagation of the S0 mode Lamb wave at
lower-frequency (200 kHz) in plates with quadratic nonlinearity. The relationship between dispersion
distance and frequency-thickness is explored, and the influence of the frequency on the dispersion
distance with the same frequency-thickness is further discussed.

2. Nonlinear Lamb Waves

The dispersion is a representative characteristic of Lamb waves which means that the velocity
of Lamb wave depends on material properties and the frequencies of the waves. Figure 1 shows the
dispersion curves of Lamb wave in an aluminum plate with a 2 mm thickness.

Lamb waves usually process various wave modes. However, it is crucial to select an appropriate
mode with the characteristics of a long propagating distance, low energy attenuation, and stabilized
mode in engineering applications. It is well-known that the S0 and A0 modes Lamb wave can carry
more energy with a smaller energy attenuation. Figure 1 indicates that only the S0 and A0 modes
exist in the low-frequency domain (0–1600 kHz·mm). Meanwhile, some studies have demonstrated
that the phase velocity matching is one necessary condition to accumulate the second harmonic.
Additionally, the velocity mismatch between the fundamental wave and second harmonic can lead
to an asynchronous interaction, which is the reason for the sinusoidal behavior named as dispersion
distance L [40]:

L =
2π
|kd|

, kd = k(2ω)− 2k(ω) (1)

where k is the wave number. When kd is small enough, the phase velocities of the fundamental
wave and second harmonic are approximately equal. The resonance condition can be achieved and L
can increase linearly to the critical value. Additionally, the linear accumulative distance commonly
used in practice is 25% of the dispersion distance [28]. It is clear that the phase velocity of the S0

mode basically slowly changes in the low-frequency domain (0–800 kHz·mm) in Figure 1a. Thus,
it is appropriate to choose the S0 mode in the frequency domain (0–800 kHz·mm) to evaluate the
early material degradation based on second harmonic generation. In engineering applications, it is
essential to validate the relationship between frequency-thickness and dispersion distance. However,
the research on that is still rarely reported. Here, we investigate the potential of the S0 mode from the
frequency range of 0–800 kHz·mm through numerical simulations and experimental measurements.
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Figure 1. The dispersion curves of Lamb waves in an aluminum plate with a 2-mm thickness: (a) phase
velocity; (b) group velocity.

3. Numerical Simulation

The two-dimensional finite element model (FEM) is constructed to simulate the Lamb wave
propagation in a plate with a quadratic material nonlinearity by the commercial FEM software
ABAQUS (Version 6.14, Dassault Systèmes Simulia Corp., Providence, RI, USA).

The problem of S0 mode Lamb waves propagating in a plate with a quadratic material nonlinearity
is shown in Figure 2. An S0 mode wave pulse is generated by a dynamic displacement excitation on
the left edge of the plate. The wave propagates along the x positive direction. Because of a quadratic
nonlinearity, the second harmonic wave of the S0 mode is generated during the propagation of the
fundamental S0 mode wave and finally received at different detection locations (the length D with a
uniformly-spaced arrangement, D in this work is 25 mm).



Materials 2018, 11, 2096 4 of 12
Materials 2018, 11, x FOR PEER REVIEW  4 of 12 

 

 
Figure 2. The schematic of Lamb waves propagation in a plate. 

The quadratic nonlinear elastic constitutive law with third-order constants is used [39], which is 
expressed using Voigt’s notation 𝐶௜௝௞௟ = 𝑐ூ௃, 𝐶௜௝௞௟௠௡ = 𝑐ூ௃௄: 𝜎௜௝ = 𝐶௜௝௞௟𝐸௞௟ + ଵଶ 𝐶௜௝௞௟௠௡𝐸௞௟𝐸௠௡, (2)𝐶௜௝௞௟ = 𝜆𝛿௜௝𝛿௞௟ + 𝜇൫𝛿௜௞𝛿௝௟ + 𝛿௜௟𝛿௝௞൯, (3)𝐶௜௝௞௟௠௡ = ሺ2𝑙 − 2𝑚 + 𝑛ሻ𝛿௜௝𝛿௞௟𝛿௠௡ + ሺ2𝑚 − 𝑛ሻ൫𝛿௜௝𝐼௞௟௠௡ + 𝛿௞௟𝐼௠௡௜௝ + 𝛿௠௡𝐼௜௝௞௟൯ + ௡ଶ ൫𝛿௜௞𝐼௝௟௠௡ + 𝛿௜௟𝐼௝௞௠௡ + 𝛿௝௞𝐼௜௟௠௡ + 𝛿௝௟𝐼௜௞௠௡൯. (4)

where l, m, and n are the Murnaghan third-order elastic constants and E is the Lagrangian or Green 
strain, 𝐼, 𝐽, 𝐾 ∈ ሼ1,2,3,4,5,6ሽ, 𝑖𝑗 = 11,22,33,23,31,12 ↔ 𝐼 = 1,2,3,4,5,6. 

The material properties of the aluminum (AL-6061-T6) plate used in the simulations are listed 
in Table 1. Considering the computational accuracy, each highest frequency wavelength requires at 
least 20 elements. The element size in simulations is set to Lmax = 0.2 mm for the highest frequency 
1200 kHz (the fundamental frequency is 600 kHz). The simulations with element size 0.15 mm and 
0.1 mm are also investigated, which show the coincident accuracy but longer calculation time. 
Therefore, it is appropriate to select the element size as 0.2 mm for balancing the computational cost 
and accuracy. The rectangular region of 1000 mm × 2 mm is discretized by 50,000 four-node plane 
strain (CPE4R) elements in the FEM model. 

Table 1. The mechanical parameters of aluminum AL-6061-T6. 𝝆 ൫𝐤𝐠 𝐦𝟑⁄ ൯ 𝝀 ሺ𝐌𝐏𝐚ሻ 𝝁 ሺ𝐌𝐏𝐚ሻ 𝒍 ሺ𝐌𝐏𝐚ሻ 𝒎 ሺ𝐌𝐏𝐚ሻ 𝒏 ሺ𝐌𝐏𝐚ሻ 
2704 5.11 × 104 2.63 × 104 −2.82 × 105 −3.39 × 105 −4.16 × 105 

ABAQUS/Explicit solver based on the central difference method is employed to solve the Lamb 
wave propagation in the time domain, which is conditionally stable. To ensure the accuracy of the 
solution, the stable time increment should be carefully chosen according to the time of the stress 
waves passing through the minimum element (3.9 × 10−8 s). Therefore, considering the efficiency and 
the accuracy, the stable time increment is set to  ∆𝑡 = 1.0 × 10ିଽs. Meanwhile, a double precision 
operation is also performed to reduce the accumulative error. 

The left edge of the plate is applied a dynamic displacement excitation which is a tone-bust 
signal and can be expressed as  𝑢ሺ𝑥, 𝑡ሻ = 𝐴଴sinሺ2𝜋𝑓𝑡ሻ × sinሺ𝜋𝑓𝑡 10⁄ ሻଶ, where  is the amplitude of 
excitation signal (1 × 10−4 mm in this study [33,41]), and f is the frequency of excitation signal. The 
fundamental wave and second harmonic are collected at the detection positions. In addition, the 
distance between from the left edge to the right edge is large enough to maximally eliminate the 
influence of boundary reflection. 

Moreover, the acoustic nonlinearity parameter 𝛽 = 𝐴ଶ 𝐴ଵଶ⁄  [24] is used in this work, where A1 is 
the amplitude of the fundamental wave, and A2 is that of second harmonic. 

Based on the concept mentioned in Section 2, we investigate the varying frequency-thickness 
cases with a constant 300 kHz and varying thickness (1.0–5.5 mm with the step of 0.5 mm). 
Additionally, cases of the same frequency-thickness (600 kHz·mm) with varying frequency are 
explored. More numerical case studies are not presented in this paper due to the same tendency. 

Signal detection positions

Excitation 
signal

D D D D D D

x

y

Fundamental waves
Second harmonics

0A

Figure 2. The schematic of Lamb waves propagation in a plate.

The quadratic nonlinear elastic constitutive law with third-order constants is used [39], which is
expressed using Voigt’s notation Cijkl = cI J , Cijklmn = cI JK:

σij = CijklEkl +
1
2

CijklmnEklEmn, (2)

Cijkl = λδijδkl + µ
(

δikδjl + δilδjk

)
, (3)

Cijklmn = (2l − 2m + n)δijδklδmn + (2m− n)
(

δij Iklmn + δkl Imnij + δmn Iijkl

)
+ n

2

(
δik Ijlmn + δil Ijkmn + δjk Iilmn + δjl Iikmn

)
.

(4)

where l, m, and n are the Murnaghan third-order elastic constants and E is the Lagrangian or Green
strain, I, J, K ∈ {1, 2, 3, 4, 5, 6}, ij = 11, 22, 33, 23, 31, 12↔ I = 1, 2, 3, 4, 5, 6 .

The material properties of the aluminum (AL-6061-T6) plate used in the simulations are listed in
Table 1. Considering the computational accuracy, each highest frequency wavelength requires at least
20 elements. The element size in simulations is set to Lmax = 0.2 mm for the highest frequency 1200 kHz
(the fundamental frequency is 600 kHz). The simulations with element size 0.15 mm and 0.1 mm are
also investigated, which show the coincident accuracy but longer calculation time. Therefore, it is
appropriate to select the element size as 0.2 mm for balancing the computational cost and accuracy.
The rectangular region of 1000 mm × 2 mm is discretized by 50,000 four-node plane strain (CPE4R)
elements in the FEM model.

Table 1. The mechanical parameters of aluminum AL-6061-T6.

ρ (kg/m3) λ (MPa) µ (MPa) l (MPa) m (MPa) n (MPa)

2704 5.11 × 104 2.63 × 104 −2.82 × 105 −3.39 × 105 −4.16 × 105

ABAQUS/Explicit solver based on the central difference method is employed to solve the Lamb
wave propagation in the time domain, which is conditionally stable. To ensure the accuracy of the
solution, the stable time increment should be carefully chosen according to the time of the stress waves
passing through the minimum element (3.9 × 10−8 s). Therefore, considering the efficiency and the
accuracy, the stable time increment is set to ∆t = 1.0× 10−9s. Meanwhile, a double precision operation
is also performed to reduce the accumulative error.

The left edge of the plate is applied a dynamic displacement excitation which is a tone-bust
signal and can be expressed as u(x, t) = A0 sin(2π f t) × sin(π f t/10)2, where A0 is the amplitude
of excitation signal (1 × 10−4 mm in this study [33,41]), and f is the frequency of excitation signal.
The fundamental wave and second harmonic are collected at the detection positions. In addition,
the distance between from the left edge to the right edge is large enough to maximally eliminate the
influence of boundary reflection.

Moreover, the acoustic nonlinearity parameter β = A2/A2
1 [24] is used in this work, where A1 is

the amplitude of the fundamental wave, and A2 is that of second harmonic.
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Based on the concept mentioned in Section 2, we investigate the varying frequency-thickness cases
with a constant 300 kHz and varying thickness (1.0–5.5 mm with the step of 0.5 mm). Additionally,
cases of the same frequency-thickness (600 kHz·mm) with varying frequency are explored. More
numerical case studies are not presented in this paper due to the same tendency.

4. Experimental Measurement

In this section, a large number of experiments are employed to investigate the nonlinear behavior
of Lamb waves. The schematic of the experimental setup is shown in Figure 3. A modular ultrasonic
system RAM-5000 SNAP (RITEC Inc., Warwick, RI, USA) high power gated amplifier with two “RF
burst” channels is used for the generation and detection of the nonlinear Lamb waves.
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Figure 3. The schematic of the experimental setup.

In experimental measurements, two kinds of aluminum sheets with dimensions of 1.5 mm
× 625 mm × 1250 mm and 2 mm × 625 mm × 1250 mm are respectively used for experimental
measurements, as shown in Figure 4a. The reference trigger of the DPO 3014 digital phosphor
oscilloscope (manufactured by Tektronix Inc., Beaverton, OR, USA) is triggered from the internal
trigger signal of RAM-5000 SNAP (Figure 4a). A 10-cycle tone burst of 200V with “Hanning window”
generated by RAM-5000 SNAP is fed into the transmitting transducer (Figure 4b), which is attached
to the acrylic wedge with the angle 30◦ to generate S0 mode waves in aluminum sheets. The wedge
is coupled to the transducer and the sheet with Glycerol. The commercial piezoelectric transducer
(Model: V1012, Olympus Inc., Tokyo, Japan) with the central frequency of 250 kHz is used as the
transmitter. The wave signals propagating in the sheet are received at different positions (see Figure 2)
by the piezoelectric ceramics (the type: PSN-33, manufactured by Haiying Inc., Wuxi, China), as shown
in Figure 4c, which are adhesively bonded to the sheet. Then the received signals are sent back to
the oscilloscope through RAM-5000 SNAP. Finally, the digitized time-domain signals are saved and
processed by the computer. Meanwhile, the experimental received data is filtered by both a low-pass
filter (20 MHz) and a high-pass filter (50 kHz) by the RAM-5000 SNAP, and average filter (32 times) by
the oscilloscope. The received signals are both amplified by a preamplifier (Model: RS-5-G2, RITEC
Inc., Warwick, RI, USA) with a −20 dB gain and by a receiver amplifier with a 50 dB gain for 200 kHz
and 300 kHz in a 2.0-mm sheet, or by a receiver amplifier with a 40 dB gain for 240 kHz and 300 kHz
in a 2.5-mm sheet.
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5. Result Discussion

Owing to the existing quadratic material nonlinearity, second harmonics can be generated with
the propagation of the fundamental S0 mode waves. In this section, by analyzing the data from
numerical simulations and experiments, the effects of different frequency-thicknesses and different
frequencies with the same frequency-thickness on dispersion distance are investigated here. Note that
the signals of Lamb waves in the y-direction (the direction perpendicular to the surface of the sheet)
are used both for numerical simulations and experiments [41].

5.1. Fundamental Waves and Second Harmonics

Figure 5 shows the signals collected at the location of 120 mm from numerical simulations with
frequency-thickness 600 kHz·mm (f = 300 kHz, h = 2 mm), wherein the solid line represents the
wave signals for the linear case, and the dashed line represents the wave signals for the nonlinear
case. Additionally, the experimental signals collected at the location of 125 mm with the same
frequency-thickness are shown in Figure 6. It is found that the time-domain signals of the linear
case nearly coincide with that of the nonlinear case as shown in Figure 5a. However, based on the
frequency-domain signals with Fast Fourier Transform (FFT), as shown in Figure 5b, we can clearly
observe that the wave signals of the nonlinear case marked by the dashed line contain both the
fundamental frequency of 300 kHz and the second harmonic 600 kHz. Meanwhile, the signals of the
linear case marked by the solid line only contain the fundamental frequency of 300 kHz, indicating
that the second harmonic cannot be generated for the linear case. Additionally, the experimental
result as shown in Figure 6 demonstrates the same phenomenon. The experimental frequency-domain
signals contain not only the second harmonic but also the zero-mode frequency, as shown in Figure 6b.
It is found that the amplitude of the second harmonic is rather small. However, this small second
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harmonic signal should not be noise since the equipment of RAM-5000 SNAP has a great advantage
of being able to acquire the weak harmonics with low-noise, and the amplitude of this small second
harmonic can be linearly accumulated during the certain distance. Moreover, the coincident results
from repeated experiments are obtained in this work. In addition, the experimental amplitude of
zero-mode frequency in the present work is smaller than that in the work of Reference [42] because of
the different frequencies (300 kHz in the present work and 200 kHz in the work [42]) and different
receiver transducers (piezoelectric ceramics PSN-33 in the present work and Olympus transducer with
center frequency 500 kHz in the work of Reference [42]). Here, we find from the numerical simulations
and experiments that, when using the low-frequency S0 mode, weak material nonlinearity is essential
to the second harmonic generation of Lamb waves.Materials 2018, 11, x FOR PEER REVIEW  7 of 12 
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Figure 5. The signals received at the location of 120 mm from the numerical simulations (a) time
domain; (b) frequency domain (Frequency-thickness: 600 kHz·mm).
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Figure 6. The signals received at the location 125 mm from the experiments (a) time domain;
(b) frequency domain (Frequency-thickness: 600 kHz·mm).

5.2. The Influence of Frequency-Thickness

In order to obtain repeatable experimental results and eliminate the effect due to the
inhomogeneous distribution of the acoustic nonlinearity parameter in the sheet interior, multi-point
and repeated measurements are performed in experiments. Each experiment shown in the following
is repeated over 40 times. Besides, it should be noted that the wave signals in the distance range
(0–100 mm) could not be collected due to the limitations of the experimental equipment.

The different curve fitting types, such as 1st, 2nd, 3rd, 4th, and 5th polynomial, are attempted to fit
the numerical and experimental data in Figures 7 and 8. We find that both the 1st and 2nd polynomials
are inaccurate, however, the 4th and 5th polynomials show the same accuracy as the 3rd polynomial,
which is expressed by a more complex style. Thus, the 3rd polynomial is the best choice of the curve
fitting and is employed in Figures 7 and 8 for this work.
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Figure 7. The acoustic nonlinearity parameter versus propagation distance from the numerical
simulations. (a) f = 300 kHz, h = 2.0 mm; (b) f = 300 kHz, h = 2.5 mm; (c) f = 240 kHz, h = 2.5 mm;
(d) f = 200 kHz, h = 2.0 mm.
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Figure 8. The acoustic nonlinearity parameter versus the propagation distance with standard deviations
from the experiments (a) f = 300 kHz, h = 2.0 mm; (b) f = 300 kHz, h = 2.5 mm; (c) f = 240 kHz,
h = 2.5 mm; (d) f = 200 kHz, h =2.0 mm.
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Figures 7 and 8 show the acoustic nonlinearity parameter versus the propagation distance from the
numerical simulations and experiments, respectively. Note that the average values with the associated
standard deviations from experiments are shown in Figure 8. It was found that the numerical and
experimental results clearly show the sinusoidal behavior as in Figures 7 and 8. Additionally, the
dispersion distances obtained from the numerical simulations and experiments for different cases
are listed in Table 2, which shows that the experimental results are consistent with those of the
numerical simulations.

Table 2. The dispersion distances from numerical simulations and experiments.

Case L/mm (Numerical Simulations) L/mm (Experiments) Error

f = 300 kHz, h = 2.0 mm 180 175 2.8%
f = 300 kHz, h = 2.5 mm 100 125 25%
f =240 kHz, h = 2.5 mm 240 250 4.2%
f = 200 kHz, h = 2.0 mm 800 700 12.5%

Meanwhile, we also find that the dispersion distance increases with the decrease of the
frequency-thickness, as shown in Table 2. To investigate the relationship between dispersion distance
and frequency-thickness, more numerical simulations are carried out here. The acoustic nonlinearity
parameter versus frequency-thickness and dispersion distance versus frequency-thickness are shown
in Figure 9. Both the acoustic nonlinearity parameter and dispersion distance decrease dramatically
with the increase of the frequency-thickness, which are shown as the function of exponential decay.
It is clearly shown that both the acoustic nonlinearity parameter and dispersion distance are slightly
changed at relatively lower levels over 800 kHz·mm. Therefore, the proper frequency-thickness region
should be carefully chosen from 0–800 kHz·mm. Note that, the lower frequency-thickness could raise
the sensitivity and the linear accumulative distance, which can provide a feasible theoretical and
experimental basis for nonlinear Lamb waves of the low-frequency S0 mode.
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Figure 9. The acoustic nonlinearity parameter in the location at 10 mm and the dispersion distance
versus frequency-thickness.

Furthermore, an interesting phenomenon can be found from Table 2, revealing the influence
of frequency on dispersion distance with the same frequency-thickness. Numerical simulations are
also explored to investigate the relationship. With the same frequency-thickness (600 kHz·mm), the
acoustic nonlinearity parameter versus frequency and dispersion distance versus frequency are shown
in Figure 10. The acoustic nonlinearity parameter shows an exponential increase trend with frequency;
however, dispersion distance shows an exponential decay trend with frequency. We can also find that
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the acoustic nonlinearity parameter is more sensitive to the frequencies over 200 kHz, but dispersion
distance is more sensitive to the frequencies below 400 kHz. Therefore, the appropriate frequency from
the range 200–400 kHz could be a compromise considering the influences of sensitivity and linear
accumulative distance.
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Figure 10. The acoustic nonlinearity parameter in the location ay 10 mm and the dispersion distance
versus frequency at the same frequency-thickness 600 kHz·mm.

It should be noted that the representative case (f = 200 kHz, h = 2.0 mm) has two great advantages:
a lower frequency-thickness (400 kHz·mm) and a lower frequency (200 kHz), which can lead to a
higher sensitivity and longer linear accumulative distance. The numerical and experimental results
both verify the above-mentioned viewpoints.

6. Conclusions

The numerical modeling and experimental investigation in plates with quadratic material
nonlinearity are performed to demonstrate the nonlinear phenomena of the low-frequency S0 mode
Lamb wave. The following conclusions are drawn:

Firstly, when the S0 mode Lamb waves in the low-frequency domain (0–800 kHz·mm) are chosen
as the fundamental waves, obvious second harmonics can be observed from the numerical and
experimental results. Therefore, the low-frequency domain (0–800 kHz·mm) is an appropriate choice
for engineering applications.

Secondly, it is found that both the acoustic nonlinearity parameter and dispersion distance
decrease dramatically as the function of exponential decay with the increase of frequency-thickness.
Thus, the lower frequency-thickness from 0–800 kHz·mm should be carefully chosen for considering
the sensitivity and the linear accumulative distance.

Finally, in the cases of the same frequency-thickness, the appropriate frequency from the range
200-400 kHz could be a compromise considering the influences of sensibility and linear accumulative
distance. Additionally, both the numerical and experimental results manifest that the frequency plays
a critical role to affect acoustic nonlinearity parameter and dispersion distance. Thus, according to
Figures 9 and 10, the appropriate frequency should be carefully chosen in actual NDT applications.
This study provides a theoretical and experimental foundation for nonlinear Lamb-wave methods
based on the low-frequency S0 mode.
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