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Abstract: A parameterization modeling method based on finite element mesh to create complex
large-scale lattice structures for AM is presented, and a corresponding approach for size optimization
of lattice structures is also developed. In the modeling method, meshing technique is employed
to obtain the meshes and nodes of lattice structures for a given geometry. Then, a parametric
description of lattice unit cells based on the element type, element nodes and their connecting
relationships is developed. Once the unit cell design is selected, the initial lattice structure can be
assembled by the unit cells in each finite element. Furthermore, modification of lattice structures
can be operated by moving mesh nodes and changing cross-sectional areas of bars. The graded and
non-uniform lattice structures can be constructed easily based on the proposed modeling method.
Moreover, a size optimization algorithm based on moving iso-surface threshold (MIST) method is
proposed to optimize lattice structures for enhancing the mechanical performance. To demonstrate
the effectiveness of the proposed method, numerical examples and experimental testing are presented,
and experimental testing shows 11% improved stiffness of the optimized non-uniform lattice structure
than uniform one.

Keywords: lattice structures; additive manufacturing; infilled structure finite-element-mesh based
method; MIST method

1. Introduction

Lattice structure is a kind of high-efficiency cellular material, which attracts the attention of
researchers and engineers for their significant potential of lightweight applications and multifunctional
design opportunities, such as superior mechanical properties (including energy absorption, strength,
and stiffness) [1], heat transfer and thermal protection properties [2]. However, due to the complex
geometries, it is difficult for the conventional technique of manufacturing such as extrusion and
molding to fabricate lattice structures directly [3–5], which restricts their application and development.
The majority of available designs are uniform lattice structures composed of periodic unit cells.
However, a non-uniform lattice structure with variable unit cells and complex microstructure can
achieve significantly better performance relative to the uniform one through optimizing the gradient
variation of unit cells and the areas and/or orientations of the bars. Additive manufacturing (AM) is
an emerging technique that provides a great flexibility for the fabrication of complex structures, and
gives engineers great freedom to fabricate novel lattice structures with complex geometries [6–8]. Thus,
AM technologies make the manufacture of the non-uniform lattice structures possible [9,10]. To make
the most use of design space, a geometric modeling method of lattices is needed to take advantage of
the shape complexity capabilities of AM. Moreover, a highly efficient design method is also required
to optimize the large-scale lattice structure for enhancing mechanical performances.
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The engineering or physiological structures often have complex shapes. The majority of
constructive approaches are targeted to design the internal geometry of a structure by filling it with
the periodic repetition of regular unit cells [11–13]. The advantages of such periodic porous structures
consist in their easier modeling and fabrication, as well as in the possibility of predicting their structural
properties. Due to such a regularity and periodicity, it is very difficult to exert local control on pore
shape, size and distribution, since a minute modification of the unit cell will turn into global changes to
the entire structure. More importantly, it is very difficult, if not impossible, to construct lattice structures
fitting to complex geometric boundaries. Usually, Boolean operations (e.g., intersection) performed
on the acquired model of the structure and the arranged stack of cellular units are required for the
generation of lattices with particular external shape. Consequently, the boundary cellular units will
be cut to satisfy the structural shape, and these defects in lattice structures have a significant effect
on mechanical performance. However, a non-uniform lattice structure with variable unit cells and
optimized bar sizes and/or orientations not only can achieve better performance than the uniform
one, but also can fit the structural boundary shape. Thus, design of conformal lattice structures in this
context of pursuing higher-performance is challenging and becomes a focus of recent studies. One of
the most important issues is to develop a method to model parametrically the variation of the unit cells
in the space, including the sizes of the unit cells and the areas and/or orientations of the bars.

In fact, lattice structures can be considered as truss structures. Thus, the ideas and principles of
the available parameterization and optimization methods for truss structures, such as homogenization
based method [14,15] and ground-structure method [16], can be used to construct the modeling and
optimization method for non-uniform lattice structures.

The homogenization approach employs a composite material as a basis for defining shape in
terms of material density. Periodic microstructures are used as the equivalent homogenized material
with the same effective properties. Usually, the design of cellular structure by using homogenization
approach is considered as a design process at two scales [17–19] (i.e., structural topology design at
the macro scale and microstructure design at the micro scale). The method requires that the feature
sizes of the microstructure are much smaller than the length scale of the global structure. Therefore,
this approach may become inaccurate when feature sizes of the microstructure are comparable to the
length scale of the global structure. Moreover, the method based homogenization approach is not
suitable for design optimization of large-scale non-uniform lattice structures applied in engineering.

The ground truss approach starts with a ground structure, which is a grid of all elements
connecting the nodes in the design space. The optimal truss structure is realized by selecting an optimal
substructure from this pre-defined ground structure. Ultimately, the ground-truss approach is a sizing
optimization problem, where the cross-sections of ground truss members are the continuous design
variables for the optimization. The cross-sections of the bars are sized to support the applied loads on
the structure. Dorn et al. [20] proposed the well-known ground structure method in 1964, introducing
numerical methods to the field of truss optimization. Based on the ground structure method, many
studies are carried out. A review about developments of the ground structure method can be found
in [21,22]. Zhou and Rozvany [16] proposed a highly efficient new method (DCOC) for the sizing
optimization of large structural systems, greatly improving the scale of the truss optimization. In recent
years, intelligent optimization algorithms have been applied to the field of truss optimization, e.g.,
genetic algorithm [23], particle swarm optimization algorithm [24], simulated annealing algorithm [25]
and ant colony optimization [26]. The intelligent optimization algorithm is also not suitable for
optimization of large-scale lattice structures because of the huge computation cost.

Based on the basic idea of ground-structure method, in which the optimized truss structure is
obtained by properly adjusting and selecting the positions of nodes and cross-section areas of bars from
the pre-defined ground structure, we proposed a parameterized modeling and optimization method
for non-uniform lattice structures in this paper. Though meshing the defined domain using finite
mesh technology, the ground-structure is constructed and modeled parametrically based on the finite
element mesh information, and a MIST-based method is developed for optimizing the positions of the
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nodes and the cross-sectional areas of the bars of lattice-structures. Here, MIST (the Moving Iso-Surface
Threshold method) is a new topology method which can avoid explicit sensitivity analysis, and thus
yields another advantage of simplification in interfacing with an in-house or commercial finite element
analysis program [27–29]. Large-scale lattice structures conforming to complex shapes can be quickly
constructed via the proposed modeling method, benefiting from the development of finite element
mesh generation technology. Then, optimized lattice structures with higher performance can be found
by optimizing initial lattice structures with the proposed optimization method. The optimization
method has a very small amount of calculation for solving large-scale engineering problems of
lattice structures.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction about
the modeling method of lattice structures based upon finite element mesh, including the parametric
description format, generation process and modification of lattice structures. Section 3 introduces the
process of the MIST method. In addition, a size optimization algorithm based on MIST method is
proposed to design lattice structures. Numerical examples are given to demonstrate the effectiveness
and generality of the proposed method in Section 4. Finally, conclusions are given in Section 5.

2. Lattice Structure Configuration

2.1. Finite Element Mesh Based Modeling Method

The general idea of the modeling method is as follows: Firstly, meshes of the given geometry
are realized through the finite element meshing technique. Then, a parametric description of lattice
unit cells based on the element type, element nodes and their connecting relationships is developed.
The bars of lattice unit cell are established by connecting nodes with the connecting relationships in
element. Finally, the lattice structures are generated by assembling the lattice unit cell in each element.
The detail process of modeling method is given in this section.

For convenience, we introduce some definitions as follows:

1. Base mesh: Base mesh is the initial finite element mesh, which is obtained by meshing the
given geometry.

2. Base points: Base points are the nodes of the initial finite element mesh.
3. Boundary bars: Boundary bars are the bar on element edge. The end points of boundary bars are

base points.
4. Derivative points: Derivative points are the extra nodes introduced to construct the additional

bars. The positions of the derivative points are interpolated by the coordinates of base points.
5. Derivative bars: Derivative bars are the bars made by connecting base points and

derivative points.
6. Primitive lattice cells: Primitive lattice cells are the unit cells constructed by boundary bars, as

shown in Figure 1.
7. Derivative lattice cells: Derivative lattice cells are the unit cell constructed by boundary bars and

derivative bars, as shown in Figure 1.



Materials 2018, 11, 2073 4 of 20

Materials 2018, 11, x FOR PEER REVIEW  4 of 20 

 

 

Figure 1. Procedure of the modeling method and some lattice examples. 

The modeling method is summarized into steps, as shown in the flowchart of Figure 2. The 
whole procedure of modeling method for larger-scale conformal truss structures based upon finite 
element is outlined as follows. 

 
Figure 2. Flowchart of the lattice structure modeling method based upon finite element mesh. 

Step 1: Finite Element Mesh Generation 

For the first step, the given geometry needs to be meshed to get base mesh. Base mesh can 
provide the initial nodes and elements information of the geometry. It is a process of converting a 
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The modeling method is summarized into steps, as shown in the flowchart of Figure 2. The whole
procedure of modeling method for larger-scale conformal truss structures based upon finite element is
outlined as follows.
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Step 1: Finite Element Mesh Generation

For the first step, the given geometry needs to be meshed to get base mesh. Base mesh can provide
the initial nodes and elements information of the geometry. It is a process of converting a CAD model
to a CAE model. Nowadays, commercial CAE software can provide simple and efficient finite element
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preprocessor, so Step 1 can be easily implemented by commercial finite element software without
extra programming.

Step 2: Determination of the Lattice Unit-Cell

After meshing the given geometries, it is needed to determine the lattice unit-cell models.
This paper provides two types of lattice unit-cell models. The first type of unit cell is called primitive
lattice cell which are made up of boundary bars. The boundary bars are formed by connecting nodes
(base points) of the mesh along the edge of the element. Each type of element corresponds to a certain
primitive lattice cell. The second type of cell is called derivative lattice cell which are made up of
boundary bars and derivative bars. Derivative points are the extra nodes introduced to construct
derivative bars. The positions of the derivative points are interpolated by the coordinates of base points.
Then, the derivative bars are formed by connecting the base points of the element and derivative
points. For one type of element, many different derivative lattice cells can be obtained by different
derivative points. For example, Table 1 shows the element types, primitive lattice cells, derivative
lattice cells and the corresponding interpolation formats. In Table 1, only one simple derivative lattice
cell with one derivative point is given for each type of element.

Table 1. Illustrations of elements, primitive cells, derivative cells and interpolation formats.

Element Type Triangle Quadrangle Tetrahedron Hexahedron

Element and nodes
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, ,Der Der Derx y z are the Cartesian co-ordinates of derivative points 

, ,i i ix y z  are the Cartesian co-ordinates of node number i  

Step 3: Lattice Structure Generation 

Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Step 3: Lattice Structure Generation 

Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Step 3: Lattice Structure Generation 

Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Step 3: Lattice Structure Generation 

Initial node and element information of the given geometry can be obtained from Step 1, and 
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling 
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Step 3: Lattice Structure Generation

Initial node and element information of the given geometry can be obtained from Step 1, and
Step 2 can provide the lattice unit-cell model. The last step is assembly of lattice structure (i.e., infilling
the whole geometry with lattice unit-cell model). Figure 3 shows illustrations of lattice structure
generation for two given geometries.
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2.2. Modification

The lattice structures generated by the modeling method are adjustable. The first way to get
modified lattice structures is to move mesh nodes of initial lattice structures. For example, by moving
the nodes to the stress concentration area, lattice structures with local reinforcement properties can
be constructed and the stress in the corresponding area will decrease. Figure 4 shows an example
of modification of lattice structures by moving mesh nodes. The second way to get modified lattice
structures is to modify the cross-sectional areas of the bars. By changing the cross-sectional areas of the
bars, lattice unit-cell model with different volume fractions can be constructed. The non-homogeneous
distribution can be achieved by infilling the geometry with different volume fractions unit-cell models.
Figure 5 shows a cuboid lattice structure with linear gradient distribution of volume fraction. By the
modification of initial lattice structures, non-uniform lattice structures with the desired properties can
be constructed easily.
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Figure 5. Cuboid lattice structure with linear gradient cross-sectional areas of the bars.

3. Problem Statement and Formulation

3.1. A Brief Overview of MIST

This paper uses a novel method referred as MIST to optimize the cross-sectional areas of the
bars of lattice structure. MIST method is a new topology optimization method used to solve topology
optimizations, such as shown in Equation (1). The method is proposed by Tong and Vasista in 2014,
and the process flowchart of MIST method is presented in Figure 6. The method aims to find the
design variable values x and t to minimize a certain structure objective function, such as the total
strain energy. As the basic principle of MIST method, a physical response function Φ (stresses, strains
and their appropriate combinations) should be written in an integral form over the design domain.
An iso-surface S intersects the Φ function and the contour formed by the intersection becomes the
structural boundary. The level or threshold value t of the iso-surface depends on the volume constraint
and is calculated. Weighting factors are used on the elements to represent the material distribution:
void and solid element are represented by weighting factors of 0 and 1, respectively. In the element
weighting factor update routine, the element with Φ above the iso-surface at all nodes move towards
solid material (weighting factors tend 1), and those elements with Φ below the iso-surface at all nodes
move towards void material (weighting factors tend 0).

find x, t
min J(x, t)
s.t: gr(x, t) = 0

gs(x, t) ≤ 0
xl ≤ x ≤ xu

(1)
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The iso-surface level S is calculated using an iterative bisection method and element weighting
factors are updated. The detail steps are given as follows:

Step 1: Determine tmax0 = max(Φ) and tmin0 = min(Φ) for a known Φ.

Step 2: Calculate iso-surface level: tk =
tmaxk+tmink

2 .
Step 3: Calculate Φ− tk at all nodes; set Φ− tk to 0.01 and −0.01 at solid and void non-design

nodes, respectively; and update xik for all elements based on area ratio.
Step 4: If |Vk −Vcons| < ζ, terminate iteration; otherwise

Case (a) if Vk > Vcons →
{

tmink+1 = tk
tmaxk+1 = tmaxk

or

Case (b) if Vk < Vcons →
{

tmink+1 = tmink

tmaxk+1 = tk

where ζ is the bisection method tolerance on material constraint. Vk is the total volume of the
structure at kth iteration step. Vcons is the volume constraint.

For Step 3, xik is calculated for each element based on the values of Φ− tk at the element nodes.
If Φ− tk is positive at all element nodes, then xik moves towards 1. If Φ− tk is negative at all element
nodes, then xik moves towards 0. If the values of Φ− tk are positive at some node(s) and negative at
some node(s), then xik is based on the ratio of projected positive area to total element area. A response
surface, an iso-surface and contour of the intersection for a half simply supported beam problem are
shown in Figure 7.
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3.2. Size Optimization Algorithm Based on MIST Method

In this paper, we use the MIST method to optimize the lattice structure, choosing strain energy
expression of the bar element as Φ function and cross-sectional areas of the bars as variable values.
Upper and lower bounds of the cross-sectional areas need to be defined in advance. Usually, we
choose the smallest size limitation of a 3D printer as the lower bound of the cross-sectional area. As for
upper bound, we choose five times of the initial bar length as the upper bound of the bar diameter.
Bar element only has two nodes so there is a little difference when calculating the variable value t.
When updating the areas of the bars, if the value of Φ− tk is positive at one node and negative at the
other node, the cross-sectional area of the bar remains unchanged.

Hence, we can formulate the design optimization of lattice structures problem for maximizing
equivalent stiffness as follows:

find A = {Ai}, i = 1, . . . , N

min f (A) =
N
∑

i=1
Φi

s.t. F = KU
N
∑

i=1
AiLi < Vcons

0 < Al ≤ Ai ≤ Au, i = 1, . . . , N

(2)

where Ai is the cross-sectional area of bar number i, f (A) is objective function, Φ is the response
function for MIST, F is load vector, K is overall stiffness matrix, U is displacement vector, Al is the
lower bound of the cross-sectional area, Au is the upper bound of the cross-sectional area, and Vcons is
the volume constraint.

In this paper, the linear elastic constitutive model shown as Equation (3) is adopted into the
optimization algorithm without considering the plasticity and yielding effects.

σ = E · ε (3)

The initial cross-sectional areas of each bar are the same and depend on the volume constraint. As
mentioned, an appropriate selection of the response function Φ is crucial; in this paper, the Φ function
used was the strain energy of the bar as given in Equation (4).

Φi =
F2

i · Li

2 · E · Ai
(4)

where Li is the length of bar number i, Fi is the axial force of bar number i, E is Young’s modulus, and
Ai is the cross-sectional area of bar number i.
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4. Numerical Results

To demonstrate the effectiveness of the proposed method, several numerical examples are
presented in this section. The sizes and loads for all examples are chosen to be dimensionless. Young’s
modulus and Poisson’s ratio of the material are selected as E = 2.0 × 105 and v = 0.3, respectively.
For the convenience of description, the design variable of cross section A is replaced by the circular
radius r. The relationship between r and A is Ai = π · ri

2; Al = π · rl
2; Au = π · ru

2.

4.1. Numerical Examples for 2-Dimensional Structures

(A) A 2D cantilever beam

As the first test case, a 2D cantilever beam is considered. Figure 8 shows the process of initial
lattice structure generation for 2D cantilever beam. Figure 9 shows its finite element model, initial
lattice structure, boundary conditions and load. The overall size of cantilever structure is 6 × 3
(dividing into 30 × 15 unit cells). The structure is fixed at the top-left and bottom-left corner point and
loaded at bottom-right corner (F = 1000). The initial radius of bar is 0.01, lower bound of the radius is
0.005 and upper bound is 0.02. Figure 10 plots the iteration histories of the compliance of the cantilever
structure and volume fraction of the structure. The iteration process is stable, and the objective function
and the structure converge to their final solutions after 200 iterations. The compliance of the structure
is decreased by 63.9% and the volume fraction is still unchanged. Figure 11 shows the final optimized
structure of the 2D cantilever beam. The result is considered reasonable and the pattern layout is
similar to the result from topology optimization of continuum structures.
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Figure 10. Iteration histories of the objective and volume for cantilever beam.
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Figure 11. Final optimized structure of the cantilever beam.

(B) A hollow round with a circular support

The second example is a hollow round with inside diameter 1 and outside diameter 5. The process
of initial lattice structure generation is the same as the last example, and Figure 12 shows the
illustrations of lattice structure generation for the hollow round. Figure 13 shows its finite element
model, initial lattice structure, boundary conditions and loads. There are 15 unit cells in the radial
direction and 60 unit cells in the circumferential directions, the inner boundary points are fixed and
tangential loads are applied on the outer boundary (F = 1000). The initial design variable radius is
0.02, lower bound of the radius is 0.01 and upper bound of the radius is 0.04. Figure 14 shows the final
optimized structure of the hollow round.
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Figure 12. Illustrations of lattice structure generation for hollow round.
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4.2. Numerical Examples for Three-Dimensional Structures

(A) A hollow round platform

For a hollow round platform, the process of initial lattice structure generation for the structure
is shown in Figure 15. Figure 16 shows the finite element model, loading and boundary conditions
of the hollow round platform. The bottom of the hollow round platform is fixed, tangential and
tensile loads are applied on four top-inside points of the hollow round platform. The initial radius
of bar is 0.04, lower bound of the radius is 0.02 and upper bound of the radius is 0.06. Figure 17
shows the final optimized structure. Figure 17a shows the local details of the optimized structure, and
we can clearly see the different thickness of the bar. In this case, we compare initial structure with
optimized structure in stiffness and strength by numerical simulation. Figure 18 shows the results of
the numerical simulation. After the optimization, the maximum Mises stress of the structure is down
by 55.14% and the maximum displacement is down by 44.48%. Apparently, our method can find better
lattice structures both in stiffness and strength.
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Figure 18. Analysis results: (a) von Mises stress for initial structure; (b) displacement for initial
structure; (c) von Mises stress for optimized hollow round platform; and (d) displacement for optimized
hollow round platform.

(B) A three-dimensional horn structure

The second three-dimensional example is a horn structure. The model consists of a lattice structure
and a solid structure. The same with the hollow round platform, we give the initial lattice structure
directly. Illustrations of lattice generation for the structure are shown in Figure 19. Figure 20 shows the
finite element model, boundary conditions and loading of the horn structure. The bottom of the horn
is fixed and the structure is subjected to five vertical point loads on the top of the structure. The initial
radius is 0.02, lower bound of the radius is 0.01 and upper bound of the radius is 0.04. Figure 21a is the
three-dimensional stereogram of the optimized horn and it shows the local details of the optimized
structure. Figure 21b shows the vertical view of the final optimized structure. We compared the
optimized structure with that of the flower shown in Figure 21b, and we found that they are similar in
terms of functionality and appearance. Apparently, our method is also applicable to the mixed model
of solid structures and lattice structures.
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5. Experimental Validation

5.1. Models for the Test

To further verify the effectiveness of the proposed method, an experimental validation is carried
out for a 3D example. The structure similar to the first 3D numerical example is selected as the
experimental object. Some changes are made to the model to make the experiment more convenient to
carry out. Due to the limitation of 3D printer’s processing precision, the lower bound of the radius of
the rods cannot be too small. Considering the size of the experimental platform, the overall size of
the model also needs to be adjusted. Therefore, the stiffness increase of the experimental model after
optimization cannot reach the value in the numerical study. In addition, surface texture produced by
AM also has a very important impact on structural performance [30,31]. Figure 22 shows the boundary
conditions and result of the optimization problem. Both the initial and optimized lattice hollow round
platform in Figure 23 are additively manufactured with SLA (Stereo Lithography Apparatus) printing
technology. Droplets of photo-sensitive liquid resin are selectively deposited onto a substrate through
a movable nozzle, and simultaneously solidified through ultraviolet light.
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Figure 23. 3D printed samples of: (a) initial lattice hollow round platform; and (b) optimized lattice
hollow round platform.

5.2. Mechanical Test and Result

Experimental validation is carried out for both initial and optimized lattice structures shown
in Figure 23 for mechanical test. The experiments are conducted on a WDW-100 electromechanical
universal testing machine (Kexin, Changchun, China) with a 100.0 kN load cell, according to the
experimental setup shown in Figure 24. All of the specimens are loaded by dropping the top bracket
downwards at a speed of 0.5 mm/min, which is to simulate the quasi-static condition. Each test is
stopped at maximum displacement of 2.50 mm. Figure 25 shows the measured load–displacement
responses of the specimens. Since the specimens are only tested for stiffness validation within the linear
elastic region as well as under the geometrical linearity condition for small displacements, the curves
within the displacement range between 1.5 and 2.0 mm are used to evaluate the stiffness of the samples.
The global stiffness of the specimens is evaluated by linear regression, with resulting values of Sini =
(2.79 ± 0.01) × 103 N/mm and Sopt = (3.12 ± 0.01) × 103 N/mm for the initial and optimized hollow
round platform, respectively. The measured stiffness values clearly demonstrate the superior stiffness
of the optimized structure over the initial structure, with a significant improved global stiffness of
11.83%. Here, experiments are conducted only for comparing stiffness between initial and optimized
lattice structures, which is in general a standard requirement for most engineering applications.
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6. Conclusions

This paper presents a new approach to model and design lattice structure for additive
manufacturing. Lattice structures conforming to complex shapes can be constructed by the modeling
method. In the modeling method, the meshing techniques are employed to obtain the discrete nodes
of lattice structures for a given geometry. Then, a parametric description of lattice unit cells filled
in meshes is developed to assist the user in assembling the architecture of lattice structures. Once a
unit cell design is selected and sized, the initial lattice structure can be assembled by the unit cell in
each finite element. Furthermore, modified lattice structures can be obtained by adjusting the initial
lattice structures. By moving grid nodes, graded and non-uniform lattice structures can be constructed.
By changing the cross-sectional areas of the bars, the lattice unit-cell model with different volume
fractions can be constructed.

The modeling approach based upon finite element method can be used for generating large-scale
lattice structure for any kind of geometry. Moreover, the MIST method provides a useful method
for designing large-scale lattice structures. However, further investigation is needed to evaluate its
efficiency and effectiveness compared with other algorithms. Several numerical examples are provided
to illustrate the validity of the proposed method. After optimization, the maximum Mises stress of the
hollow round platform example is decreased by 55.14% and the maximum displacement is decreased
by 44.48%. The experimental results also demonstrate the benefits of performing non-uniform design
by using the proposed method. The measured stiffness values clearly demonstrate the superior
stiffness of the optimized structure over the initial structure, with a significantly improved global
stiffness of 11.83%. In addition, an important conclusion can be made that the optimized non-uniform
lattice structure is able to provide a higher stiffness than the uniform design. However, fabricating
3D optimized lattice structures may encounter issues such as removal of support structures, surface
roughness and surface texture, which could significantly influence the mechanical performance of the
samples. This situation will be considered in our next work.
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