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Abstract: Biomorphic Mn3O4 nanocrystal/porous carbon microfiber composites were hydrothermally
fabricated and subsequently calcined using cotton as a biotemplate. The as-prepared material
exhibited a specific capacitance of 140.8 F·g−1 at 0.25 A·g−1 and an excellent cycle stability with a
capacitance retention of 90.34% after 5000 cycles at 1 A·g−1. These characteristics were attributed
to the introduction of carbon fiber, the high specific surface area, and the optimized microstructure
inherited from the biomaterial.

Keywords: Mn3O4; carbon microfibers; biotemplate; microstructure; energy storage and conversion;
electrochemical properties

1. Introduction

Electrochemical supercapacitors (ESs) have many desirable properties, including long lifetime,
high power density, and high rate capability. Thus, ESs are attracting worldwide attention as an efficient
energy storage device for portable electronic devices and vehicles [1,2]. Transition metal oxides (TMOs)
such as CoOx, NiO, and MnOx have been extensively investigated as promising electrode materials
for ES applications. These oxides deliver higher specific capacitances than those of carbonaceous
materials due to reversible faradaic redox reactions [2]. Manganese oxide has been considered a highly
attractive TMO due to its high theoretical specific capacitance, good electrochemical stability, low cost,
and natural abundance [3]. MnOx-based composites with various microstructures and morphologies,
such as wires, sheets, tubes, and flowers, have been developed [4–7]. Although these active materials
exhibit enhanced pseudocapacitance properties, their low electronic conductivity and insufficient
interface contact can substantially reduce the experimental specific capacitance and hamper their
extensive commercial application.

To address these issues, scholars have proposed the fabrication of many MnOx/carbon composites
in recent years [8,9]. Among the carbon materials, using low-cost natural resources, biowaste, and food
waste are highly effective ways to achieve the large-scale production of electrode materials [10–12].
Natural biomaterials usually possess irregular microstructures that are difficult to duplicate, and these
structures are often highly suitable as energy storage materials. For example, cotton wool [6],
coconut shell [13], and human hair [14] have been introduced as excellent flexible carbon substrates
for hybrid composites. These materials exhibit high specific capacitance, good electronic conductivity,
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good cycle stability, and excellent flexibility. Therefore, a simple and cheap approach using porous
carbon microfiber (PCM) derived from cotton wool was studied in our work.

Herein, we prepared a biomorphic porous composite fabricated using Mn3O4 nanocrystals
supported on PCMs (Mn3O4/PCM) with cotton fiber as the biotemplate and carbon skeleton.
Benefitting from the unique morphology, large specific surface area, and existence of carbon fiber,
the as-prepared composites exhibit an excellent electrochemical performance.

2. Experimental

The preparation process of Mn3O4/PCM is schematically illustrated in Scheme 1. Dry cotton
wool (Xinghua health cotton wool Co. LTD, Xinghua, China) was cut into short pieces and carbonized
for 1 h at 350 ◦C under an argon atmosphere. The as-prepared sample is denoted as PCM. Then,
2.5 g PCM was immersed in 50 mL of 1 mol·L−1 Mn(NO3)2·6H2O solution. The dispersed solution was
transferred to a 100 mL autoclave and reacted for 12 h at 180 ◦C. The hydrothermal reaction product
was filtered, washed, dried, and annealed in a tubular furnace at 400 ◦C in air for 1 h, and the product
was labeled as Mn3O4/PCM. For comparison, pristine Mn3O4 was hydrothermally synthesized by
decomposing the solution of Mn(NO3)2·6H2O at 180 ◦C for 12 h without cotton.
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Scheme 1. Illustration of the preparation process of Mn3O4/PCM (porous carbon microfiber).

Field emission scanning electron microscopy (FE-SEM) images were taken with a Zeiss Sigma
500 microscope (Carl Zeiss A G, Jena, German) and an Oxford X-Max energy dispersive spectroscope
(EDS, Oxford instruments, Oxford, UK). Transmission electron microscopy (TEM) images were taken
using a FEI Talos F200S microscope (Thermo fisher Scientific, Waltham, MA, USA) with an accelerating
voltage of 200 kV. Powder X-ray diffraction (XRD) patterns were obtained at ambient temperature on a
Rigaku Smart Lab 3 kW diffractometer (Rigaku, Tokyo, Japan) using Cu K radiation (λ = 1.5418 Å) under
an accelerating voltage of 36 kV. Raman spectroscopy was tested with the range of 300–2000 cm−1 on a
LABRAM HR-800 spectrometer (Horiba, Kyoto, Japan), and the excitation source was a 532 nm laser.
Specific surface area and porosity measurements were carried out on a Quantachrome Autosorb-iQ
instrument (Quantachrome instruments, Boynton Beach, FL, USA) using the Brunauer–Emmett–Teller
(BET) method. X-ray photoelectron spectroscopy (XPS) measurements were performed on a VG Escalab
MK II spectrometer (Thermo fisher Scientific, Waltham, MA, USA) with non-monochromatic Al Kα

X-ray (1486.6 eV). The TG-DTA were measured on an integrated thermal analyzer (TG, STA 449C,
NETZSCH-Gerätebau GmbH, Selb, Germany) with a 10 ◦C/min heating rate from room temperature to
750 ◦C under air atmosphere. The working electrode was prepared by mixing the prepared composites,
acetylene black, and polytetrafluoroethylene with a mass ratio of 75:15:10, while electrode of the bulk
Mn3O4 was 50:40:10. The net weight of Mn3O4 in electrodes was ~3 mg. Subsequently, the mixture
was coated onto a nickel foam current collector (1.5 cm2), pressed at 10 MPa, and dried under vacuum
at 60 ◦C. All the measurements were performed with a three-electrode system (Hg/HgO and platinum
as the reference and counter electrode, respectively) and a two-electrode system (Mn3O4/PCM and
commercial active carbon (CAC)) in 3 mol·L−1 KOH aqueous electrolyte.



Materials 2018, 11, 1987 3 of 7

3. Results and Discussion

The carbon fiber of the cotton became remarkably porous after carbonization (Figure 1a).
The Mn3O4/PCM composite prepared using cotton as template had a tubular morphology (Figure 1b,c)
similar to cotton. At the start of the hydrothermal reaction, the cotton was immersed into the precursor
solution, the Mn2+ was partly oxidized to Mn3+ ions, and Mn3O4 formed. Mn ions were then bonded
onto the oxygen-rich group of the cotton fibers through O-H, C=O groups, and so on (Figure 1b) [15–17].
The size of nanocrystals increased from several to dozens of nanometers (Figure 1b,c) with a reaction
time from 5 h to 12 h. When the hydrothermal product was calcined at 400 ◦C, the precise replication
of cotton texture could be achieved after the removal of most of the template substance. Part of
the organic template was carbonized into a porous carbon stick with irregular pores (Figure 1d).
The high-resolution TEM (HRTEM) image (Figure 1e) clearly demonstrates that the biomorphic Mn3O4

was monocrystalline and derived from the lattice arrangement (inset of Figure 1e). The interplanar
spacing was about 0.25 nm for the {211} lattice planes. The distribution of Mn (44.8 wt.%), C (31.7 wt.%),
and O (23.5 wt.%) in the as-prepared sample was uniform (Figure 1f).
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Figure 1. SEM images of (a) cotton and carbonized cotton fiber (inset in a); (b,c) Mn3O4 nanocrystals
grown on the PCM surface after 5 and 12 h, respectively. (d) Transmission electron microscopy (TEM)
image, (e) high-resolution TEM (HRTEM) image (inset is the SEAD graph), and (f) energy dispersive
spectroscopy (EDS) mappings of Mn3O4/PCM.

The XRD patterns of Mn3O4/PCM and bulk Mn3O4 are shown in Figure 2a. The diffraction peaks
of the composite can be ascribed to tetragonal Mn3O4 (JCPDS 18-0803) [18], and the diffraction peak at
25.24◦ was ascribed to the carbon fabric (graphitic carbon: JCPDS75-1621), which was marked with an
asterisk symbol (*). Raman characterizations (Figure 2b) showed features from Mn–O in 600–700 cm−1

and carbon fibers in the 1200-1600 cm−1 region in Mn3O4/PCM [4,9,16], while only an Mn–O peak at
lower wavenumber in Mn3O4.
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Figure 2. (a) XRD patterns, (b) Raman spectra, (c) nitrogen adsorption–desorption isotherms (inset 
shows pore size distributions) of Mn3O4/PCM and bulk Mn3O4, and (d) TG-DTA curves of the product. 

As shown in Figure 3a,b, the cyclic voltammetry (CV) and galvanostatic charge–discharge 
(GCD) curves of Mn3O4/PCM and bare Mn3O4 demonstrated that the electrochemical properties of 
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located at ~0.25 and ~0.4 V, which correspond to almost the same component and chemical conversion 
between different manganese oxidation states in alkaline medium (Mn3O4 ⇔ MnOOH) [18,19]. The 
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Figure 2. (a) XRD patterns, (b) Raman spectra, (c) nitrogen adsorption–desorption isotherms (inset
shows pore size distributions) of Mn3O4/PCM and bulk Mn3O4, and (d) TG-DTA curves of the product.

The N2 adsorption–desorption isotherm of Mn3O4/PCM exhibited a distinct H3 hysteresis loop
at p·p0

−1 > 0.40 (Figure 2c). The isotherms of composite and pristine Mn3O4 exhibited features
of mesoporous materials. The pore size distribution of Mn3O4/PCM appeared with a wide range
having two pore extremes at 24.2 and 82.5 nm. The BET specific surface area of the Mn3O4/PCM
was determined to be 51.9 m2·g−1, which was much larger than that of pristine Mn3O4 (10.8 m2·g−1).
The higher surface area and pore volume is beneficial to the contact of the electrolytes with the active
materials, and can further increase the electrochemical properties [6,8,10]. The TG-DTA curves of the
hydrothermal product are shown in Figure 2d. Two endothermic peaks were observed in the range
of 100-200 ◦C because of the adsorbed water. A weight loss of ~30% was found between 250 and
380 ◦C, which can be attributed to the decomposition of organic substances in cotton similar to other
biomorphic oxides [13,14].

As shown in Figure 3a,b, the cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD)
curves of Mn3O4/PCM and bare Mn3O4 demonstrated that the electrochemical properties of the
former were better than those of the latter. The specific capacitances were calculated to be 120.8 and
52.2 F·g−1, respectively, which were attributed to the higher specific surface area of Mn3O4/PCM,
the existence of carbon fiber, and its special hierarchical porous morphology derived from the
biotemplate. As illustrated in Figure 3c, Mn3O4/PCM and pristine Mn3O4 had a pair of redox peaks
located at ~0.25 and ~0.4 V, which correspond to almost the same component and chemical conversion
between different manganese oxidation states in alkaline medium (Mn3O4 ⇔ MnOOH) [18,19].
The GCD curves of Mn3O4/PCM displayed remarkable pseudocapacitance properties. A slight
reduction of specific capacitance was noted at high current densities (Figure 3d), indicating that the
as-prepared composite has a good electrochemical stability [4,14].
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Figure 3. (a) Cyclic voltammetry (CV) curves at a scan rate of 80 mV·s−1; (b) galvanostatic charge–
discharge (GCD) curves at 0.5 A·g−1 of Mn3O4/PCM and bare Mn3O4; (c) CV curves of Mn3O4/PCM at 
various scan rates; (d) GCD curves and specific capacitance at various current densities of 
Mn3O4/PCM (inset in d); (e) Nyquist plots of Mn3O4/PCM and bare Mn3O4; (f) capacitance retention 
of Mn3O4/PCM vs. cycle number at 1 A·g−1; (g) CV curves of Mn3O4/PCM and CAC at 20 mV·s−1; and 
(h) Ragone plots of asymmetrical supercapacitor in MnOx-based two-electrodes systems. CAC: 
commercial active carbon. 

Figure 3. (a) Cyclic voltammetry (CV) curves at a scan rate of 80 mV·s−1; (b) galvanostatic
charge–discharge (GCD) curves at 0.5 A·g−1 of Mn3O4/PCM and bare Mn3O4; (c) CV curves of
Mn3O4/PCM at various scan rates; (d) GCD curves and specific capacitance at various current densities
of Mn3O4/PCM (inset in d); (e) Nyquist plots of Mn3O4/PCM and bare Mn3O4; (f) capacitance
retention of Mn3O4/PCM vs. cycle number at 1 A·g−1; (g) CV curves of Mn3O4/PCM and CAC
at 20 mV·s−1; and (h) Ragone plots of asymmetrical supercapacitor in MnOx-based two-electrodes
systems. CAC: commercial active carbon.
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The electrochemical impedance spectroscopy (EIS) measurements of the biomorphic Mn3O4/PCM
and bulk Mn3O4 are shown in Figure 3e. The charge-transfer resistance (Rct) (radius of the semicircle)
of biomorphic electrode (≤0.5 Ω) was obviously lower than that of pristine Mn3O4 (>0.6 Ω), suggesting
the substantially improved reaction kinetics (e.g., increased charge transfer rate) for microtubular
Mn3O4/PCM. The increase in rate enables additional rapid redox reaction and facilitates electron
transport, and thus improves the specific capacitance. As shown in Figure 3f, the long-term cycling
stability of Mn3O4/PCM electrode was tested at 1 A·g−1 for 5000 cycles. This result indicates that the
electrode maintained more than 90% of its initial value after 5000 cycles, suggesting the excellent cyclic
stability of the electrode. At the same time, the CV and GCD profiles after 5000 cycles migrated slightly
from values before cycling (Figure 3a,b). The superior electrochemical performance of Mn3O4/PCM
can be attributed to the special tubular morphology, high specific surface area, and porous carbon
microfibers inside.

After assembling into an asymmetric supercapacitor using the two-electrode system of
Mn3O4/PCM and CAC, the working voltage could be expanded to 0–1.4 V (Figure 3g) while
the three-electrode system was 0–0.6 V. As shown in Figure 3h, the specific capacitance of
Mn3O4/PCM||CAC was 110.8 F·g−1 at a current density of 1 A·g−1. The inset of Figure 3h is a Ragone
plot of the asymmetric electrode. The energy density of the cell configuration was 27.13 Wh·kg−1 at a
power density of 0.41 kW·kg−1. Even at a high power density of 4.76 kW·kg−1, the energy density
still maintained at 11.34 Wh·kg−1. Our results were better than previous reports concerned with
special morphologies of Mn3O4-based composites used as supercapacity electrodes (Figure 3h) [4,20].
There was still specific capacitance of 92.17% retained in the cell after 5000 cycles (inset of Figure 3h),
suggesting that the electrode has a high reversibility and good electrochemical stability.

4. Conclusions

This work successfully prepared a biomorphic Mn3O4/PCM composite via a simple hydrothermal
route by using cotton as a biotemplate. The as-obtained Mn3O4/PCM was composed of Mn3O4

nanocrystal-coated carbon fiber, inherited the morphology and microstructure of cotton, and exhibited
the excellent electrochemical properties of a specific capacitance of 140.8 F·g−1 at 0.25 A·g−1 and
long cycling life with 90.34% of the capacitance after 5000 cycles. This work provides an example of
the fabrication of biomorphic porous TMOs for developing promising electrode materials in energy
storage and conversion.
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