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Abstract: To investigate the flow stress, microstructure, and usability of TA15 titanium alloy,
isothermal compression was tested at 1073–1223 K and strain rates of 10, 1, 0.1, 0.01, and 0.001 s−1,
and strain of 0.9. The impact of strain and temperature on thermal deformation was investigated
through the exponent-type Zener–Hollomon equation. Based on the influence of various material
constants (including α, n, Q, and lnA) on the TA15 titanium alloy, the strain effect was included
in the constitutive equation considering strain compensation, which is presented in this paper.
The validity of the proposed constitutive equation was verified through the correlation coefficient
(R) and the average absolute relative error (AARE), the values of which were 0.9929% and 6.85%,
respectively. Research results demonstrated that the strain-based constitutive equation realizes
consistency between the calculated flow stress and the measured stress of TA15 titanium alloy at
high temperatures.

Keywords: TA15 titanium alloy; constitutive equation; strain compensation; flow stress

1. Introduction

TA15 alloy, a near-α titanium alloy, is extensively used in the aerospace industry due to its various
advantages, such as weldability, mechanical capability at high temperatures, superior creep and
erosion resistance, and large strength-to-weight ratio [1]. The mechanical properties and physical
characteristics of TA15 titanium alloy have led to its wide application. The microstructure evolves
in the process, and is influenced by process parameters: strain rate, strain, and temperature [2].
There is an interactive correlation between deformation behavior and microstructure evolution [3].
The required shape, properties, and microstructure can be obtained by optimizing the thermal
deformation parameters in thermomechanical processing. Therefore, deformation and flow are being
studied at elevated temperatures, which is conducive to investigating the thermal deformation ofTA15
titanium alloy.

Scholars have investigated the deformation and microstructural evolution of TA15 titanium
alloy [4–6]. Processing the components is difficult given the complex shape, hard-to-deform properties,
and requirement of forming quality [7]. Gao et al. studied the microstructure evolution and flow
behavior of near-α titanium alloy, whose microstructure is inhomogeneous in thermal deformation,
finding that nonuniform microstructure before deformation was composed of β phase, lamellar α,
and equiaxed α in the colony form. There was a correlation between the Burgers orientation and β

phase in α colony [6]. According to Zhao et al., thermal flow stress is not significantly influenced
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by the initial β grain size [5]. By investigating the influence of inhomogeneous deformation on the
microstructure of the rib-web part of TA15 alloy, Fan et al. found four microstructures in the forming
process [8]. The superplasticity of TA15 alloy was enhanced using thermomechanical techniques,
which could refine the grains of the alloy [9]. Thermal uniaxial tensile tests were conducted and
finite element models were established to explore the thermal formability of TA15 titanium alloy [10].
Zhu et al. explored the influence of cooling speed on the major α phase microstructure evolution of
TA15 titanium alloy. According to the research results, the size distribution and volume fraction of the
major α phase are influenced by cooling speed [11]. The kinetics rate and dynamic globularization
kinetics of TA15 are influenced by deformation parameters. The dynamic globularized fraction is in
direct proportion to strain and temperature, but inversely proportional to strain rate [12]. A prediction
model was established on the basis of an improved back propagation (BP) neural network, and it was
used to explore the quantitative evolution of aspect ratio, grain size, and volume fraction of equiaxed
α for TA 15 alloy [13].

As a foundation of engineering parts production, thermal deformation processes require not only
microstructural and mechanical properties, but also dimensional accuracy [14]. As excellent mechanical
properties require fine microstructural characteristics, it was necessary to explore the thermomechanical
process affecting the microstructural characteristics. To this end, we used theconstitutive equation at
various temperatures and strain rates. The Arrhenius model, as a phenomenological constitutive model,
has generally been used to present the correlations among temperature, flow stress, and strain rate
in a constitutive study, particularly at high temperatures [15]. The influence of strain has been
proven to be necessary to verify the constitutive equation involving the strain effect, which predicted
flow behaviors at elevated temperatures in pure titanium [16] and titanium alloy [15], steel [17–19],
aluminum alloy [14,20,21], and magnesium alloy [22].

This research attempted to represent thermal deformation of TA15 titanium alloy by
formulating a proper constitutive correlation. The thermal compression was tested at different
temperatures and strain rates. The flow stress was further analyzed based on the test results.
A comprehensive constitutive model involving temperature, strain rate, and flow stress was
established. Finally, the reliability of the constitutive model was verified.

2. Experimental Details

TA15 titanium alloy, a near-α titanium alloy that has the chemical composition of
Ti-6.5Al-2Zr-1Mo-1V (in wt%), was used in the research. The original specimen was sectioned from
the bar axial, ground to 2000 grit with sand paper, and then polished to 0.5 µm. Finally, the specimen
was etched to carry out optical microscopy (GX51F, OLYMPUS, Tokyo, Japan) observation, and Kroll’s
agent (2% HF, 4% HNO3, and 94% H2O) was used to etch the specimens for 3–5 s.

The β transus temperature of TA15 was measured as approximately 1258 K, and all specimens
used in the experiments were annealed for homogenization by heating at 1073 K for 1 h and cooling
in the furnace. The microstructure shown in Figure 1 primarily consisted of a number of coarse
strip-shaped α phases; meanwhile, there were only a few thin strip-shaped α phases on the β matrix.

The isothermal compression simulation test is the most commonly used method to investigate
the deformation and microstructural evolution of materials at high temperatures. An isothermal
compression simulation experiment was carried out on a Gleeble-3500 tester (DSI Corporation,
New York, USA). Cylindrical φ10 mm × 15 mm specimens were used in this study, as shown in
Figure 2. The upper and lower end faces were parallel to each other. The mechanical perpendicularity
of the vertical face was maintained, and the two end surfaces were smooth to decrease the effects
of transverse friction on deformation. The axis of the cylindrical specimen was the axial line of the
bar billet. In the experiment, a radial sensor was used in the deformation of the specimen to collect
and record the cross-section area and the collected signals to control the parameters of the tester.
The specimen was compressed at a constant strain rate. The whole test was electrically heated,
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and the temperature was obtained with a thermocouple. The temperature deviation was controlled in
±1 ◦C increments.
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The isothermal simulation compression experiment temperature ranged from 1073 K to 1223 K
in increments of 50 K. The strain rate varied from 0.001 s−1 to 10 s−1, and the corresponding
reduction ranges were 10%, 20%, and 60%. A graphite flake cushion was used between the
specimen and the pressure head to decrease transverse friction. We heated the specimen to
deformation temperature at a heating rate of 10 ◦C/s, which was maintained for 3 min to guarantee
temperature uniformity. Thermal deformation occurred at the isothermal constant strain rate.
The stress-strain curves were automatically recorded as the isothermal compression at elevated
temperature was tested. The specimens were quenched immediately in water after the compression
test to maintain the organization.

3. Results and Discussion

3.1. Experiment Results and Flow Stress Behavior

Figure 3 depicts the stress-strain curves of TA15 titanium alloy in various deformation conditions.
The flow stress rises substantially as the strain increases due to the work-hardening resulting from
the increasingly higher dislocation density. Flow stress showed peaks at nearly all temperatures and
strain rates, and a clear flow softening phenomenon occurred. Peak strain was generally less than 0.1,
and it did not change obviously with thermal deformation conditions.
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As can be seen from Figure 3, the stress-strain curves of TA15 titanium alloy were obtained by
testing the isothermal compression at 1073 K to 1223 K in intervals of 50 K. The flow stress first peaked
and then decreased as the strain increased. In addition, flow stress was highly sensitive to temperature.
It first sharply decreased and then flattened out as the temperature rose. We ignored the deformation
heating due to the low strain rates (0.001 s−1 and 0.01 s−1). At 1173 K and 1223 K, the flow stress curves
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flattened out as the strain rate decreased. Formation at low strain rates can only enhance dynamic
recovery (DRV), but can also inhibit dynamic recrystallization (DRX). Above the phase transition
temperature, the β grain size was large as the temperature rose. The microstructure indicates that
the DRV was dominant with little DRX during formation. At different experimental temperatures,
the volume fraction and grain size of the major α phase were inversely proportional to temperature [4].

TA15 titanium alloy presented flow softening, which was closely related to the thermal processing
conditions and the initial microstructure, which is common in the metal deformation process.
The dynamic recrystallization was inhibited by DRV. The flow stress tended to be stable after saturation.
A small amount of DRX occurred at higher strain. The β-transus temperature was 1263 K, and the DRV
was the main softening mechanism in the β-phase field because of the body-centered cubic crystal
structure with rapid self-diffusion and high stacking fault energy [23].

The microstructure variations of the specimens at 1223 K are shown in Figure 4, and the
deformation strain rates increased from 0.001 s−1 to 10 s−1. Figure 4a indicates that equiaxial recrystal
grains were found, which replaced the initial and primary strip-shaped grain of 0.001 s−1, probably
due to the deformation recrystallization of the microstructure under this deformation condition. As the
deformation condition changed, the primary strip-shaped α phase volume fraction varied, and the
β matrix volume fraction increased gradually with increasing deformation temperature. It can be
seen from the change of the microstructure evolution that the recrystallization volume fraction was
influenced by the strain rate and decreased as the latter increased. Considering the trend in the
variation of the stress-strain curve under the corresponding conditions, the α phase and β phase
recrystallizations were the potential reason for flow softening, as shown in Figure 4a–e. The flow
softening mechanism is more complicated when deformed in the two-phase zone for titanium alloy.
As shown in Figure 4c,d, the initial strip-shaped grain was elongated and smooth along the vertical
compression direction, which proved that no obvious DRX occurred in this process. Some squashed
β grains at 10 s−1 were observed and a few β matrix grains were compressed and partial β grains
were equiaxial, which proved the occurrence of recrystallization in β phase, as shown in Figure 4e.
The adiabatic shear band was another important reason for the flow softening, especially at the
higher strain rate, such as 10 s−1 in this study; however, no obvious adiabatic shear band was found
(Figure 4e).
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3.2. Constitutive Modeling

3.2.1. Constitutive Equation Derivation

The flow stress of TA15 titanium alloy was affected by the strain rate and temperature in the
evaluated temperature deformation. The stress-strain curve was obtained by testing the isothermal
compression at different temperatures and strain rates, so that the constants of the presented
constitutive equation could be obtained.

The Arrhenius equation, which is a phenomenological model, was used to predict the constitutive
equation [24], illustrate the correlation among temperature, flow stress and strain, and express the
special parameter Z [25,26]:

Z =
.
ε exp

(
Q
RT

)
(1)

.
ε = AF(σ) exp

(
− Q

RT

)
(2)

where

F(σ) =


σn′ ασ < 0.8
exp(βσ) ασ > 1.2
[sinh(ασ)]n f or all σ

(3)

where T is absolute temperature in K, R is a gas constant, 8.3145 J/mol·K, Q is the deformation
activation energy of thermal deformation in J/mol, ´E is strain rate in s−1, and A, n’, β, α, and n are
constants of materials, α = β/n’.

3.2.2. Material Constants

Material constants in the constitutive equation were evaluated through the stress-strain curve
based on experimental data. However, the strain effect was not considered in Equations (1) and (2).
Previous research mainly studied the Arrhenius model, which accurately illustrates the correlation
among flow stress, deformation temperature, and strain. The following process was evaluated at a
strain of 0.2.

The values of F(σ) were replaced in Equation (2). Correlation between low stress and high stress
is as follows:

.
ε = Bσn′ (for ασ < 0.8) (4)
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.
ε = C exp(βσ) (for ασ > 1.2) (5)

where B and C are material constants that are independent from the deformation temperature.
The natural logarithms of both sides of Equations (4) and (5) were taken, and the equations are
as follows:

ln(σ) =
1
n′

ln
( .
ε
)
− 1

n′
ln(B) (6)

σ =
1
β

ln
( .
ε
)
− 1

β
ln(C) (7)

The corresponding value under the strain of 0.2 was substituted into the above equations.
The correlation plots of ln(σ)−ln(É) and σ−ln(É) were obviously approximated by parallel and
straight lines, respectively. β and n’ were obtained from the line slopes in the ln(σ)−ln(É) plot and
σ−ln(É) plot, as shown in the following equations and Figure 5. The averages of n’ and β were 5.6875
and 0.0384 MPa−1, respectively.

n′ =
[

∂ ln
.
ε

∂ ln σ

]
T

(8)

β =

[
∂ ln

.
ε

∂σ

]
T

(9)
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Subsequently, Equation (2) was rewritten for all strain levels as follows:

.
ε = A[sinh(ασ)]n exp

(
− Q

RT

)
(10)

The natural logarithms of both sides were taken for the above equation. The equation is as follows:

ln[sinh(ασ)] =
ln

.
ε

n
+

Q
nRT

− ln A
n

(11)

At a certain temperature, after Equation (11) is differentiated:

1
n
=

[
∂ ln[sinh(ασ)]

∂ ln ε

]
T

(12)

where the n value was taken based on the line slopes of ln[sinh(ασ)]−lnÉ in Figure 6, which was 3.5987.
And the value of lnA can be derived from the intercept of Figure 6.
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[

∂ ln ε

∂ ln[sinh(ασ)]
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T

[
∂ ln[sinh(ασ)]

∂(1/T)

]
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ε
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As can be seen in Figure 7, when the strain was 0.2, flow stress and deformation temperatures at a
certain strain rate were substituted to Equation (13), and the value of Q was derived in the plotting
slope of ln[sinh(ασ)] as a function of 1/T (Q was in kJ/mol for ln[sinh(ασ)]−1000/T). Average Q at
different strain rates was 584.63 kJ, and the value of Q was obtained, which was consistent with the
current reference (654 kJ/mol by Zhang [27] and 588.7 kJ/mol by Luo [28] for α + β phase region).
When deformation activation energy Q in deformation approached diffusion activation energy,
the major material softening mechanism was dynamic recovery. When the diffusion activation energy
was much lower than the deformation activation energy, the DRX may have been the main mechanism.
According to the study of Briottet et al., the deformation activation energy of titanium alloy is high
in the two-phase region due to the change in temperature, which changes the phase volume fraction
and ultimately affects the flow stress through the modeling analysis [29]. The value of lnA at a certain
strain was 57.1869, determined from the intercept of Figure 7. The dislocation climb, recrystallization,
and recovery were related to Q, which reflected the characteristics of deformation [30].

Materials 2018, 11, x FOR PEER REVIEW  9 of 15 

 

 
Figure 6. Evaluating the value of n by plotting ln[sinh(ασ)] versus lnέ. 

As can be seen in Figure 7, when the strain was 0.2, flow stress and deformation temperatures 
at a certain strain rate were substituted to Equation (13), and the value of Q was derived in the 
plotting slope of ln[sinh(ασ)] as a function of 1/T (Q was in kJ/mol for ln[sinh(ασ)]−1000/T). Average 
Q at different strain rates was 584.63 kJ, and the value of Q was obtained, which was consistent with 
the current reference (654 kJ/mol by Zhang [27] and 588.7 kJ/mol by Luo [28] for α + β phase region). 
When deformation activation energy Q in deformation approached diffusion activation energy, the 
major material softening mechanism was dynamic recovery. When the diffusion activation energy 
was much lower than the deformation activation energy, the DRX may have been the main 
mechanism. According to the study of Briottet et al., the deformation activation energy of titanium 
alloy is high in the two-phase region due to the change in temperature, which changes the phase 
volume fraction and ultimately affects the flow stress through the modeling analysis [29]. The value 
of lnA at a certain strain was 57.1869, determined from the intercept of Figure 7. The dislocation climb, 
recrystallization, and recovery were related to Q, which reflected the characteristics of deformation 
[30]. 

 

Figure 7. Evaluating the value of activation energy by plotting ln[sinh(ασ)] versus 1000/T. 

Subsequently, similar processes were followed so that the above-mentioned material constants 
could be obtained at deformation strains ranging from 0.1 to 0.8 at 0.1 intervals. 
  

Figure 7. Evaluating the value of activation energy by plotting ln[sinh(ασ)] versus 1000/T.



Materials 2018, 11, 1985 10 of 15

Subsequently, similar processes were followed so that the above-mentioned material constants
could be obtained at deformation strains ranging from 0.1 to 0.8 at 0.1 intervals.

3.2.3. Strain Effect

Temperature and strain rate were the parameters of concern for elevated temperature
stress-strain curves. Strain cannot significantly influence flow stress. However, strain can affect
deformation activation energy Q. This common phenomenon was studied in Ti-6Al-4V titanium
alloy [15], Ti-modified austenitic stainless steel [31], aluminum alloys [14,20,21], magnesium
alloy [22,32], and steels [17–19]. In isothermal compression tests at elevated temperatures,
strain generally influenced flow stress, which was particularly significant at high deformation
temperature for TA15 alloy, as can be seen from Figure 8. Therefore, the strain effects cannot be
neglected. The results show that strain significantly influenced the materials constants α, β, n, lnA,
and Q in the range of strain.
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The strain compensation was considered so that the flow stress of TA15 alloy could be
accurately predicted. The model between strain and material constants was established using the
polynomial function. The fitted polynomial ranged from two to eight. The optimal fitting model of
fifth-order polynomial was selected. The material constants were evaluated at strains from 0.1 to
0.8. Equation (14) is the fifth-order polynomial fitting equation. Generalization and representation
would be lost due to the overfitting of higher-order (more than five) polynomials. Table 1 shows the
polynomial fitting of the material constants α, n, Q, and lnA of TA15 alloy.

α = C0 + C1ε + C2ε2 + C3ε3 + C4ε4 + C5ε5

n = D0 + D1ε + D2ε2 + D3ε3 + D4ε4 + D5ε5

Q = E0 + E1ε + E2ε2 + E3ε3 + E4ε4 + E5ε5

ln A = F0 + F1ε + F2ε2 + F3ε3 + F4ε4 + F5ε5

(14)
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Table 1. Polynomial fitting results of material constants (α, n, Q, and lnA).

α Coefficient n Coefficient Q Coefficient lnA Coefficient

C0 = 0.00684 D0 = 4.29525 E0 = 567.4279 F0 = 55.57609
C1 = 0.00248 D1 = −3.41358 E1 = 742.9928 F1 = 74.06573
C2 = 0.00883 D2 = −4.96388 E2 = −5372.16 F2 = −541.173

C3 = −0.01072 D3 = 29.91754 E3 = 12837.02 F3 = 1300.602
C4 = −0.00216 D4 = −35.6602 E4 = −13555.2 F4 = −1381.13
C5 = 0.00544 D5 = 13.30015 E5 = 5382.073 F5 = 551.388

The constants of materials were calculated by predicting the flow stress through hyperbolic
sine function. The constitutive equation of the Zener-Holloman parameter and flow stress was written
as follows considering Equations (1) and (10):

σ =
1
α

ln


(

Z
A

)1/n
+

[(
Z
A

)2/n
+ 1

]1/2
 (15)

4. Validation of Constitutive Modeling

4.1. Results of Constitutive Modeling

As shown in Figure 9, the experimental data and predicted data were compared to verify the
constitutive modeling result considering the strain compensation. The experimental data were
consistent with the predicted data in most deformation conditions. In the processing condition
(1073 K, when 0.1 s−1; Figure 9a), there was variation between the predicted data and the experimental
data due to the high nonlinearity of the flow behavior at high temperatures, which was affected by
many factors, limiting the accuracy of the applicable range and the flow stress. The model fitting of the
materials constants and some deviations may introduce variation into the modeling.
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4.2. Constitutive Modeling Verification

Figure 10 depicts the correlation of experimental data of flow stress and the predicted data in
the constitutive equation incorporating the effect of strain over the entire strain range, strain rate,
and temperature. Standard statistical parameters, like R and AARE, can quantify the predictability of
the constitutive equation:

R =
∑N

i=1
(
Ei − E

)(
Pi − P

)√
∑N

i=1
(
Ei − E

)2
∑N

i=1
(

Pi − P
)2

(16)

AARE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (17)

where N is the data number used in the research, P and E are average values of P and E, P is flow stress
predicted from the constitutive equation involving the strain compensation, and E is the measured
flow stress.
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As a common statistical parameter, R provides strength information about the relationship
between the calculated value and the observed value [21]. Since there is a tendency for the equation
to deviate toward lower or higher values, a higher R value does not represent better performance.
AARE was also computed by comparing the relative error. As a result, it is an unbiased statistical
parameter used to determine predictability. The values of AARE and R are 6.85% and 0.9929,
respectively, shown in Figure 10. This indicates that the proposed deformation constitutive equation
involving strain compensation can estimate flow stress for TA15 titanium alloy accurately.

4.3. Prediction of Constitutive Model

Flow stress is complex and associated with complicated metallurgical phenomena, across which
hot deformation changes considerably. However, the developed model predicted flow stress in a wide
range of strains, strain rates, and temperatures. This can be considered as the major potential of the
developed model compared to the analytical, phenomenological, and traditional empirical model
that is applied in a specific processing domain [33]. Validating the accuracy of the prediction is good
not only for the experimental data but also for the extensional conditions. Because of that higher
temperature values can introduce the β phase transition in the material, the temperature selected for
the specimens prediction accuracy is lower, at 1023 K. The phase change in the microstructure easily
produces different stress-strain results, so lower temperatures ensure that the microstructure of the
materials is filled with a single α phase. A similar study found that the simulation error of extreme
points can be decreased by increasing the temperature and strain rate ranges for the near-α titanium
alloy [34].
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Therefore, to predict the constitutive model of TA15 titanium alloy, the constitutive model is
further extended to predict flow stress at a temperature of 1023 K, which is not included in the
previous compression tests. Experimental and predicted flow stresses at a temperature of 1023 K
were compared, and results are shown in Figure 11. The same change trend in the stress-strain value
is found in the experimental result, and prediction is good at a temperature of 1023 K, as shown in
Figure 11b. Similarly, the quantization method with AARE and R, as mentioned above, was used
to evaluate the prediction accuracy. The values of AARE and R are 8.19% and 0.9881, respectively,
shown in Figure 12. This indicates that the proposed constitutive equation considering strain effect
has good prediction accuracy for the extended data range for TA15 titanium alloy.
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5. Conclusions

In this investigation, flow stress at various strain rates and deformation temperatures was
predicted by establishing a strain-dependent constitutive equation model for TA15 titanium alloy.
The following conclusions were drawn:

(1) TA15 titanium alloy stress was sensitive to deformation temperature and strain rate; the value
increased with increasing strain rate and decreased with increased deformation temperature.
The experimental result curves exhibited the typical flow behavior, and a constitutive model was
introduced based on the Arrhenius equation;

(2) Material constants α, n, Q, and lnA were significantly influenced by the strain effect for TA15
titanium alloy, and the relationships between strain and material constants could be described
using fifth-order polynomials with a good fitting correlation;
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(3) Flow stress at various conditions of deformation was accurately predicted through the constitutive
equation incorporating strain compensation. R and AARE were used to quantify the predictability
of the constitutive equation, with values of 6.85% and 0.9929, respectively. The values were 8.19%
and 0.9881, respectively, in the prediction using the extended stress-strain data for 1023 K,
which proved the high accuracy of the constitutive equation compensated by the strain effect for
TA15 titanium alloy.
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