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Abstract: This study uses the machine vision method to develop an on-machine turning tool insert
condition monitoring system for tool condition monitoring in the cutting processes of computer
numerical control (CNC) machines. The system can identify four external turning tool insert
conditions, namely fracture, built-up edge (BUE), chipping, and flank wear. This study also designs
a visual inspection system for the tip of an insert using the surrounding light source and fill-light,
which can be mounted on the turning machine tool, to overcome the environmental effect on the
captured insert image for subsequent image processing. During image capture, the intensity of the
light source changes to ensure that the test insert has appropriate surface and tip features. This study
implements outer profile construction, insert status region capture, insert wear region judgment, and
calculation to monitor and classify insert conditions. The insert image is then trimmed according to
the vertical flank, horizontal blade, and vertical blade lines. The image of the insert-wear region is
captured to monitor flank or chipping wear using grayscale value histogram. The amount of wear is
calculated using the wear region image as the evaluation index to judge normal wear or over-wear
conditions. On-machine insert condition monitoring is tested to confirm that the proposed system can
judge insert fracture, BUE, chipping, and wear. The results demonstrate that the standard deviation
of the chipping and amount of wear accounts for 0.67% and 0.62%, of the average value, respectively,
thus confirming the stability of system operation.

Keywords: machine vision; on-machine monitoring; tool insert condition; computer numerical
control; turning machine tools

1. Introduction

The quality of mechanical parts is dependent on the accuracy of the machining tools and the
abrasion conditions of cutting tools. For instance, Fernández-Valdivielso et al. [1] analyzed the effects
of geometrical features of inserts on workpiece surface integrity and developed an indirect method
for determining the geometrical features of inserts that achieve the best performance in machining
difficult-to-cut alloys. Pereira et al. [2] considered the abrasion conditions on the interface between
an insert and a workpiece, and proposed a coolant structure that combines cryogenic cooling and
the minimum quantity of lubrication to improve tool life and workpiece surface integrity. Thus,
to improve the quality of products, mechanical part manufacturers must be aware of the service
behaviors of cutting tools in the actual machining process, as determined from the on-machine cutting
tool condition monitoring system, to be able to analyze tool life and decide whether the cutting tool
needs to be changed [3,4]. The insert wear formation mechanism in the turning process comprises
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abrasion, diffusion, oxidation, fatigue, and adhesion wear. As shown in Figure 1, flank wear, chipping,
fracture, and built-up edge (BUE) occur most frequently in general cutting processes and are mostly
concentrated at the tool tip and tool flank [5–8]. Therefore, these four conditions are classified in this
study, and the insert condition is reviewed by visual inspection. Flank wear gradually occurred at the
cutting insert owing to the erosion between the portions of the insert in contact with the workpiece.
Excessive cutting force can usually lead to brittle fracture of a cutting insert. However, due to the high
temperature at the contact area between the workpiece and the insert during the machining processes,
the BUE (the phenomenon that the machined material builds up on the insert edge) occurs and it could
break away from the insert edge and could carry a portion of material from the insert, thereby causing
fracturing and chipping.
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Figure 1. Four insert status forms. (a) Flank wear; (b) Chipping; (c) Fracture; (d) BUE.

There are two types of insert condition inspections in turning processes: one is indirect inspection,
where the external sensors feedback the analytical machine data [9,10], and the other is direct
inspection, where the cutting tool status is measured [11,12]. Indirect inspection analyzes data
to estimate the cutting tool status; some machine states are analyzed according to a reference,
which means that the cutting status is systematically evaluated, thus replacing the judgment of
experienced operators to reduce human errors and enhancing the ability of production automation [13].
For example, the cutting tool wear condition is analyzed based on the difference in the cutting noise
or vibration [14,15], the cutting tool is monitored by measuring the changes in cutting temperature
and cutting forces [16,17], and the cutting status is analyzed using the machine power or current
variation signal [18]. All these methods use sensing signals for inspection analysis. Lately, indirect
inspection by a charge-coupled device (CCD) camera has become popular. It analyzes the cutting tools
by capturing the workpiece surface texture in images to determine whether the cutting tool is worn,
judged according to the changes in the workpiece surface texture and surface roughness [19–23]. Some
studies have focused on the fusion of multiple sensors and visual information of images for further tool
status monitoring [24,25] or used different algorithm models for analysis to implement more accurate
monitoring and evaluation [26–29]. According to the aforementioned references, the status of cutting
tools can be obtained by analyzing machine information variations; however, such indirect inspection
sometimes reduces the accuracy of the system under the effect of the external sensing environment [30].
Therefore, a direct inspection method is required to analyze the changes in the status of cutting tools.

Direct inspection analyzes the problems in machining by directly observing the practical situation
of the cutting tool. Some documents use sound, light, or a probe to build a cutting tool model to
observe the status of the cutting tool [25,31,32]. However, such measurement equipment is relatively
complicated and unsuitable for onsite inspection. Another method uses a charge-coupled device (CCD)
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camera to capture tool images and analyze the status of cutting tools. There are two types of analysis
regarding the status of cutting tools, one is to analyze the wear condition by outer contour and profile
inspection [33], which is generally used to monitor the outer profile wear status to judge whether the
cutting tool is still workable. In comparison with the indirect inspection methods that are used to
analyze and inspect the surface texture of a machined workpiece to determine the tool status, the direct
inspection method is to judge the status of the cutting tools by surface texture or surface roughness
analysis of the tool edge after machining [34], which is applied for a more detailed inspection of the
cutting tool and the machine states, as it provides detailed machining information. The general visual
inspection of a CCD camera analyzes the different locations of a cutting tool, for example, some studies
have implemented analysis according to crater wear [35,36], whereas others have implemented it
according to the flank wear condition [37]. A majority of the status information regarding a cutting tool
can be gathered by visual inspection; in other words, changes in the outer profile can be obtained from
the images. Giusti et al. [38] proposed a visual inspection method for cutting tool wear, Rangwala and
Dornfeld [39] proposed using a neural network to analyze wear status, and many scholars successively
proposed other related inspection methods [26]. Regarding the methods for optimization of wear
features, Kurada and Bradley [40] proposed using gradient operators to calculate texture features,
where the wear region boundary feature search was calculated using an octagonal-shaped matrix,
and the slope was established by the brightness difference and radial distance from the matrix center
to determine the location of optimized wear features. The original image was smoothed during
preprocessing to reduce the interference of irregularities. For feature calculation, the pixel value
was converted by image thresholding to obtain the actual wear intensity and determine the change
in wear amount. Yuan et al. [41] proposed a new filtering method to obtain average images and
proposed a new edge detection method based on wavelet transform. When the wavelet function is
selected, a new wavelet function is generated that describes the gray change of the image. In other
words, noise interference can be avoided to obtain better edge features and the abrasion region, width,
length, and center location of abrasion region can be measured. Wang et al. [42] proposed an image
processing procedure, which is different from the traditional method based on constant thresholding.
In this method, a rough-to-fine strategy is considered. First, the thresholding images are obtained
for the search candidate’s wear bottom edge points. Then, the threshold-independent edge detection
method, based on moment invariance, is used to determine the wear-edge. To shorten the computing
time, a critical area is defined first, and only this area is taken as the region of interest in subsequent
processes; thus, evading the threshold-dependent wear features detection method. Li et al. [43] used the
pulse-couple neutral networks (PCNN) of bionics in cutting tool wear monitoring and used the spatial
neighbor and similar gray clusters of pixels to segment the binary image of tool wear according to the
condition that the gray intensity is higher than the body of the tool and background in the field of tool
wear. Shahabi and Ratnam [44] used the external profile of the original image to test the alignment of
the tool image and then used median filtering, morphological operations, and thresholding algorithms
to reduce the system errors resulting from cutting tool misalignment, the presence of micro-dust
particles, vibrations, and the intensity variations of ambient light. The aim was to determine the tool
holder position and positioning error to ensure that cutting tool wear could be inspected without
precision tool alignment. Pfeifer and Wiegers [45] used light source changes to determine wear-edge
features under different light sources. While light changes can influence the shadow changes of the
cutting tool wear-edge, the actual edge location does not vary with the light source. Thus, cutting
tool wear image information under different light sources can be obtained using high-pass filter and
thresholding images and the recurrent edge location can be obtained by overlapping to determine the
location of a strong edge to filter out the misrecognition due to contaminants and reduce the effects
of contaminants and shadow changes on the inspection system. Barreiro et al. [46] used different
moments as descriptors to illustrate the tool wear images and then used a finite mixture MCLUST
model to classify tool wear conditions into low-, medium-, and high-wear classes. Furthermore, the
monitoring results were validated through the use of linear and quadratic discriminant analyses.
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Based on the image processing results of the cutting edge, Alegre et al. [47] developed a procedure
to determine the time for tool replacement through the use of k-nearest neighbors and a multilayer
neural network. D’Addona and Teti [48] used an image standardization process to obtain images with
standard size and pixel density during cutting tests; then, the back-propagation neural network was
optimized and used to estimate tool wear conditions with standardized cutting tool images.

Differing from existing research findings, this study analyzes insert statuses and uses fusion
contour and texture inspection methods to build a more accurate evaluation and judgment system,
which is applicable to on-machine automatic inspections and eliminates the environmental problems
during inspection. A visual inspection system that can be used in CNC turning machine tools is
constructed, which consists of a CCD camera and a lens for capturing insert images, a protection
box to protect the photographic equipment, and a peripheral circuit and components, to avoid scrap
splashes and cutting fluids during the cutting processes. The visual inspection system has a cleaning
air tube, which jets air toward the insert to clean the surface of the inspected insert, thus, reducing the
problems of subsequent image processing and increasing the accuracy of the insert condition judgment.
The visual inspection system designed in this study has a surrounding light source and a fill-light
for the tip of the insert to ensure that the insert condition can be analyzed under changing lighting
conditions. When the light source is adjusted to determine the location of the blade and the tip of
the insert, it is applicable to insert condition monitoring if onsite tool alignment is not accurate, thus
enhancing the feasibility of image recognition in the machine. The light source intensity is adjusted
and the insert image is captured under varying intensities for inspection analysis. The effect of any
external environment changes on the insert condition monitoring result can be reduced and the system
designed in this study can obtain accurate results in different environments. Image underexposure or
solarization that generally result from changes in the insert condition are also improved. This study
analyzes captured insert images with different features and the common insert conditions of an external
turning tool, including fracture, BUE, chipping, and wear, can also be inspected. The analysis of the
results can be quantized according to the texture feature distribution. This study conducts on-machine
insert condition monitoring experiments with inserts in different states and the results show that the
insert condition monitoring system designed in this study is applicable to computer numerical control
(CNC) turning machine tools for correct and stable identification of insert fracture, BUE, chipping, and
wear conditions. Contributions of this study therefore include

• development of an on-machine insert condition monitoring system that can be used to one-time
identify the four insert conditions—fracture, BUE, chipping, and flank wear.

• development of a mountable visual system with different light sources to on-machine capture
good-quality insert images that can be exactly analyzed under different lighting conditions.

• development of a contour and texture fusion inspection method to reduce environmental problems
and to accurately identify insert conditions during inspection.

The structure of this paper is as follows. Section 2 describes the experimental system and related
equipment used in this study, along with the hardware architecture design of the machine vision
inspection system. Section 3 describes the insert image capture process designed in this study and
the usage of the surrounding light source and fill-light for the insert tip. Section 4 describes the
insert condition monitoring classification process designed in this study, including the insert outer
profile construction, insert status region capture, and wear region judgment and calculation. Section 5
describes the experimental process and results of insert condition monitoring. The experiment on the
on-machine insert condition monitoring by a CNC turning machine tool validates the feasibility and
stability of this system. Section 6 summarizes this paper.

2. Introduction to the Experimental System and Equipment

The CNC turning machine tool used in this study, shown in Figure 2, is tested using an external
turning tool. The test external turning tool is mounted on the turning machine tool turret and the
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turning machine tool turret is moved by a computer numerical controller to the visual inspection
system placed above the turning machine tool spindle for insert condition monitoring. Here, each
insert position is adjusted by moving the turret such that the region of interest is focused in order to
reduce the blurring of captured images. Moreover, during the period of experiments, the security door
that is usually used to protect operators was closed so that the turning zone environment can reduce
the influence from external environments. A GigE DFK 23GP031 color industrial camera, with an
image resolution of 2592 × 1944 (15 fps), is used in this study. Figure 3a shows the camera hardware
combination; the lens is a Myutron HS3514J CCTV lens, combined with a double lens to capture
the feature image and the 90-degree reflecting mirror can adjust the angle of the camera. Due to the
space constraints of the internal structure of the machine and considering the potential contamination
resulting from the actual machining environment, this study designs a visual inspection system that
can be mounted in turning machine tools, as shown in Figure 3b. The protection box for the camera
hardware, as shown in Figure 3a, prevents the cutting scrap in the machine from splashing, thus,
reducing the contamination of cutting fluid on the lens. To capture sharp insert images, the cleaning
air tube jets air toward the insert for cleaning. The protection box is equipped with a surrounding LED
light source with adjustable brightness and is covered with epoxy resin for protection. The protection
box extends the fill-light for the tip of the insert to be inspected (tip light source). Two magnetic bases
are set up at the protection box base to fix the protection box in the machine tool for on-machine insert
condition monitoring.
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3. Insert Image Capture Process

During image capture, the fill-light is used for the inspected insert and the light source intensity
is changed to ensure that different inserts have appropriate feature strength. This study uses two light
sources in different positions as shown in Figure 3b. In terms of the surrounding light source, a strong
light irradiates the test insert to obtain its surface shape and area features. In terms of the fill-light
for the tip of an insert, the tip status feature is enhanced to facilitate later processing and analysis of
the captured image. In the insert image capture process, as designed in this study, the insert is shot
under a high-strength surrounding light source to capture the tool flank exposure image, as shown
in Figure 4a. Then the insert image is captured using a high-strength surrounding light source and
fill-light for the insert tip, as shown in Figure 4b. Here, the exposure images can be sequentially used
to confirm the insert position, enhance geometry features, and strengthen wear features. The featured
images are captured after the exposure image capture. First, the fill-light for the tip of an insert is
closed and the surrounding light source intensity is adjusted to obtain appropriate flank feature images,
as shown in Figure 5a, and then the intensity of the fill-light for the tip of an insert is adjusted to
obtain appropriate tip feature images, as shown in Figure 5b. Here, the adjustment of light source
intensity is automatically performed depending on the average thresholding value of the captured
images. Referring to the exposure images, as shown in Figure 4, the feature images are used to analyze
different insert conditions and can be utilized in the classification process of the insert conditions,
including insert profile construction, status region capture, and wear judgment and calculation.
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4. Insert Condition Monitoring Classification Process

4.1. Insert Outer Profile Construction

First, the flank profile feature is determined using the flank exposure image in Figure 4a.
This study uses grayscale image thresholding to determine the flank profile feature, as shown in
Figure 6a. Similarly, the insert profile feature in Figure 4b and grayscale image thresholding are used
to determine the insert profile feature, as shown in Figure 6b. Here, the thresholding value is 250.
The lines in the thresholding images in Figure 6 are determined using straight-line Hough transform,
as shown in Figure 7. The flank profile exposure thresholding images determine the vertical flank
line and horizontal blade line, while the insert profile exposure thresholding images determine the
vertical blade line. The thresholding image can be trimmed and rotated along the horizontal blade
line (Figure 7a) and vertical blade line (Figure 7b) in Figure 7 to construct a complete insert outer
profile thresholding image, as shown in Figure 8a. According to the vertical flank line in Figure 7a, the
complete insert outer profile thresholding image is divided into two blocks, as shown in Figure 8b: tip
front-end underside (block B) and insert backend underside (block A) for subsequent insert condition
feature recognition. Figure 9 shows the results of the trimmed insert images by referring to the
completed insert outer profile thresholding image.
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4.2. Insert Status Region Capture

The horizontal blade line in Figure 7a can be used to judge whether the insert has a fracture or BUE.
The insert thresholding image in Figure 10a is obtained after the grayscale image thresholding process
of Figure 9. Here, the erosion and dilation operations with the 11 × 11 diamond-shaped structuring
element are used to clear the geometry features. The insert thresholding image is segmented along
the horizontal blade line to obtain the insert fracture zone in Figure 10b and the insert BUE zone in
Figure 10c, where the pixel areas of the fracture zone and BUE zone are calculated to judge the insert
fracture or BUE status.
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Figure 10. Judgment of insert fracture and BUE statuses. (a) Insert thresholding image; (b) Insert
fracture zone; (c) Insert BUE zone.

If the insert condition, as identified by the insert condition monitoring system designed in this
study, is not classified as fracture or BUE, the flank wear judgment process begins. First, the grayscale
transformation is implemented for the trimmed insert outer profile image in Figure 9. This study
uses the average image RGB values for grayscale processing. After the insert outer profile image is
converted into a grayscale image, the Sobel operator is used for insert edge detection to obtain a good
insert edge feature. The insert outer profile blocks are then segmented, as shown in Figure 8b, and
the lower region at the backend of the insert (block A) is removed to segment the location of the flank
wear feature, as shown in Figure 11a. To facilitate the trimming of the flank wear part for subsequent
judgment and calculation, the computation for noise removal, contrast stretching process, erosion, and
dilation operations are implemented, as shown in Figure 9, and the flank wear zone image is obtained,
as shown in Figure 11b. Here, the 3 × 3 box-pattern low-pass filter and the 21 × 21 box-pattern median
filter are used for noise suppression. Finally, the trimmed operation is implemented for the insert
outer profile image in Figure 9 according to Figure 11b and the flank wear zone image in Figure 11c
is obtained.
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Figure 11. Actual image of trimmed insert wear region. (a) Flank wear feature zone; (b) Range of flank
wear zone; (c) Flank wear zone image.

4.3. Wear Region Judgment and Calculation

The flank wear or chipping wear status can be classified according to the trimmed flank wear zone
image, as shown in Figure 11c. Figure 12 shows that there is a significant difference between the flank
wear and chipping wear. The flank wear is the tear resulting from the rub between the cutting blade
and workpiece in the machining process, thus, the flank wear surface features are mostly continuous
and even. However, as chipping wear is the tip breakage resulting from abnormal machining processes,
the chipping surface is relatively rough. This study analyzes the continuity of surface features for the
actual image of a wear region to identify the insert wear region as flank or chipping wear, as shown in
Figure 11c. The grayscale value histogram of all pixels can be obtained after Figure 11c is converted
into a grayscale image, as shown in Figure 13a. The number of pixels is obviously larger than the pixel
grayscale value histogram distribution of the flank wear image, as shown in Figure 13b. Therefore, the
number of pixels larger than the preset threshold value is divided by the calculated value percentage
of the number of pixels of the overall wear region to identify the wear region as flank or chipping wear.
In other words, the percentage (chipping rate) of the number of pixels larger than the preset threshold
value to the number of pixels of the overall wear region is taken as the basis of judgment. Moreover,
this study uses the length of the pixels of the upper and lower boundaries of the wear region image
to calculate the wear amount. The pixel unit is converted using the wear region image, as shown in
Figure 14, where the conversion length of the wear region image pixels is 0.007 mm and the length in
the pixels of the upper and lower boundaries of wear region image is 184 pixels, thus, the converted
wear amount is 1.288 mm.
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5. Experiment Monitoring Insert Condition

To validate the feasibility of the on-machine insert condition monitoring system proposed in
this study, the visual inspection system mounted on the turning machine tool for insert condition
monitoring experiments is shown in Figure 15. This study uses twenty used inserts in various states
for experimentation and the results are presented in Table 1 and Figure 16. Here, the used inserts
were collected after turning with cutting speed (130–150 m/min), cutting feed rate (0.2–0.3 mm/rev),
and depth-of-cut (2–3 mm). The workpiece material is medium carbon steel and the insert material
is tungsten carbide. The laptop computer with an Intel Core i7-4720HQ, 2.6-GHz CPU, and 64-bit
Microsoft Windows 10 operating system was utilized to implement the whole system so that the time
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required for each monitoring task is approximately 13 s in which 2.75 s, on average, are required for
the identification of insert conditions. To further reduce the time required for each monitoring task,
a computer with a faster CPU could be used to implement the system. Table 1 shows the judgment
results of the inserts in different states. The chipping rate is set at 50% for monitoring and the wear
amount is set as 0.3 mm for identifying over-wear. Based on the results, the system developed in this
study can correctly identify the various insert conditions of the test inserts. Table 1 presents three types
of BUE inserts, where two of them have slight BUE. Thus, it can be said that this study identifies the
BUE status accurately according to the preset threshold of BUE.
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Table 1. Experimental results of condition monitoring of different inserts.

No. Chipping
Rate (%)

Wear Amount
(mm)

Status
Determination No. Chipping

Rate (%)
Wear Amount

(mm)
Status

Determination

1 45.76 1.530 over-wear 11 62.47 0.651 chipping
2 0.00 0.000 BUE 12 0.00 0.000 BUE
3 35.14 0.735 over-wear 13 52.42 0.875 chipping
4 20.65 0.658 over-wear 14 19.26 0.427 over-wear
5 26.04 0.238 normal wear 15 37.09 0.532 over-wear
6 33.75 0.287 normal wear 16 31.35 0.903 over-wear
7 12.20 0.105 normal wear 17 29.48 0.161 normal wear
8 26.34 0.252 normal wear 18 0.00 0.000 normal wear
9 0.00 0.000 BUE 19 0.00 0.000 fracture
10 29.26 0.686 over-wear 20 63.06 1.250 chipping

The insert condition monitoring system can identify different insert conditions and its operational
stability is a key point of evaluation. Due to the changing external environment and light source
intensity, there will be different results for insert condition tests and calculations. This study repeatedly
tests the same insert to validate the stability of the insert condition monitoring system and the
experimental results are shown in Table 2, where the wear amount of the insert wear region is
calculated for comparison analysis. The experiment is repeated 10 times, the chipping rate and wear
amount of each experiment are recorded, and system stability is checked using the calculated mean
value and standard deviation. The experimental results show that the chipping rate analysis has large
standard deviation, which signifies that there is a large variation in the results. The chipping rate is
calculated according to the pixel grayscale value histogram distribution of the flank wear zone image,
even though the algorithm and light source system operating procedure are identical, each moment of
image capture is affected by the light source change and the grayscale value histogram distribution of
the wear images changes. Despite all this, the standard deviation of the chipping rate is only 0.67% of
the average value and the stability of the chipping rate calculation of this insert condition monitoring
system can be calculated. In terms of wear amount results, the standard deviation of wear amount
is only 0.62% of the average value, in other words, the standard deviation is lower than two pixels.
Hence, the stability of this insert condition monitoring system in calculating wear amount can be
calculated. Therefore, the aforementioned experimental results can be used to validate the feasibility
and stability of the insert condition monitoring system and calculation method designed in this study.

Table 2. Experimental results of computational stability of insert wear.
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No. Chipping Rate (%) Wear Amount (mm)

1 52.886 1.302
2 52.993 1.288
3 52.922 1.288
4 52.831 1.302
5 53.335 1.288
6 53.003 1.288
7 52.820 1.302
8 52.746 1.295
9 51.878 1.281

10 52.760 1.302
Average value 52.817 1.294

Standard deviation 0.352 0.008

This study developed an on-machine insert condition monitoring system to identify four external
turning tool insert conditions; fracture, BUE, chipping, and flank wear. The experimental results
demonstrate that the developed monitoring system can successfully identify the four insert conditions.
Moreover, as shown in Figure 16, the developed system can be used for identifying the insert conditions
when it is difficult to measure the wear amount precisely using standard wear measurement methods.
However, because the view angle of the developed visual inspection system that is mounted inside the
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turning machine tools is different from the view angle of standard wear measurement devices, the
calculated wear amount, which is used to indicate the degree of wear conditions, cannot be compared
with the measurement results obtained using standard wear measurement devices.

6. Conclusions

The status of cutting tools used in the cutting processes of machine tools will obviously influence
the manufacturing quality of machine parts. Therefore, this study develops an on-machine insert
condition monitoring system for the turning tool insert of CNC turning machine tools and uses the
machine vision method to inspect the common flank wear, chipping, fracture, and BUE statuses
of turning tool inserts. This study differs from the existing research methods and outcomes as it
fuses the machine vision method with contour and texture inspections to analyze the insert status.
This eliminates the environmental problems in the insert inspection process to build a more accurate
on-machine turning tool insert condition monitoring system.

To fix the CCD camera and lens in the CNC turning machine tool to carry out the on-machine
insert condition visual inspection process, a visual inspection system with a protection box, cleaning
air tube, and two light sources is designed. The protection box can avoid the scrap splash and
contamination of cutting fluid on the lens during the cutting processes, while the cleaning air tube
jets air toward the insert to clean off surface contaminants. A surrounding light source and a fill-light
for the tip of an insert with variable light intensities are employed to analyze the effect of change in
lighting conditions on the visual inspection of the insert status. In the insert image capture process,
the intensity of the surrounding light source and fill-light is changed to ensure that the test insert has
appropriate feature strength. The surrounding light source uses strong light to irradiate the insert
surface to obtain the surface shape and area features, while the fill-light enhances the tip status feature
to facilitate subsequent captured image processing and analysis. An insert condition monitoring
classification process designed in this study includes insert outer profile construction, insert status
region capture, and wear region judgment and calculation. The insert outer profile construction uses
the exposure image to determine the outer profile feature, and then the vertical flank line, horizontal
blade line, and vertical blade line are established according to this outer profile feature. The insert
image can be trimmed for subsequent insert condition feature recognition. In terms of insert status
region capture, the insert fracture zone and BUE zone are identified according to the outer profile
feature lines and the insert outer profile image is trimmed to obtain the actual image of the insert
wear region. For insert wear region judgment and calculation, the flank wear or chipping wear is
identified based on the grayscale value histogram of all pixels of the trimmed flank wear zone image.
The wear amount is calculated using the pixel length of the upper and lower boundaries of the wear
region image, which are used as the reference index to identify the normal wear or over-wear status
of the insert. Finally, inserts in different states are used for on-machine insert condition monitoring
experimentation to confirm that the system designed in this study can identify insert fracture, BUE,
chipping, and wear statuses. In addition, as the changes in external environment and light source
sometimes influence the image processing result, the operational stability of the on-machine insert
condition monitoring system is tested in this study. The experiment is conducted repeatedly and
the average value and standard deviation of the chipping rate and wear amount in the experimental
results are recorded as the basis for evaluating the operational stability of the system. The experimental
results show that the light source variation does influence the calculation of chipping rate and wear
amount. The standard deviation of the chipping rate is only 0.67% of the average value, while the
standard deviation of wear amount is 0.62% of the average value (standard deviation lower than 2
pixels), thus validating the stability of system operation.
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