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Abstract: High-pressure hydraulic fractures are often reported in real engineering applications,
which occur due to the existence of discontinuities such as cracks, faults, or shear bands. In this
paper, a hybrid finite volume and extended finite element method (FVM-XFEM) is developed for
simulating hydro-fracture propagation in quasi-brittle materials, in which the coupling between
fluids and deformation is considered. Flow within the fracture is modelled using lubrication
theory for a one-dimensional laminar flow that obeys the cubic law. The solid deformation is
governed by the linear momentum balance equation under quasi-static conditions. The cohesive
crack model is used to analyze the non-linear fracture process zone ahead of the crack tip. The
discretization of the pressure field is implemented by employing the FVM, while the discretization of
the displacement field is accomplished through the use of the XFEM. The final governing equations
of a fully coupled hydro-mechanical problem is solved using the Picard iteration method. Finally,
the validity of the proposed method is demonstrated through three examples. Moreover, the fluid
pressure distribution along the fracture, the fracture mouth width, and the pattern of the fracture are
investigated. It is shown that the numerical results correlated well with the theoretical solutions and
experimental results.

Keywords: arbitrary crack propagation; hydraulic fracturing; finite volume method (FVM); extended
finite element method (XFEM); quasi-brittle materials

1. Introduction

Fluid-driven fracture is a common yet complex multi-field physics problem. When high-pressure
fluids such as water enter into an existing crack, the fracture propagation criterion is met ahead of
the fracture tip, which leads to fluid-driven fracture initiation and propagation [1]. As a consequence,
hydraulic fracturing (HF) has to be considered in engineering studies, such as hydraulic engineering,
petroleum exploration and nuclear waste storage in deep layers [2]. For instance, ultra-high concrete
dams of 200–300 m or even more have been built all over the world, those dams have a potential risk
of hydraulic fracturing due to the structure damage cracks on dam surfaces. Over time, cracks are
completely filled with the high-pressure water. Another important application of HF is related to
enhance the well production from underground reservoirs [3,4]. Hence, it is necessary to complete
research and understand the influence of hydraulic fracturing.
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Since the 1950s, numerous theoretical models regarding hydraulic fractures in rock masses have
been proposed in the literature, beginning with the pioneering works of Perkins and Kern [5] and
Nordgren [6], who proposed and developed a theoretical model referred to as the PKN model on
the basis of Sneddon’s plane strain crack propagation. Geertsma and de Klerk [7] and Khristianovic
and Zheltov [8] first proposed the well-known plane strain Khristianovic–Geertsma–de Klerk (KGD)
model to solve hydraulic fracturing problems, especially in petroleum engineering. These early models
provided analytical solutions for hydraulic fractures, and an overview of these models was given by
Adachi et al. [4]. Additionally, various studies have analyzed the mechanics of concrete hydraulic
fracturing since the 1980s. Bazant [9–11] concluded that the distribution of fluid pressure inside the
fracture is the most important factor concerning HF in concrete. Brühwiler and Saouma [12] studied
the water pressure distribution along the fracture by performing hydraulic fracturing tests on concrete
specimens. Gan et al. [13] conducted HF experiments on concrete specimens that had a single crack,
and they obtained the water distribution within a mode I crack.

Considering the limitations of analytical models and experiments, various numerical models in the
literature have been developed for the simulation of fractures in two- and three-dimensional situations,
such as the finite element method (FEM), meshless methods (MMs) boundary element method (BEM),
phase method [14,15] and the smoothing gradient damage model [16]. The smoothing gradient damage
model can precisely capture the softening in quasi-brittle materials, but this method needs to apply
to 3D and coupled problems. Boone and Ingraffea [17] proposed a numerical approach based on
the finite element/difference method to analyze poroelastic materials, which allow fluid leakage
within the medium surrounding the fracture. Simony and Secchi and Schrefler et al. [18,19] simulated
cohesive crack growth using the FEM with mesh adaptation. Sarris and Papanastasiou [20] utilized
a FEM approach that included cohesive element modelling of hydraulic fractures in a permeable
material. Segura and Carol [21] used the FEM with zero-thickness interface elements to simulate the
hydro-fracture flow in pre-existing discontinuities. A similar model with an additional degree of
freedom for the pressure within the fracture was developed by Carrier and Grant [22]. Unfortunately,
these classical FEM models that were adopted to simulate the discontinuities require advanced
remeshing algorithms and they also need to maintain the mesh structure as the fracture propagates in
space and time. Moreover, these models also restrict the crack path to the element edges (boundaries) or
along a pre-defined path called the cohesive layer. However, MMs have been introduced to overcome
these drawbacks. According to an overview given by Belytschko et al. [23], MMs can be distinguished
in four main categories: (1) kernel-based methods [24]; (2) moving least square methods (MLS);
(3) particle-based methods [25]; and (4) the partition of unity method (PU) [26]. The treatment of this
essential boundary is not straightforward in the kernel methods and MLS because they do not satisfy
the Kronecker delta property, and defining the shape function is a hard, complex task. Particle-based
methods require a significant amount of computational time due to the large amount of particles
required to determine the fracture criteria during the update process. To decrease the computational
time, Aliabadi et al. [27] and Ganis et al. [28] illustrated that a semi-analysis method called BEM could
be used to model HF in poroelastic mediums, which can therefore be used to obtain the crack opening
width and the fluid leakage rate. However, BEM cracks only propagate along the pre-defined edges
and they require remeshing algorithms, similar to FEM. The extended finite element method (XFEM),
which is based on PU, has many of the same advantages of MMs while alleviating their negative sides.

The XFEM was first implemented by Belytschko et al. [29] and Moës et al. [30] in solid mechanics,
and it has more advantages than the classical FEM fracture models, especially for a fracture that
grows in an arbitrary direction without remeshing. The XFEM has been applied to many engineering
areas including cohesive cracks [31–33], dynamic crack propagation [34,35], and thermo-mechanical
fracture [36]. However, the coupled fluid–solid analysis based on the XFEM was not initially introduced
until the last 10 years. The hydro-mechanic coupling behavior was investigated in [37] by adding an
extra flow degree of freedom (dof) in a similar manner to the displacement dof. Réthoré et al. [38]
proposed a cohesive crack model to study HFs. The XFEM model with cohesive propagation for
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quasi-brittle materials has been studied by researchers, see [39–41]. These studies considered the fluid
pressure inside the fracture as an additional dof, which led to increases in both computational costs
and iteration difficultly. To avoid oscillations of physical fields at the interface and obtain a meaningful
solution, Wang et al. and Zhou et al. [42,43] simulated HFs by combining the XFEM and the finite
volume method (FVM) in concrete dams and in tight gas reservoirs, respectively, but they used linear
elastic fracture mechanics (LEFM) in the crack fracture zone. In this work, we describe a numerical
method to model the hydraulic fracturing behavior in quasi-brittle materials; for this purpose, a hybrid
FVM and XFEM approach with a cohesive zone model (CZM) was proposed. XFEM was developed to
capture the discontinuities in the medium, which can avoid the computational task of remeshing and
guarantee the crack propagation arbitrarily, compared with the classic FEM framework. Additionally,
the reason for using FVM rather than FEM is that FVM can handle flow within fractures easily due to
has a simpler numerical formulation. Moreover. It has the ability to conserve mass in each control
cell, with the merit that variations in fracture volume can be easily depicted by variations in fracture
volume in each fracture element. Fracture propagation is governed by a cohesive law for the non-linear
behavior in the CZM.

This paper is organized as follows. Section 1 presents background knowledge about the HF
process, including analytical solutions and numerical models. Section 2 gives the set of equilibrium
equations used to describe the HF problem in quasi-brittle materials, and the proposed approach
is introduced. Section 3 presents three examples of applications of the FVM-XFEM method, which
highlights its ability to simulate 2D HF problems including the well-known KGD test case, HF testing
of concrete specimens, and the implementation of HF in a concrete gravity dam. Finally, in Section 4,
we draw some main conclusions.

2. Methodology

2.1. Conceptual Model

HF is a complex multiphase field problem, involving several components: (1) the mechanical
deformation of the solid phase; (2) fluid flow within the fracture; (3) the fracture propagation; (4) fluid
leakage in the medium surrounding the fracture. Here, the deformation model uses the equilibrium
equation of the structure, and the crack discontinuities in the domain is handled based on the XFEM
technique. The fracture flow model is modelled using FVM based on lubrication theory for an
incompressible fluid [44]. It is worth mentioning that the fracture is filled with fluid without a lag
region. The fracture propagation criterion is based on the cohesive crack model for the non-linear
fracture processes in the crack tip [20]. However, the fourth process is not taken into account due to
consideration only of low permeability materials. The deformation model and the fracture flow model
are coupled through the fracture width and the fluid pressure acting on the fracture surface.

2.2. Deformation Model

As previously described, a 2D analysis domain Ω containing an arbitrary fluid-driven fracture ГHF

is depicted in Figure 1. Considering that the deformation model satisfies the condition of equilibrium,
the linear momentum balance for this problem can be expressed as:

∇·σ + ρb = 0 (1)

where σ is the stress tensor, ρ is the body density, and b is the body force per unit volume. The
boundary conditions of this balance equation can be expressed as:

u = u on Γu

σnΓ = t on Γt

σnΓHF = tcoh − pnΓHF on ΓHF

(2)
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where nГ is the unit outward normal vector to the external boundary, n−ΓHF and n+
ΓHF

are the unit
outward normal vectors on either side of the discontinuity (the + and − superscripts represent two
sides of the discontinuity), p+ and p− are the fluid pressures within the fracture surface on either side of
the discontinuity, and tcoh is the cohesive traction acting at the fracture process zone. Considering that
the difference between the corresponding values at the two fracture surfaces is small, it is, therefore,
assumed that the fluid pressures and cohesive tractions are equivalent at both faces of the crack
(i.e., p+ = p− = p, n+ = n− = n).
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Figure 1. The definition and boundary conditions of a hydraulic fracturing body within a
geomechanical discontinuity.

The linear elastic constitutive law is used to characterize the mechanical behavior of the
quasi-brittle materials, which is written as:

dσ = D : dε (3)

where D is the fourth-order linear elastic stiffness tensor of the solid materials and ε denotes the related
strain tensor; the latter can be linked to displacement by:

ε =
1
2
(∇u + (∇u)T) (4)

where u represents the displacement vector of the domain.
The weak form satisfying the aforementioned boundary conditions is obtained by the principle of

virtual work; this can be expressed as:∫
Ω

δε : σdΩ +
∫

ΓHF
JδuK · (tcoh − pnΓHF )dΓ =

∫
Ω

δu · ρbdΩ +
∫

Γ
δu · tdΓ (5)

where δu is the virtual displacement, JδuK denotes the fracture opening width across the discontinuities
defined as JδuK = δu+ − δu−.

2.3. Fracture Flow Model

Considering that the fracture length is much greater than the fracture width, the fracture flow
model can be considered as a one-dimensional flow for simplicity [44]. Accordingly, the FVM
introduced by Versteeg and Malalasekera [45] was used to calculate the fracture pressures. Compared
to current models, which obtain the flow pressure distribution based on the enriched component of
the fluid pressures in the XFEM, this FVM can easily and directly handle fracture flow problems.
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The mass conservation of the one-dimensional incompressible fluid in the fracture can be
expressed as follows:

∂w
∂t

+
∂q
∂x

+ g = 0 (6)

w = JuNK = JuK · nΓHF (7)

where w is the fracture opening width, q is the fluid flow rate, and g is the fluid leakage in the medium
surrounding the fracture. In this instance, the fluid leakage is assumed to be zero.

Based on the equation of fluid motion inside a fracture [46], the relationship between the crack
width and the fluid pressure is described as:

q = − w3

12µ

∂p
∂x

(8)

where x is the direction of fracture length, p is the pressure along the fracture, and µ is the fluid
viscosity. By substituting the equation of motion (Equation (8)) into the mass conservation equation
(Equation (6)), the obtained lubrication equation can be expressed as:

∂w
∂t

=
1

12µ
(w3 ∂p

∂s
) (9)

The boundary condition for the fluid injection point can be specified as the flux or pressure
boundary condition: 

w(l, t) = 0
q(l, t) = 0
q(0, t) = q0 or p(0, t) = p0

(10)

As previously mentioned, the fluid lag region was neglected, and the crack width was zero at the
crack tip. Again, it is assumed that there is no flow at the crack tip.

2.4. Fracture Propagation Model

The constitutive mechanical behavior in the cohesive zone is characterized by a traction-separation
law as:

tcoh = tcoh(JuK) (11)

The linearization of Equation (11) results in an incremental form, which can be expressed as:

dtcoh = DcohdJuK (12)

The traction-separation law denotes the relationship between the interface tractions and the
relative displacements. Note that it is assumed that the HF process leads to displacement that
exclusively occurs in the normal direction. Hence, we use an exponential softening law that is related
solely to the normal opening w, as shown in Figure 2. Note that the cohesive traction acting at the
fracture process zone can be expressed as:

tcoh = τult exp(−wτult
Gc

) (13)

where τult is the ultimate strength of the material and Gc is the unit fracture energy.
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The propagation criterion of HF is satisfied when the maximum traction at the crack-tip is greater
than the cohesive strength, which can be expressed as:

tmax =
max

θ ∈ (−π, π)
teq = teq(θmax) ≥ tc (14)

As the stress state in the vicinity of the crack tip varies intensely, the average stress at the tip is
used to obtain the smooth principal stresses based on a Gaussian weighting function [47]; the formula
of the Gaussian averaging method is:

σtip =

∫
Ω ωσdΩ∫
Ω ωdΩ

(15)

where ω is the Gaussian weighting function; this function can be defined as:

ω =
1

(2π)3/2a3
exp(− r2

2a2 ) (16)

where r is the distance to the crack tip and a denotes the size of the influence region of the stress,
which determines how quickly the weight function decays away from the crack tip. The parameter
a is commonly related to either Hillerborg’s characteristic length [48] or the element size. Following
Dias-da-Costa et al. [49], we use approximately 1% of Hillerborg’s characteristic length, which can be
expressed as:

lc =
E

1− v2

G f

f 2
t

(17)

Note that this characteristic length also identifies the size of the fracture process zone. Moës
and Belyteschko [30] suggest using a minimum of two cohesive elements to accurately compute the
distribution of tractions in this zone.

2.5. Discretization and Solution Algorithms

2.5.1. Discretization of Equilibrium Equation

To capture the discontinuities in a HF, the displacement jumps across the fracture must be
considered in the displacement field. The XFEM has been widely utilized for modelling discontinuities
without the need of remeshing in the FEM framework. In the XFEM, discontinuities in the
displacement field are not only enriched by an approximate function, such as the Heaviside function,
for displacement jumps across the fracture, but also by an asymptotic function for the singularity
displacement of the fracture tip. As shown in Figure 3, an arbitrary discontinuity divides the body
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into two domains, Ω+ and Ω−. At any one time, the displacement field consists of two parts: a
standard displacement and an additional displacement. It is assumed that the discontinuity must cross
an element without accounting for the fracture tip singularity because the crack-tip singularity will
disappear once the cohesive crack model is adopted anywhere in the mesh [50]. The XFEM-based
displacement approximation can thus be written as:

uh(x, t) = ∑
I∈N

NI(x)uI(t) + ∑
I∈NHF

NHFI (x)HΓHF (x)ũ
HF
I (t) (18)

where N is the complete nodal set, NHF is the set of the enriched nodal points associated with
the fracture, NI is the regular shape function of node I corresponding to the regular dofs of the
displacement field uI, NHFI is the enriched shape function of node I associated with the enriched dofs
of the displacement field ũHFI , and HΓHF is the Heaviside step function typically used to characterize
the strong discontinuities. Note that the Heaviside step function can be expressed as:

HΓd(x) =

{
1, x ∈ Ω+

0, x ∈ Ω−
(19)
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To retain the Kronecker delta property for the blended elements that are not cut by discontinuities,
a shifted enrichment Heaviside function is used that does not alter the basis of the approximation [51,52].
The displacement field in Equation (18) with the shifted enrichment can be written as follows:

uh(x, t) = ∑
I∈N

NI(x)uI(t) + ∑
I∈NHF

NHFI (x)(HΓHF (x)− HΓHF (xi))ũHFI (t) (20)

The compact form of this displacement field can be expressed as:

uh(x, t) = N(x)UI(t) + ÑHF (x)ŨHF (t) (21)

where N(x) is the matrix of the regular shape functions corresponding to the regular dofs of the
displacement field U and ÑHF (x) denotes the matrix of the enriched shape functions associated with
the enriched dofs of the displacement field ŨHF .

The discrete form of this equation can be generated based on the XFEM approximation
(Equation (11)) using the following formation:

Ku = F (22)

where K and F denote the global stiffness matrix and the global force vector, respectively, and u
represents the displacement vector.

ue = ui + ũi (23)
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The global stiffness matrix can be divided into four categories as follows:

K =

[
Kuu Kuũ
Kũu Kũũ + Tũũ

]
(24)

where:
Kuu =

∫
Ω

BT
u DBudΩ (25)

Kuũ =
∫

Ω
BT

u DBHFũ dΩ (26)

Kũu =
∫

Ω
(BHFũ )

T
DBudΩ (27)

Kũũ =
∫

Ω
(BHFũ )

T
DBHFũ dΩ (28)

Tũũ =
∫

Ω
(NHFũ )

T
DcohNHFũ dΩ (29)

Note that B in the equations above is the derivative of the shape function, and the matrix
components of Bu and BHFũ under 2D plane-strain conditions can be calculated by:

B(x) = LN(x) B̃HF (x) = LÑHF (x) (30)

where L is the regular differential operator as defined in the classic FEM.
The global force vector is defined as:

Fext =
∫

Γt
NT

u tdΓ +
∫

Ω
NT

u bdΩ, F coh =
∫

ΓHF
NT

u tcohdΓ,

FHFext =
∫

Γt
(NHFũ )

T
tdΓ +

∫
Ω
(NHFũ )

T
bdΩ, FHF =

∫
ΓHF

NT
u pnΓHF dΓ

(31)

For these elements crossed by a discontinuity, a special treatment for the ordinary Gauss quadrature
rules is required to accurately integrate the enrichment function. Figure 3 shows a finite element domain
that is bisected by the discontinuity. A four-node structure mesh is used in this paper. The black nodes
on both sides of the discontinuity are enriched by the additional dofs. The discontinuity within an
element is assumed to be a straight line, and the fracture tips are located at an element edge. In
addition, the fracture can grow in arbitrary directions, and it is also allowed to propagate through
multiple elements at each time step. The standard Gauss quadrature integration is used to carry out the
numerical integration in the XFEM. However, the conventional Gauss integration points are insufficient
due to the arbitrary positions of the discontinuity, which may result in a loss of accuracy. To overcome
this difficulty, an integrating approach introduced by Wells and Sluys is used for elements crossed by
the discontinuity. In this method, additional integration points on each side of the discontinuities are
generated to integrate the discretized local balance equations, as shown in Figure 4.
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2.5.2. Discretization of the Fracture Flow

To model fluid flow within the fracture, the finite volume method was used to approximate the
one-dimensional pressure field. As shown in Figure 5, the fracture segment is divided into discrete
control volumes (fluid volumes). To avoid ambiguity, the discrete control volume is called a “cell”.
The weak form of the lubrication equation (Equation (9)) can be written as:

∫
∆V

∂

∂x

(
k

∂p
∂x

)
dV +

∫
∆V

∂w
∂t

dV

=
∮

A
n
(

k
∂p
∂x

)
dA +

∫
∆V

∂w
∂t

dV

=

(
kA

∂p
∂x

)
e
−
(

kA
∂p
∂x

)
w
+

∆w
∆t

∆V = 0

(32)

where A represents the facial area of the control volume, V is the fluid volume, and k is the permeability
of the cell, which is expressed below in Equation (33). It is worth noting that fluid pressure is assumed
to be constant in each control volume.

k = − w3

12µ
(33)
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According to the Equation (32), the discretized equation of a typical finite volume element that
contains a node c could be obtained based on the finite volume method; this results in the following
representation for every cell c:

Te(pe − pc)− Tw(pc − pw) +
∆w
∆t

∆V = 0 (34)

where:
Ti =

Aiki
Dic

(i = e, w) (35)

By applying linear interpolation, ki and Ai can be expressed as:

ki = βkw + (1− β)kc

Ai = βAw + (1− β)Ac

β =
lic
Dic

(36)

where Dic is the distance between the control cell c and its neighbouring cell i, and lic is the distance
between the centroid of the interface and the centroid of the control cell c. It is worth noting that the
face area Ai is replaced by the fracture aperture wi for a 2D cell.

Equation (34) can be rewritten as:
Mp = W (37)
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where M is the stiffness matrix of the pressure field defined as follows:

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

 (38)

In Equation (38), the cell c can be expressed as:

Mc = [ mwc mcc mce ] (39)

where:
mwc = Tw, mcc = −Tw − Te, mce = Te (40)

It is worth mentioning that the matrix M1 and Mn only consist of two terms as the boundary
conditions at the fluid injection point and the crack tip are known. Hence, the integration of (34) over
the first control volume cell can be written as:

m11 p1 + m12 p2 = −m01 p0 −
∆w1

∆t
∆V1 (41)

Similarly, as far as the last control volume cell is concerned, the equation can be described as:

mnn pn + mnn−1 pnn−1 = −mnn+1 pt −
∆wn

∆t
∆Vn (42)

where p0 is the injection pressure at the crack mouth and pt is the pressure of the crack tip, which for
this case is zero, i.e., pt = 0.

2.6. Fluid–Solid Coupling Procedure and the Picard Iteration Approach

As discussed above, the HF is defined as a fully coupled fluid–solid interaction problem. In this
process, the fluid pressure on the fracture surface causes the opening and propagation of a fracture,
and the pressure is linked to the fracture flow. In turn, the fracture flow is affected by the opening
and propagation of the fracture, which leads to a change of pressure within the fracture. Therefore, to
properly solve this problem, a method combining FVM and XFEM can be proposed. The discretized
equations of both the displacement field and the fluid field can be written as:{

Ku = F
Mp = W

(43)

The precise solution of the coupled equations above can be solved by applying the Picard iteration
technique. The most common Picard iteration approach [53] can be written as follows:

pk+1/2 = M(wk)
−1W(wk)

pk+1 = αpk+1/2 + (1− α)pk
uk+1 = K−1F(pk+1)

uk+1 → wk+1

(44)

In this work, the average difference of the pressure between two neighbouring iteration steps is
defined to check convergence. The difference is iteratively checked until the specified convergence
tolerance is reached; this can be expressed as:
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∑N
i=1

∣∣∣p(n)i − p(n−1)
i

∣∣∣
∑N

i=1

∣∣∣p(n)i

∣∣∣ ≤ ε (45)

where p(n)i is the pressure within cell i during iteration n. The flowchart shown in Figure 6 is provided
to illustrate the fluid–solid coupled process.
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Figure 6. Flow chart of the finite volume and extended finite element method (FVM-XFEM) method.

3. Results and Discussion

In this section, three examples were considered. In the first two examples, the proposed
FVM-XFEM model was validated. In the third example, the FVM-XFEM model was applied to
simulate the HF of a concrete gravity dam. In the first example, the well-known KGD benchmark was
presented to illustrate the capabilities of the FVM-XFEM model, and the numerical simulation was
compared with the analytical solution for HF propagation. In the second example, HF tests on concrete
specimens with centralized cracks were carried out, and the relative terms of HF were compared
between the numerical results and test results. In the third example, the FVM-XFEM model was
used to study the propagation behavior of a pre-existing fracture in a concrete dam under different
water levels.

3.1. Khristianovic–Geertsma–de Klerk (KGD) Model

In this example, the numerical results of a KGD fracture growth were presented using the
same analytical information as Carrier et al. [22], and they were compared to the analytical solution
introduced by Adachi et al. [4].

A hydraulic fracturing process in an infinite impermeable rock material was simulated based
on the FVM-XFEM model. The model dimensions and boundary conditions are depicted in Figure 7.
A pre-existing discontinuity with an initial length of 1 m was placed at the center of a symmetrical
model, which was 60 m tall and 45 m wide. An incompressible Newtonian fluid was injected into the
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opening of the discontinuity with a constant rate Q0, and the fluid drove the fracture propagation.
In consideration of the in situ stress state field, a confining far-field external force σ0 = 3.7 MPa
was vertically imposed at the top and bottom of the model, and the left side was constrained in the
x-direction. As previously mentioned, the linear elastic constitutive law was considered, and the
cohesive crack model was used in the fracture process. The material parameters used in this analysis
are given in Table 1.
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Figure 7. A hydraulic-driven fracture propagation in an imperious domain. A schematic representation
of the Khristianovic–Geertsma–de Klerk (KGD) problem, the geometry, the boundary conditions, and
the finite element mesh.

Table 1. Parameters for the bulk material and the cohesive zone (from [22]).

Young’s modulus E = 17.0 GPa
Poisson’s ratio ν = 0.2

Tensile strength ft = 1.25 MPa
Cohesive fracture energy Gc = 120 N/m

Water density ρw = 1000 kg/m3

Water dynamic viscosity µ = 1.00 × 10−4 Pa s
Fluid injection rate Q0 = 5.00 × 10−4 m2/s

The discretized information of the domain consisted of both coarse and fine meshes, and the
size of each fine element was 0.1 m × 0.1 m. The refined elements in the direction of the propagating
fracture were used to guarantee solution convergence and to acquire the mesh independent results
because the fine meshes were necessary to resolve the pressure gradient within the cohesive zone. The
area away from the potential fracture path was discretized with coarse meshes to avoid cumbersome
computational calculations. For the temporal discretization, a time step ∆t = 0.01 was used.

An approximate analytical solution for this case without fluid leak-off and zero toughness was
derived by Geertsma and de Klerk [7]. This case was called the KGD model and the analytical solutions
can be expressed in the following form:
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t
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where CMOD is the crack mouth opening displacement, Q is the injection rate of the fracturing fluid,
t is the injection time, µ is the fluid viscosity, L/2 is the half-length of the crack, CMP is the crack mouth
pressure, and S is the in situ stress.

Figures 8 and 9 compare the crack opening displacement, the crack length, and the crack mouth
pressure. A good correlation was observed between the simulations presented by the FVM-XFEM
model and the analytical solutions of the KGD model. From these results, it is clear that the fracture
width profile was symmetrical and that the crack half-length was approximately 7 m at 20 s, which
correlated well with the analytical solution. Furthermore, results confirmed the numerical results
represented by Carrier and Granet using the FEM with zero-thickness cohesive elements.
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Figure 9. Comparison of the numerical and analytical solutions regarding: (left) the fracture half-length
and (right) the fracture mouth pressure.

In Figure 10, the relative error between the numerical solutions and the KGD analytical results is
displayed. The numerical solutions contained the present model and the FEM model used by Carrier
and Granet. As the results indicate, a high relative error was found at the beginning of the injection,
which could be linked to the fracture process zone. As previously discussed, the characteristic length
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in the cohesive zone was constant. At the very first time step, the fracture length was either shorter or
equal to the characteristic length. However, during the fracture propagation, a relative error reduction
was observed. We attributed this small error to the differences between the analytical solution and the
numerical formation. Indeed, the propagation criterion used for the two numerical models was based
on the cohesive softening law, whereas linear elastic fracture mechanics was used for the analytical
model. However, the relative error was almost identical between the two numerical models. The
results indicate that the proposed model seemed to be equally as efficient at simulating the HF problem
in the rock material as the FEM model with interface elements.Materials 2018, 11, x FOR PEER REVIEW  14 of 21 
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3.2. Hydraulic Fracturing Test

In this example, HF testing of a concrete material was carried out to verify the capability of
the FVM-XFEM model. The geometry and the relative boundary conditions of the standard cubical
concrete specimen are depicted in Figure 11 (left). The prefabricated cracks were generated by inserting
a steel sheet into the mold at the center of the specimen before pouring the concrete. The sizes of the
specimen and the pre-existing crack were 150 mm and 50 mm, respectively. During the experiment,
the fluid pressure was directly imposed on the crack faces along the pre-existing fracture interface, and
the fluid pressure was gradually increased until the specimen failed. For measuring the crack opening
displacement and the fluid pressure distribution inside the fracture, strain gauges were placed from
the crack tip to the top and bottom surface.
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Figure 11 (right) displays the two-dimensional finite element mesh with a refined mesh near the
crack-tip, which contained 6650 elements and 4587 nodes. The mesh size around the fracture was
fine enough to properly capture the distribution of the fluid pressure and traction. According to the
situation at the test site, the boundary conditions of this problem were set as follows: the bottom
boundary of the model was fixed, whereas the other boundaries were unrestrained. In addition, a
large variety of water pressure conditions, imposed on the center of the fracture, were simulated to
determine the critical fluid pressure required to cause damage. The material parameters used in this
numerical example were obtained by material property tests, and they are listed in Table 2.

Table 2. Parameters of the concrete specimens used in the hydraulic fracture test.

Young’s modulus E = 27.25 GPa
Poisson’s ratio ν = 0.173

Tensile strength ft = 2.01 MPa
Cohesive fracture energy Gc = 140 N/m

Water density ρw = 1000 kg/m3

Water dynamic viscosity µ = 1.00 × 10−6 kPa s

For the specimen test, when the fluid pressure across the fracture was raised to about 1.75 MPa,
hydraulic fracturing failure of the specimen occurred. On the other hand, the critical fracturing
pressure value predicted by the numerical solution was 1.70 MPa. The relative error between the two
solutions was only 2.9%, which implies that the proposed model was both reasonable and precise.
The fracture opening profiles of the tests and the numerical simulation are presented in Figure 12. For
the numerical simulation, the fracture propagated along the axis until the specimen was damaged
completely, whereas in the test, the direction of the propagating fracture slightly deviated from the
axial direction. The reason was that the concrete material in the present model was assumed to be
homogeneous and isotropic. In contrast, the test specimens were not fully isotropic, and they contained
guide holes and ducts. Nevertheless, the numerical results correlated well with the testing results. The
contours of the stress distribution is shown in Figure 13.

Figure 14 (left) shows the fracture growth length versus crack opening displacement curve. A
remarkable difference between the present model and the test result was observed at the beginning
of loading. The explanation for this is that the hydraulic loading rate of the test was limited, which
resulted in a low crack propagation rate. The pressure flow, therefore, did not immediately enter the
fracture. However, once the crack opening displacement approached a certain value, the fluid began
to naturally flow into the fracture. Hence, as the results illustrate, the matching was very good when
the fracture aperture was enlarged.

Figure 14 (right) compares the distribution of the fluid pressure across the fracture. It is visible
that the fluid pressure possessed a relatively flat gradient along the fracture until it suddenly dropped
to zero near the fracture tip. There was a slight discrepancy between the numerical model and the test
results. The reason for this was that the concrete material was permeable, which allowed leak-off in the
experiment; this resulted in the fracturing fluid dissipating into the surrounding medium. Additionally,
the test results were not in good agreement with the numerical solution around the fracture tip; this
could be contributed to the limitation of test conditions. The fluid pressure measuring devices were
not arranged near the edges of the specimens due to limited space, which caused the non-conformity.
However, in general, the analytical fluid pressure distribution calculations were basically consistent
with the results predicted by the numerical model. These findings indicated the ability of the proposed
model to simulate the HF of concrete materials.
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3.3. Hydraulic Fracturing in a Concrete Gravity Dam

In the last example, the FVM-XFEM model was used to analyse the hydraulic fracturing process
in a typical gravity dam, which helps illustrate the performance of the model in a more practical
application. This example was initially modelled by Ren et al. [54] on the basis of the linear elastic
fracture mechanics. The geometry of the dam and the corresponding boundary conditions are
illustrated in Figure 15 (left). As shown in the figure, the height of the dam was 96 m, and the width of
the bottom and top of the dam were 76 m and 9 m, respectively. However, it is more reasonable to
also consider the foundation of the concrete dam. The foundation extended the horizontal distance
of the dam by twice the height of the dam, including from the dam toe to the downstream and from
the dam heel to the upstream; the foundation doubled the vertical dimension of the dam as well.
The upstream face was perpendicular to the x-direction, and the slope of the downstream face had a
horizontal-to-vertical ratio of 1:7. It was assumed that, during building operations, an 8 m-long and
0.02 mm-wide initial horizontal crack was generated on the upstream face of the dam, which is located
8 m above the dam heel.
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Figure 15. A concrete gravity dam under hydrostatic pressure: the geometry, boundary conditions
(left), and XFEM meshes (right).

A two-dimensional FEM model for simulating the HF of the dam was established, shown in
Figure 15 (right). There were 6652 elements and 7812 nodes, and the size of mesh was 0.3 m × 0.3 m
in the region where the fracture was expected to propagate. As far as boundary conditions are
concerned, the left and right sides of the dam foundation were constrained in the x-direction, the
bottom displacement of the foundation was set to zero in both directions, and the other boundary
conditions were unrestrained. The applied loads consisted of the weight of the dam and the hydrostatic
pressure in the reservoir. The water level increased from zero to the critical upstream water level 96 m
with each step of 2.5 m. During this process, the initial crack will propagate. The material parameters
used for the numerical simulation in this example are summarized in Table 3. The crack automatically
propagated in the dam when the maximum tensile stress reached the ultimate tensile strength.

Table 3. Parameter of the concrete gravity dam.

Young’s modulus E = 25.0 GPa
Poisson’s ratio ν = 0.167

Tensile strength ft = 2.05 MPa
Cohesive fracture energy Gc = 150 N/m

Water density ρw = 1000 kg/m3

Water dynamic viscosity µ = 1.00 × 10−6 kPa·s
Solid density ρw = 2400 kg/m3
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Figure 16 presents the crack opening displacement along the fracture and the water pressure
distribution within the crack, respectively. The fracture length corresponding to an intermediate
analysis step at the upstream water level of 75 m was determined to be approximately 12 m. Clearly,
the crack opening displacement gradually decreased along the fracture. Moreover, the water pressure
within the crack changed mildly in the vicinity of the initial crack, whereas it varied significantly near
the crack-tip zone. The numerical results were similar to the test results in the second example.
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Figure 16. The crack mouth opening displacement (left) and the water pressure distribution along the
crack (right).

Three crack growth paths are plotted in Figure 17, including the solutions generated by both the
coupled and the uncoupled FVM-XFEM models as well as the solution by Ren et al. using the constant
pressure algorithm based on the XFEM. It was worth mentioning that the coupled model allowed
the water pressure inside the fracture to vary with time, while in both the uncoupled model and the
constant pressure algorithm, the water pressure acting at the fracture interface was assumed to be a
constant value that corresponded to the level of water in the reservoir. Obviously, these crack growth
paths propagated towards the downstream and towards the bottom of the dam. In addition, one could
observe that the uncoupled results predicted by the present model closely matched the numerical
outcomes performed by Ren et al. using the constant pressure algorithm. The excellent correlation
between the two results illustrated the capability of the proposed model in simulating the HF process
in a concrete gravity dam. However, for a more realistic representation, the variation of water pressure
along the fracture was considered in the coupled model. The numerical results showed that compared
to the uncoupled model, the crack growth length in the coupled model was short and the extension
angle was big, which confirmed the general rule.
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4. Conclusions

In this study, a hybrid approach called FVM-XFEM was proposed for hydraulic fractures in
quasi-brittle materials. The fully coupled formulation was established based on the linear momentum
balance equation and the one-dimensional laminar flow model, which accounted for the coupling
effect between the fluid pressure and the fracture opening width. The discontinuous fracture was
captured by means of the XFEM, and the fracture process was modelled using the cohesive zone model.
The different approximation spaces were obtained using the extended finite element method for the
solid deformation and the finite volume method for the fluid pressure. The coupled, discretized model
was solved by exploiting the Picard iteration technique.

In the first example, the KGD fracture problem in a rock formation was analyzed. The results
illustrated that the numerical results were in good agreement with both the analytical solution as well
as the FEM with zero-thickness elements. In the second example, a hydraulic fracturing test of the
concrete material was carried out to verify our FVM-XFEM model, and the numerical outcomes were
basically consistent with the test results. The differences between the results were attributed to the
fact that the test conditions were limited and to the occurrence of fluid leak-off in the concrete around
the crack. The validity of the FVM-XFEM model was confirmed in the first two examples; therefore,
the proposed model was implemented to analyze a practical engineering problem in the last example.
The HF process of a concrete gravity dam was modelled under different water pressure distributions.
In this case, it was observed that the fracture can propagate in arbitrary directions. The results of the
uncoupled FVM-XFEM model were quite similar to those of the constant pressure algorithm based
on the XFEM, which resulted from both methods employing a constant pressure value at the fracture
interface. However, a more realistic distribution of water pressure across the fracture was considered
in the coupled mode. As predicted by the general rule, the numerical results produced by the coupled
FVM-XFEM model exhibited a shorter crack growth length and a larger extension angle than the
uncoupled FVM-XFEM model.

In summary, the hybrid FVM-XFEM model can effectively simulate hydraulic fracturing in
quasi-brittle materials, such as shales for rock materials and dams composed of concrete materials.
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