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Abstract: For the first time, the comprehensive characterization of the additively manufactured
AlSi9Cu3Fe alloy is reported in this paper. Conventionally, the AlSi9Cu3(Fe) alloy is prepared by
high-pressure die casting (HPDC), but this technology largely does not offer such opportunities
as additive manufacturing (AM) does, especially in the design of new lightweight parts. In the
present paper, testing samples were prepared by selective laser melting (SLM), one of the AM
technologies, and characterized in terms of their microstructure (by means of light microscopy,
scanning electron microscopy and transmission electron microscopy in combination with analytical
techniques for evaluation of chemical and phase composition) and mechanical properties (static
tension, compression, and hardness). All the characteristics were compared with the HPDC reference
material. Our study showed an excellent improvement both in strength (374 ± 11 MPa compared to
257 ± 17 MPa) and plasticity (1.9 ± 0.2% compared to 1.2 ± 0.5%) of the material thanks to its very
fine and distinctive microstructure.
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1. Introduction

In the last decades, the industry looks for new, sophisticated technologies with the intention of
making technological progress, but also reducing production costs. As the environmental protection
aspect is very strong in this age, it also represents one of the driving forces of the research and
development. Especially in the aerospace and automotive industries, all these requirements have led
to the development of lightweight materials and structures. With reduced weight, not only material
costs are saved, but it also lowers the weight of the resultant means of transport associated with lower
fuel consumption, as well as lower emissions of harmful exhaust gases (especially CO2) [1]. However,
traditional manufacturing processes, such as casting, forging, extrusion, or powder metallurgy, are
not able to satisfy the current trend in manufacture, which aims at new customized products of high
quality, acceptable cost, repeatability and reliability, and their quick delivery to customers. Conversely,
they require specific tooling, consist of multiple steps and often have to be followed by post-fabrication
machining, which increases both costs and production time [2]. A new technological approach is
thus needed.

Aluminum and its alloys find their application thanks to their excellent strength to weight ratio
and corrosion resistance (compared to steels). The most wide-spread aluminum alloys are based on the
binary Al-Si system, which provides great castability, and thus an easy production way. Elements like
Mg or Cu are often added to enhance mechanical properties after an appropriate heat treatment [1].
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AlSi9Cu3(Fe) alloy is used especially in the automotive industry. Thanks to a relatively high content
of copper, it exhibits higher mechanical strength (when 3 wt.% of Si in AlSi12 are substituted by
copper, the contribution to tensile strength is 90 MPa [3]), but decreased corrosion resistance. It is
usually processed by pressure die casting and is easy to machine. It has a low tendency towards
surface defects and internal voids during solidification. Particularly, it is used for the production
of thin-walled products subjected to dynamic loading, cylinder heads, and other parts of engines
or various machines [4]. Mechanical properties can be significantly influenced by the control of
microstructural parameters, such as the distance between dendritic arms, grain size, shape, and
distribution of the eutectics, volume fraction, size, and morphology of intermetallic phases [5].

High-pressure die casting (HPDC) enables high production volumes of parts showing high surface
quality. Compared to gravity casting, even more complex shapes are possible to be produced, but still,
the current demands for porous structures or very small dimensions are hardly attainable. Additionally,
the HPDC process is limited by the formation of defects, such as oxide films, shrinkage cavities, air
porosity, etc., which cannot be eliminated. Such defects then weaken the castings structurally and
exclude them for use in the field of safety applications [5].

The opportunity to satisfy industrial producers and their customers, and avoid limitations of
conventional technologies is provided by additive manufacturing (AM), popularly called 3D printing.
AM covers all computer-controlled processes that create three-dimensional (3D) parts by sequentially
joining thin layers of materials. This unique feature makes it possible to produce complex parts
directly in the desired form, without the need for expensive tools or molds, the use of which is
necessary in conventional subtraction technologies. The additive approach also brings minimal
material losses. An added value is a customized production. Components can be tailored according to
the specific requirements of each customer. For these reasons, 3D printing is now widely considered
for the production of high-performance components for aerospace, medical, power, and automotive
applications [6–8].

In the AM of metals, the most available technologies are selective laser melting (SLM) and electron
beam melting (EBM). They belong into the group of so-called powder-bed AM technologies. They are
based on the selective melting of an input powder material that is deposited onto the working plate
in successive steps so that thin layers are formed. While SLM uses a laser beam to melt the powder,
a focused beam of electrons serves as the heat source in EBM [9,10].

Currently, 3D printing is applied for a wide range of metallic materials, including steels, Ti and
its alloys, Ni or Co superalloys, and copper [11]. Additionally, some aluminum powders have been
successfully processed, with AlSi10Mg alloy being one of the most studied [12]. Other studies have
focused on different Al-Si alloys, e.g., A356 [13], A357 [14], AlSi12(Mg) [15,16], Al-20Si [17], and
Al-50Si [18]. Wrought alloys of 2xxx, 6xxx, and 7xxx classes, usually heat-treatable (EN 7075 [19],
Al-Mg-Sc-Zr [20], AA-2024 [21]), have been processed as well. An interesting paper was also published
on the topic of SLM applied for processing of an Al–Fe–V–Si alloy which gets very close to titanium
in its strength. While a complicated preparation and high costs had hindered the development
of such alloys, SLM brought promising options [22]. Similarly, SLM enabled the preparation of a
high-strength thermally stable Al85Nd8Ni5Co2 alloy with a composite-like microstructure containing
submicrometer-sized intermetallic phases dispersed in the aluminum matrix [23]. While most of the
materials for AM are based on conventional compositions, there are already some works tailoring
materials specifically for AM [24,25].

Surprisingly, to the best of our knowledge, no references to the AM of the AlSi9Cu3(Fe) alloy
have appeared in the literature yet. As the high amount of copper in combination with high cooling
rates during the AM process could yield in interesting properties (e.g., absence of intermetallic phases
enhancing plasticity, high oversaturation of solid solution, and promoted strengthening), the aim of our
study was to prepare this alloy by means of SLM and characterize its microstructure and mechanical
performance. Therefore, in the present paper, we bring a comprehensive study in which the SLM
AlSi9Cu3Fe alloy is compared to the same alloy, but prepared by conventional HPDC.
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2. Materials and Methods

The tested material was the AlSi9Cu3Fe alloy of a specific composition given in Table 1.
A gas-atomized powder of the alloy (LPW, mass median diameter = 40 µm) was used for the purpose
of additive manufacture by the selective laser melting technology (SLM). SLM Solution 280HL machine
equipped with 400 W YLR-Faser-Laser was used. The process parameters applied for the sample
production are listed in Table 2. The laser melting was carried out under a protective argon atmosphere
to prevent oxidation. Dog-bone-shaped samples intended for tensile testing (Figure 1) were prepared
directly, with their longitudinal axes parallel to the building direction. Sand-blasting followed the
additive manufacture to remove powder particles attached to the final sample surface.

Table 1. Chemical composition (wt.%) of the AlSi9Cu3Fe alloy.

Al Si Cu Fe Mg Zn Mn Ti Sn

SLM bal. 8.9 3.1 1.2 0.3 0.01 / / /
HPDC bal. 8.6 2.6 0.7 0.2 0.9 0.3 0.04 0.07

CSN EN ISO
42 4339 standard bal. 8.0–11.0 2.0–3.5 max. 1.0 0.1–0.5 max. 1.2 0.1–0.5 max. 0.15 max. 0.1

Table 2. Parameters of the SLM process (P—power, v—scanning velocity, h—hatching distance,
t—layer thickness).

P (W) V (mm/s) H (µm) T (µm) Scanning Strategy

400 1300 150 50 chess board
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perpendicular to the building direction. First, porosity was evaluated using unetched samples. The 

average porosity was determined by an image analysis (ImageJ software) of about 30 images 

captured by a light metallographic microscope (OLYMPUS PME3) across the entire longitudinal 

section. To reveal the microstructure, the samples were etched in 0.5% HF. Microstructures were 

studied by light microscope and also by a TESCAN VEGA-3 LMU scanning electron microscope 

(SEM) equipped with an EBSD (electron backscatter diffraction; Oxford Instruments, Aztec) analyzer. 

The EBSD analysis was performed with a step of 0.3 µm. Data were processed by Channel 5 software. 

Transmission electron microscopy (TEM) was used to observe nano-sized microstructural features. 
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Figure 1. Tensile test samples prepared by SLM.

For a comparison between SLM and conventional manufacture, castings produced by HPDC
were provided by a commercial supplier. Samples for determination of mechanical properties and
structural analysis were cut out of the castings.

For the microstructure observation of the studied alloy, metallographic sections were prepared
in a standard metallographic way. For the SLM samples, both transversal and longitudinal sections
were prepared because of additive manufacture directionality. Therefore, the longitudinal sections
represented the microstructure in the building direction, while the transversal ones in the direction
perpendicular to the building direction. First, porosity was evaluated using unetched samples.
The average porosity was determined by an image analysis (ImageJ software) of about 30 images
captured by a light metallographic microscope (OLYMPUS PME3) across the entire longitudinal section.
To reveal the microstructure, the samples were etched in 0.5% HF. Microstructures were studied by light
microscope and also by a TESCAN VEGA-3 LMU scanning electron microscope (SEM) equipped with
an EBSD (electron backscatter diffraction; Oxford Instruments, Aztec) analyzer. The EBSD analysis
was performed with a step of 0.3 µm. Data were processed by Channel 5 software. Transmission
electron microscopy (TEM) was used to observe nano-sized microstructural features. TEM samples
were prepared perpendicular to the building direction of SLM. 1 mm thick plates were cut and reduced
by grinding to a thickness of 100 µm. Subsequently, disks of 3 mm in diameter were punched. The final
thickness in the central part of the disks was achieved by double jet electropolishing in a 30% solution
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of HNO3 in methyl alcohol at 253 K. The conventional TEM observations were carried out by Fei
Tecnai F20 field emission gun transmission electron microscope operated at 200 kV equipped with EDS
detector. EDS analysis was performed in the STEM mode with a step size of 1 nm. Phase composition
was studied locally by SAED (selected area electron diffraction) and globally by X-ray diffraction using
PANalytical X’Pert PRO diffractometer equipped with Cu anode.

For a comparison between the SLM and the cast alloy, mechanical properties were tested. Uniaxial
tensile tests were done with 3 samples using a universal testing machine LabTest 5.250SP1-VM. For
compressive tests, cylinders of 8 mm in diameter and 12 mm in height (2:3 ratio) were used. Both
tensile and compressive tests were accomplished at room temperature with a strain rate of 0.001 s−1.
Hardness measurement was carried out on a Future-Tech FM-700 hardness tester and the Vickers
hardness HV1 was determined. Fracture surfaces were studied by scanning electron microscopy.

3. Results and Discussion

3.1. Microstructure

3.1.1. Hierarchical Microstructure of the Additively Manufactured AlSi9Cu3Fe Alloy

As with other metallic materials prepared by SLM, the microstructure of the AlSi9Cu3Fe alloy
also shows hierarchical heterogeneity, with length scales spanning nearly six orders of magnitude [26].
In the first magnification range, the additively manufactured AlSi9Cu3Fe alloy displays very
characteristic macrostructure, which is related to the principle of its manufacture—the successive
melting of the powder material by the laser beam. The laser beam was scanned across each powder
layer according to the selected scanning strategy. By selective irradiation of the powder, melt pools
were formed transiently [27]. After solidification, these melt pools are visible in the macrostructure
of the processed alloy. The characteristic macrostructure of the studied AlSi9Cu3Fe alloy is shown in
Figure 2. In the transversal section (Figure 2a), a top view of a layer is displayed. Here, several oval
zones elongated in the same direction can be seen. The direction of laser scanning and the thickness of
a laser track can be estimated. However, we can distinguish two types of elongated zones that overlap
perpendicularly as the scanning direction changed with each layer by 90◦. In our work, a ‘chessboard’
strategy was applied, meaning that every layer was divided into square boxes representing a chess
board. The area of every box was scanned in one direction, with a firmly set hatching distance in
between adjacent laser tracks. The scanning direction changed alternately for neighbor boxes. In the
next layer, the directions were switched. In Figure 2b representing the longitudinal section, consistent
with the building direction, solidified melt pools can be observed directly. Their depth overpasses the
layer thickness by a factor of about 1.5–4, which ensures a proper interconnection between layers.
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Thanks to a slight contrast provided by the bright-field light microscopy, in Figure 2, individual
grains can be estimated within the melt pools. However, much better information is provided by EBSD
maps shown in Figure 3. Individual grains within a melt pool, as well as on its boundaries, can be
clearly distinguished. The grain growth is directly influenced by temperature distribution within melt
pools. At melt pools boundaries, where the heat is quickly conducted away by the already solidified
and chilled material, fine equiaxed grains are formed by the heterogeneous nucleation occurring in
front of the liquid-solid interface. The slowest heat dissipation occurs in the center of a melt pool
where the highest temperature is kept for the longest period of time. Therefore, larger grains can be
observed in melt pool interiors. As a melt pool is surrounded by already solidified material, the heat
flows away radially. Therefore, within a melt pool, grains elongate in the direction of the thermal
gradient, converging from boundaries of the melt pool to its center [28,29]. At the top surface, fine
equiaxed grains are also formed as the cooling rate was reported (e.g., in References [28,29]) to reach
~106 K/s here (compared to ~103 K/s deeper in the melt pool).
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the building direction (high-angle boundaries in black, low-angle boundaries in white). White line
indicates the melt pool boundary.

Due to a direct heat flow in the steep temperature gradient between the liquid melt pool and
the previously consolidated layer, in alloys, the liquid may become undercooled due to the solute
redistribution. That destabilizes the solidification front and generates a transition from a planar
solidification mode to a cellular or dendritic mode. This transition occurs when the thermal gradient in
the liquid phase at the solidification front becomes lower than the critical gradient, which is a function
of the overall solute concentration, the solute diffusion coefficient in the liquid phase, the solute
partition coefficient k, the solidification growth rate R, and the gradient of the equilibrium melting point.
In multi-element alloys, the critical gradient derived for binary systems can be influenced by other
alloying elements by changing the partitioning coefficients. The addition of an extra alloying element
with a large partition coefficient increases the critical gradient, destabilizes the solidification front and
promotes cellular solidification. The kinetic conditions favor the solidification of a low melting phase
in the first step by ejecting high melting solute(s) at the solid-liquid interface. The low-melting phase
thus occupies the core of the cells and the high-melting phase forms cell boundaries [30]. However,
Prasanth and Eckert [31] suggested that apart from thermodynamic and kinetic considerations, also
the surface tension aspect should be considered in rapidly solidified SLM specimens due to the SLM
process specific characteristics. A melt pool is quite narrow, with at least one side surrounded by
solid material, one or two sides surrounded with powder particles, and the top of the pool in contact
with a protective gas. Such melting environments lead to a non-uniform heating and generation of
thermo-capillary convection caused by strong surface tension effects. The cellular microstructure is
thus a result of a surface tension driven instability termed the Benard Marangoni surface instability.
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When the cellular solidification mode is active, cubic materials are known to preferentially grow
the cells along the 〈1 0 0〉 crystal direction. Therefore, not only a morphological texture is created, but
also a crystallographic texture. Small equiaxed grains at melt pool boundaries are newly nucleated
grains among which a competitive growth occurred. However, at places where the 〈1 0 0〉 direction of
the substrate (previously solidified material) is along the heat flow direction, grains grow epitaxially.
As only a few orientations can grow further towards the melt pool center, we can observe large
elongated grains in melt pool interiors [29]. Based on the orientation triangle in Figure 3, one can see
that elongated grains have their 〈1 0 0〉 orientation parallel to the building direction, and in small
equiaxed or slightly prolonged grains 〈1 1 0〉 and 〈1 1 1〉 orientations prevail. Pole figures in Figure 4
testify to the 〈1 0 0〉 cube texture along the building direction.

Materials 2018, 11, x FOR PEER REVIEW  6 of 17 

 

heating and generation of thermo-capillary convection caused by strong surface tension effects. The 

cellular microstructure is thus a result of a surface tension driven instability termed the Benard 

Marangoni surface instability. 

When the cellular solidification mode is active, cubic materials are known to preferentially grow 

the cells along the〈1 0 0〉crystal direction. Therefore, not only a morphological texture is created, 

but also a crystallographic texture. Small equiaxed grains at melt pool boundaries are newly 

nucleated grains among which a competitive growth occurred. However, at places where the〈1 0 0

〉direction of the substrate (previously solidified material) is along the heat flow direction, grains 

grow epitaxially. As only a few orientations can grow further towards the melt pool center, we can 

observe large elongated grains in melt pool interiors [29]. Based on the orientation triangle in Figure 

3, one can see that elongated grains have their 〈1 0 0〉orientation parallel to the building direction, 

and in small equiaxed or slightly prolonged grains〈1 1 0〉 and 〈1 1 1〉orientations prevail. Pole 

figures in Figure 4 testify to the〈1 0 0〉cube texture along the building direction. 

 

Figure 4. Pole figures constructed for fcc α-Al phase. The orientation of the specimen coordinate 

system and the relative intensity of the diffraction peaks are shown. 

When lowering the length scale further, very fine cellular-dendritic substructure can be observed 

within the grains (Figure 5). The solidification mode is mainly cellular, but occasionally, some side 

branches can be seen. It is a result of rapid cooling. Due to a very short persistence of a laser beam 

focused on a specific spot of a powder layer, the powder material is melted instantaneously, with 

high temperatures reached, and solidified the very next moment. Temperature gradients between the 

melt, and its surrounding (up to 105 K/m) and the cooling rates (106–108 K/s) are very high [32]. The 

formation of dendrites with multiple arms is impossible at such rates. Therefore, very fine cells are 

formed. They elongate in the direction of the highest temperature gradient (the elongation in one 

direction is clear from the longitudinal section in Figure 5b). Their size reaches 1.0 ± 0.1 µm in 

diameter and 3.7 ± 0.8 µm in length. In Figure 6b, it is visible that the cells orientate towards the center 

of the melt pools. The cells are formed by α-Al solid solution and are surrounded by the network of 

eutectic Si. The eutectics fraction was assessed by image analysis and represents 29 ± 5 vol.%. As long 

as the cells have the same crystallographic orientation, they form one grain. 
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When lowering the length scale further, very fine cellular-dendritic substructure can be observed
within the grains (Figure 5). The solidification mode is mainly cellular, but occasionally, some side
branches can be seen. It is a result of rapid cooling. Due to a very short persistence of a laser beam
focused on a specific spot of a powder layer, the powder material is melted instantaneously, with
high temperatures reached, and solidified the very next moment. Temperature gradients between
the melt, and its surrounding (up to 105 K/m) and the cooling rates (106–108 K/s) are very high [32].
The formation of dendrites with multiple arms is impossible at such rates. Therefore, very fine cells
are formed. They elongate in the direction of the highest temperature gradient (the elongation in
one direction is clear from the longitudinal section in Figure 5b). Their size reaches 1.0 ± 0.1 µm in
diameter and 3.7 ± 0.8 µm in length. In Figure 6b, it is visible that the cells orientate towards the center
of the melt pools. The cells are formed by α-Al solid solution and are surrounded by the network of
eutectic Si. The eutectics fraction was assessed by image analysis and represents 29 ± 5 vol.%. As long
as the cells have the same crystallographic orientation, they form one grain.Materials 2018, 11, x FOR PEER REVIEW  7 of 17 
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Figure 6. Melt pool boundaries in (a) transversal and (b) longitudinal section (arrows show the
directionality of cells towards the melt pool center).

SEM images in Figure 6 show the boundaries of ‘melt pools’, about 10–15 µm thick. Here,
the cellular substructure is coarser, what can be explained by the Gauss distribution of laser energy.
The undercooling changes over the melt track; it reaches the maximum at the centerline, then gradually
decreases and goes to the minimum at the boundary of the melt track [33]. From this point of view,
the cellular size attains the minimum at the center of the melt track, while it reaches the maximum
value on its boundary.

The greatest details are provided by TEM images in Figure 7. It can already be distinguished that
the cell boundaries are formed by a network of silicon particles. These particles are cubic with an edge
length of 30–70 nm. A significantly higher density of Si particles can be observed within the interior of
melt pools (Figure 7b). Such a difference can be explained by a different thermal history. With higher
undercooling inside melt pools, more numerous, and finer particles are formed [34].
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3.1.2. Microstructure of the Conventionally Prepared HPDC AlSi9Cu3Fe Alloy

The comparison of optical micrographs in Figure 8 clearly displays the difference between
the additively manufactured and conventionally cast alloy. The as-cast microstructure consists of
α-Al dendrites, α-Al+Si eutectics and intermetallic phases (many phases can be possibly formed;
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binary (e.g., θ-Al2Cu, Mg2Si), ternary (e.g., β-Al5FeSi, Al9Fe2Si, Al2CuMg, Al15Mn3Si2), or quaternary
(e.g., α-Al15(MnFe)3Si2, Al5Mg8Si6Cu2) [35–37]). The eutectics is of a lamellar type with platelets of Si.
The volume fraction of the eutectics was determined to be 51 ± 5%.

At first sight, the as-cast microstructure is much coarser than that in the AM material.
The equivalent diameter of 18.4 ± 4.5 µm for dendritic branches overpasses the size of cells
(1.0 ± 0.1 µm in the cross-section) by a factor of 18. That can be explained by the difference in cooling
rate during both manufacturing processes. While cooling rates of HPDC ranges 101–102 K/s [38],
they can reach up to 108 K/s during SLM [32]. Additionally, the size of Si plates is significantly
larger (average length of 22 ± 6 µm and thickness of 0.1–2.0 µm) than nano-sized cubes of Si
forming the cellular network (Figure 7). Generally, such plate-like morphology of Si is not good
for mechanical properties, because Si platelets are hard and brittle, and so reduce ductility and tensile
strength. Therefore, there are various approaches used to affect the morphology of Si in an appropriate
manner [39].
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3.2. Chemical and Phase Composition

3.2.1. The Additively Manufactured AlSi9Cu3Fe Alloy

Due to the very fine microstructure of the AM alloy, the EDS analysis was carried out in the STEM
regime. It revealed that the oversaturated solid solution of α-Al contains 2.2 ± 0.3 wt.% of Si and
4.6 ± 2.7 wt.% of Cu. At high solidification velocities (here up to 108 K/s), the deviation of liquidus
and solidus lines from equilibrium values occurs, leading to a solute trapping effect. A transition
from diffusion-controlled to diffusion-less solidification is predicted as the interface speed exceeds the
maximum speed with which solute atoms can diffuse across the interface and are thus pinned down in
the product phase [40].

In the area of the Si network, the EDS analysis was already distorted by the surroundings.
Nevertheless, it showed almost pure Si, which was confirmed by diffraction (Figure 9). Diffraction
rings perfectly matched crystalline planes of Si with the diamond crystalline structure. Another type
of particle (Figure 10a) was detected in the area of the intercellular network as well. It was shown
to be composed only of Al and ~30 at.% of Cu (Table 3, 53.7 weight % corresponds to ~30 atomic %).
It thus corresponds to the CuAl2 phase. X-ray diffraction determined 2 vol.% of this phase in the
bulk material.

Iron was detected in the areas of fine Si particles in the interior of melt pools (Figure 10b). As no
specific particles were distinguished in the cloud of Si particles, it is not clear what type of phase Fe
forms. Along with 4.8 ± 0.8 wt.% of Fe, a small amount of oxygen was also detected (2.8 ± 0.2 wt.%).
Data from point EDS analyses, complementing Figure 10, are given in Table 3.
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Figure 10. TEM bright field images showing (a) a CuAl2 particle and (b) area of Fe detection in the
intercellular network (numbered points represent locations of point EDS analyses).

Table 3. Point EDS analyses (wt.%) (location of points in Figure 9).

Spectrum Al Si Cu Fe O

1 solid solution 92.5 2.2 5.3
2 CuAl2 phase 46.3 53.7
3 area of Fe detection 18.6 71.1 3.1 4.3 2.8

3.2.2. The Conventionally Manufactured AlSi9Cu3Fe Alloy

The distribution of constituting elements within the AlSi9Cu3Fe alloy prepared by HPDC is
illustrated by EDS map in Figure 11. There are two main structural constituents—primary solid
solution, and eutectics. The solid solution contains 1.9 ± 0.2 wt.% of Si and 0.9 ± 0.2 wt.% of Cu. Such
super-saturation can be referred to the elevated cooling rate and pressure during the HPDC process.
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In eutectics, Si lamellae can be observed. Except these two main structural constituents, there are also
two types of intermetallic phases. We were not able to determine their accurate composition due to the
resolution limits of the EDS analysis. However, as EDS maps suggest, small pentagonal phases are
formed mainly by Fe, Mn, and Cr, while larger irregular phases are predominantly formed by Al and
Cu, but contain also small amounts of Mg, Ni, Sn, and Fe. Therefore, we can suggest that it concerns
Al15(MnFe)3Si2 and Al2Cu phases, respectively. Their morphology and chemical compositions are
shown in detail in Figure 12 and Table 4. In case of the Al2Cu phase, it is probably a ternary eutectic
form (Al-Al2Cu-Si) that often precipitates on pre-existing Si-particles or Fe-phases, what explains the
detection of other elements [36].
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Table 4. Chemical composition (at.%) of different types of phases in the HPDC AlSi9Cu3Fe alloy
(Figure 12).

Al2Cu Al15(MnFe)3Si2

Al 69.5 ± 3.5 71.5 ± 2.7
Si 7.4 ± 3.0 12.2 ± 0.7
Cu 17.6 ± 2.8 1.1 ± 2.3
Fe 0.3 ± 0.1 9.2 ± 1.0
Mn 5.3 ± 0.7
Ni 0.6 ± 0.0
Zn 0.7 ± 0.1
Sn 0.1 ± 0.0

3.3. Mechanical Properties

Figure 13 brings a comparison of stress-strain curves obtained for the SLM and HPDC AlSi9Cu3Fe
alloy under tensile and compressive loading. Values of selected mechanical properties are then
summarized in Table 5. The curves show significantly higher strength, but also plasticity of the
SLM alloy, which is a unique asset. While it has been a longstanding challenge to overcome the
strength-ductility trade-off that exists ubiquitously in pure metals and alloys, SLM has turned out to be
capable of that [26]. Several papers has reported that the contradictory strength-plasticity relationship
was overcome in some materials (e.g., stainless steel [26], AlSi10Mg alloy [41] or Ti6Al4V [42]).

Very fine cellular substructure (Figure 5) and the existence of the strongly oversaturated
solid solution, both resulting from high cooling rates during the SLM process, yielded in stronger
strengthening effect. As there was not such a significant difference in the content of solute atoms in the
α-Al solid solution, it can be expected that the Hall-Petch strengthening is dominant compared to the
contribution of solid solution strengthening. The Hall-Petch contribution can be determined according
to the following equation:

∆σHP = kd−1/2, (1)

where k is the Hall-Petch coefficient and d is the grain size. The k value is not known for the investigated
material, but for a simplified estimation, values reported in other research works can be used. In [43],
coefficients for rapidly solidified aluminium alloys strengthened with particles were reported to
range between 150 and 170 MPa µm1/2. When the average grain sizes determined for the additively
manufactured and conventionally HPDC cast AlSi9Cu3Fe alloy (3.7 µm and 18.4 µm, respectively)
are used in the Equation (1), the difference between the Hall-Petch contribution of both compared
materials ranges 43–48 MPa. The real difference between TYS values reported in Table 5 is 46 MPa,
which perfectly falls into this range. Therefore, we can deduce that the refinement brought by SLM
plays the dominant role in increasing the strength of the AlSi9Cu3Fe alloy.

Moreover, the morphology and size of eutectic silicon are known to play a very important role,
especially on material plasticity [33]. Therefore, small cubic particles of Si (Figure 7) are much more
favorable than lamellar eutectic Si in the HPDC alloy (Figure 12). In conventionally cast material,
acicular silicon acts as crack initiation sites and consequently results in low ductility. For that reason,
different ways of the refinement of the eutectic microstructure of Al-Si alloys have been extensively
investigated [44–47]. The refinement of the Si phase can be achieved by controlling the nucleation
and growth of the eutectic grains. Usually, two different approaches are applied: elemental additions
and rapid solidification. However, both have their drawbacks. Refining elements often evaporate,
oxidize, and the modification can be thus hard to control. On the other hand, for most castings, rapid
solidification is impossible to occur uniformly in the entire volume, and thus, such an approach is
limited to very small and thin parts only [2]. Nevertheless, SLM circumvents these drawbacks. Due
to the gradual melting and solidification, laser heats only a very small volume of a material during
a short interaction time, so that high cooling rates (106–108 K/s [32]) are maintained throughout the
entire volume of a fabricated part.
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Figure 13. Representative stress-strain curves showing the comparison between the AlSi9Cu3Fe alloy
prepared by SLM and conventional HPDC in mechanical properties: (a) Tension and (b) compression.

Table 5. Measured mechanical properties of the SLM and HPDC AlSi9Cu3Fe alloy (TYS, tensile yield
strength, UTS, ultimate tensile strength, A, elongation, CYS, compressive yield strength, UCS, ultimate
compressive strength, and HV1, Vicker’s hardness with 1 kg load).

Production
Technology

Tension Compression Hardness

TYS (MPa) UTS (MPa) A (%) CYS (MPa) UCS (MPa) HV1

SLM 219 ± 20 374 ± 11 1.9 ± 0.2 375 ± 30 752 ± 41 135.2 ± 4.8
HPDC 173 ± 14 257 ± 17 1.2 ± 0.5 342 ± 14 482 ± 58 108.1 ± 3.1

In Al-Si alloys containing Fe, the formation of β-Al5FeSi is also critical in terms of plasticity. This
needle-like hard phase brings high stress concentrations and increases crack initiation. Its detrimental
effect can be overcome by two approaches; rapid cooling or addition of a suitable neutralizing
element [36]. In HPDC, manganese was added to convert the monoclinic β-phase to cubic α-phase
Al15(MnFe)3Si2. In the case of SLM, there was no need of additional elements as high cooling rates
prevented the formation of intermetallic phases by trapping them in the solid solution.

In tension, the increase in elongation is not so pronounced as the plasticity is limited due to the
presence of defects. The total porosity of the samples was determined to represent 0.5 vol.%. Typical
defects can be seen in Figure 14a in the fracture surface of an SLM sample subjected to the tensile
test. It concerns two types of defects, both showing spherical shape. First, larger voids are so-called
key-hole defects which are formed at the bottom of deep melt pools (as it can be seen in Figure 2b) due
to the melt instability and evaporation of the metal by high-power laser beam. As the vapor cavity
collapses, a void is formed. Secondly, smaller voids result from gas entrapment (probably oxygen) and
its inability to escape from the melt during rapid solidification [29]. The fracture topography shows
a ductile mode of fracture with extremely fine morphology (Figure 14b), which is linked to the Si
enriched dendrite cell network. It is assumed that the samples fail along the cell network, where the
fracture initiates due to the higher hardness caused by Si enrichment and reduced ductility compared
to the Al-enriched cells [48].
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4. Conclusions

In this study, the AlSi9Cu3Fe alloy, additively manufactured by SLM, was comprehensively
characterized and compared with the same alloy, but prepared conventionally by HPDC. Compared
to as-cast microstructure consisting of α-Al dendrites and lamellar Al-Si eutectics, SLM yields in
hierarchically heterogeneous microstructure. Grains are arranged in melt pools representing material
melted and solidified by single laser tracks in the direction of the highest temperature gradient. They
exhibit very fine cellular substructure in which the cells of α-Al solid solution oversaturated in Si
and Cu are separated by eutectic network formed by cubic particles of pure Si, here 30–70 nm in size.
Altogether, the size of the cells lower than 1 µm, nanoscale cubic Si particles and oversaturation of the
solid solution contribute to a significantly higher strength of the alloy. Microstructural features also
favor the material plasticity. By elimination of internal defect, the plasticity could even be improved.
Our study has thus shown that, compared to HPDC, SLM can desirably improve the performance of
the AlSi9Cu3Fe alloy and extend its potential applications, which is also due to the possibility of SLM
to produce complex lightweight structures.
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