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Abstract: In this study, electrospinning technology, physical activation, and carbonization processing
were applied to produce lignosulfonate-based activated carbon fibers. The porous structure of the
produced lignosulfonate-based activated carbon fibers primarily contained mesopores and a relatively
small amount of micropores. Moreover, insufficient carbonization caused fiber damage during CO2

activation. The weight loss rate and specific surface area increased with increase in carbonization time,
and products with carbonization temperatures of 700 ◦C were of higher quality than those with other
temperatures. Moreover, the two-step carbonization process provided fibers with improved quality
because of a low weight loss rate, improved processing, and high surface area. Lignosulfonate-based
activated carbon fibers can be used as a highly efficient adsorption and filtration material, and further
development of its applications would be valuable.
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1. Introduction

Activated carbon is a carbon material that comprises numerous mesoporous and microporous
structures. Because of excellent adsorption, absorption, hydrophilicity, and specific surface area,
activated carbon is generally used as an adsorbent in food and environment applications. The porous
structure of activated carbon can physically or chemically interact with the adsorbed subjects to
eliminate colored, odorous, or harmful substances. Because of its effective function of adsorbing and
eliminating impurities and pollutants, activated carbon is being widely used in food, medical, solvent
recovery, drinking water treatment, waste gas, wastewater treatment, and fuel cell industries [1].

Raw materials such as coconut shells, rice husks, bamboo, coal, asphalt, phenolic, polyacrylonitrile
(PAN), cellulose, and polymer resins are generally used as active carbon precursors, among which PAN
is the most widely used. The properties of the carbons produced varies depending on the precursor
material [2]. Activated carbon processing, which varies according to the raw material, typically
includes three stages: preoxidation, carbonization, and activation. The primary objective of activation
treatment—which can generally be categorized as physical activation and chemical activation—is to
increase the porosity and surface area of carbon materials in order to improve the adsorption capacity.
In physical activation, CO2 and water steam are used as the activation agent [3], while H3PO4, ZnCl2,
H2SO4, KOH, and K2CO3 are some common chemical activation agents.

According to Rodríguez-Reinoso [4], during pyrolysis, heteroatoms, such as O, H, and N, form
gaseous products and are eliminated as volatile gaseous products prior to activation. Residual carbon
elements randomly form groups and stacks between flat aromatic sheets, and gaps develop between
sheet laminates because of irregularities. These laminates may be filled with or partially blocked by
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tars and other decomposition products that become disorganized carbons. These disorganized carbons
first react with gases in the activation process and empty the pores, thus improving the surface area as
well as the adsorbent capacity.

Depending on shape and use, activated carbon can be categorized into three types: powder
activated carbon (PAC), granular activated carbon (GAC), and fibrous activated carbon or activated
carbon fiber (ACF) [1]. PAC is obtained by carbonizing and activating materials and grounding and
sieving them to form fine powders of diameter less than 0.043 mm. Because of its high specific surface
area and strong adsorption capacity, PAC can be used as adsorbent material in numerous applications.
However, PAC may cause dust problems given its fine particle size. GAC can be of many shapes,
for example, cylindrical, spherical, and crushed random shapes. Compared with PAC, GAC has
a smaller surface area and inferior adsorption capacity. However, because of the relatively large
particle size of GAC, device clogging is less likely. GAC can be easily regenerated and thus is the most
widely used activated carbon.

ACF is typically prepared by activating carbon fibers produced using common precursors, such as
PAN, rayon, and pitch. ACF has favorable advantages, such as large surface area, uniform pore size,
strong adsorption ability, ease of regeneration, and satisfactory mechanical properties. However,
ACF is relatively expensive, and the amount of adsorption is relatively low [1]. Given the increasing
severity of environmental pollution, highly efficient activated carbon materials are currently receiving
considerable research attention. In terms of the efficiency of filtration materials, ACF with an ultrafine
porous structure may be useful because of its high surface area–induced strong absorption ability and
the complex network structure. Compared with granular and PAC materials, ACF is favorable for
a variety of applications, such as making electrode for electrochemical devices [5,6].

Lignin, an amorphous polymer, is one of the three primary chemical components of the
lignocellulosic biomass cell wall, which forms 15–40% of the dry mass of wood; it acts as a structural
component and as conducting tissues in vascular plants and occupies 20–30% of terrestrial biomass [7].
However, conventionally, in the pulp and paper industry, chemicals are applied to eliminate lignin
during pulping, and technical lignin are produced as byproducts; these are generally discarded or used
as a fuel source, whereas a very small quantity is used in commercial applications [8–10]. The available
technical lignin is not used efficiently, which means waste of resources.

The use of technical lignin as precursors to produce carbon fibers has been extensively
studied [11–19]. In particular, submicron-scale lignosulfonate-based carbon fibers were fabricated
through a series of electrospinning and carbonization processes [15,18,19]. After carbonization,
an activation process can be implemented to generate submicron- or nanoscale lignin-based activated
carbon fibers with small diameters and large surface areas, which could have potential in many
applications (e.g., filtration and electrochemical properties). However, fibrous lignin-based activated
carbon was relatively less studied in previous research since lignin-based activated carbon materials
were commonly studied as granular and powder [19–22], not many as a fine fibrous format. Hu and
Hsieh’s work [23] was one of the few studies about fine structure lignin-based activated carbon
fibers, using electrospun alkali lignin fibers treated with chemical activation. Therefore, the process of
fibrous lignin-based activated carbon fiber and its practical applications need to be further studied
to avoid the wastage of natural resources, and thus this development contributes to environmental
preservation efforts.

In light of technological advancement, the development and application of high-performance,
porous adsorption materials of small size and high specific surface area are crucial for future
development. Therefore, this preliminary study was conducted to investigate the feasibility of
producing submicron-scale lignosulfonate-based ACFs (LACFs). Lignosulfonate fibers were fabricated
through electrospinning technology for use as fibrous precursor, following which it was subjected to
carbonization and physical activation. The influence of processing conditions on various properties of
the products was studied.
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2. Materials and Methods

2.1. Materials

The precursor of the carbon fiber was prepared by dissolving soluble lignosulfonates (hardwood
lignosulfonic acid sodium salt (HLS), Borregaard, Sarpsborg, Norway; Mw = 8000 g/mol) in
reverse-osmosis water. To facilitate electrospinning, a small portion of poly(ethylene oxide)
(PEO, Acros, Livingston, NJ, USA; Mw = 600,000 g/mol) was dissolved in an HLS solution. The solution
was mixed and heated in an oil bath at 80 ◦C and vortexed until it was completely dissolved; it allowed
for cooling to room temperature before electrospinning. The lignosulfonate solution used was 20 wt.%
mixture, containing 97 wt.% lignosulfonates and 3% PEO, as described in the literature [15]. All of the
chemicals were used as received.

2.2. Methods

2.2.1. Electrospinning

Electrospinning was performed in the horizontal direction (Figure 1a). For electrospinning,
the formulated HLS solution was loaded in a syringe and then charged using a power supply (EL50P0,
Glassman High Voltage Inc., High Bridge, NJ, USA). The syringe needle and a collector were connected
to the positive terminal and ground of the power supply, respectively, and the applied voltage was
15 kV. The flow rate, syringe-to-collector distance, collector rotating rate, and needle gauge were
0.03 mL/min, 20 cm, 720 rpm, and 18 G, respectively. The electrospun HLS fibers were collected on
a substrate to form lignin fiber mats. The average thickness of fiber mats and diameter of the fibers were
43.70 ± 3.09 µm and approximately 1611 ± 351 nm, respectively (Figure 1b,c). The final LACF product
and its scanning electron microscopic (SEM) images were also shown in Figure 1d,e, respectively.
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Figure 1. (a) electrospinning apparatus; (b) fabricated lignosulfonate fibers; (c) fabricated lignosulfonate
fibers’ SEM; (d) activated carbon fibers; (e) activated carbon fibers’ SEM.

2.2.2. Production of Activated Carbon Fibers

In this study, LACFs were fabricated in two stages: preoxidation and carbonization. As described
in Yen and Chang [15], the electrospun lignosulfonate fiber mat was heated to 250 ◦C at the rate
1 ◦C/min under air environment, kept isothermal for 1 h, and cooled gradually to ambient temperature.
Afterwards, the pre-oxidized lignosulfonate fiber mat was carbonized using a tube furnace (Barnstead
Thermolyne F59300, Conroe, TX, USA) under N2 environment. Moreover, the carbonization was
performed in two stages. In the first stage, the pre-oxidized fiber was treated at 400 ◦C for 5 min at
a heating rate of 1 ◦C/min. In the second stage, the fiber was treated at a higher temperature for 1 h at
a heating rate of 12 ◦C/min, and the temperature used was 400, 500, 600, and 700 ◦C.
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To avoid the use of chemical solvents, physical activation was employed. According to
Hernández–Montoya et al. [24], compared with steam, the use of CO2 as the activation agent at
the same temperature produces fibers with small pore size, large pore volume, and low weight loss of
fibers. Therefore, CO2 was used as the activation agent. Furthermore, Baklanova et al. [20] indicated
that a carbonization temperature of 700 ◦C provides a narrow pore diameter, which increases with
increase in the carbonization temperature. In addition, Yun et al. [25] mentioned that the porous
structure broadens when the activation temperature exceeds 800 ◦C due to damage to the mesoporous
structure and that the produced materials at 800 ◦C have a high specific surface area [25]. In this study,
several carbonization temperatures were used, including 400, 500, 600, and 700 ◦C and activation
temperature was fixed at 800 ◦C. The specimen was activated in the same tube furnace using two
activation methods:

1. One-step activation: the temperature increased to 800 ◦C after carbonization without cooling,
and was maintained isothermally at 800 ◦C for 15 or 30 min in a CO2 environment, and then
cooled to the ambient temperature in an N2 environment (Figure 2a).

2. Two-step activation: a cooling procedure was conducted between carbonization and activation,
in which the temperature was increased to 800 ◦C in N2 environment, and then kept in
an isothermal CO2 environment (800 ◦C) for 15 or 30 min before finally cooled to ambient
temperature in an N2 environment (Figure 2b).
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Weight loss during activation was determined using the following formula:

Weight loss (%) = [(W0 − W1)/W0]× 100, (1)

where W0 = original weight of fiber mat (g) and W1 = activated carbon fiber weight (g).
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2.2.3. Properties of Produced Activated Carbon Fibers

A scanning electron microscope (SEM, JEOL JSM–5410, Tokyo, Japan) was used to optically
characterize the fiber surface structure and to measure the diameters of groups of 50 fibers. Different
groups were compared through analysis of variance (ANOVA, α = 0.05) to determine the effects of the
processing conditions. A Tukey test (confidence level, 95%) was performed to evaluate differences
among the test groups.

Specific surface area and pore-size distribution are two common indices used to evaluate
activated carbon materials; these properties were measured using gas adsorption–based surface
area and porosimetry analyzers (ASAP 2010, Micromeritics, Norcross, GA, USA and NOVA touchTM,
Quantachrome Instruments, Boynton Beach, FL, USA). Nitrogen was used in the degas treatment and
as analytical gas. Liquid nitrogen was used as condensate liquid. P0 is the saturated vapor pressure of
gas at liquid-nitrogen temperature (77 K). The adsorption type can be determined according to the
isothermal adsorption curve, and the adsorption model suitable for the adsorbent can be determined.
Previous studies have shown that the quenched solid density functional theory (QSDFT) can be applied
to analyze pore-size distribution in microporous and mesoporous materials [26,27]. The analysis of the
surface area and pore-size distribution reported herein is based on the QSDFT model.

3. Results and Discussion

Figure 3 indicates two main effects different procedures have on fiber morphology.
First, the produced LACF has a rough surface when the activation treatment is short (c), whereas
a smooth surface develops when the treatment duration is long (b). Second, the two-step process
yields a smoother surface than does the one-step process (a). Pyrolysis byproducts, such as tar, could
be observed on the LACF surface, and activation treatment eliminated these byproducts, leaving pores
on the fiber surfaces. Based on the SEM image, it can also be observed that fibers may fuse during the
processing, which results in larger fiber diameter. As for the specific area and pore structure of LACFs,
they are influenced by carbonization and activation treatment conditions, which are discussed in the
following sections.
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activation time of 30 min; (c) carbonization at 700 ◦C through two-step activation with activation time
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Weight loss is one of the crucial referencing factors in the preparation of ACF; it can be used
to determine the appropriate activation temperature. The experimental results (Table 1) indicate
that when the activation holding time increased from 15 min to 30 min, the weight loss evidently
increased. With increasing activation time, the fiber mats underwent damages and more parts were
burned into ashes. Moreover, the carbonization temperatures significantly influenced the weight loss,
and products made using the two-step activation generally resulted in lower weight loss than that
made with one-step activation, which are similar to the results of Yun et al. [25].

Table 1. Weight loss of produced LACFs.

Carbonization Temperature (◦C)
Weight Loss (wt.%)

One-Step Activation Two-Step Activation

15 min 30 min 15 min 30 min

400
27.70 a 38.62 a 27.40 a 50.01 a

(9.10) (3.72) (6.46) (2.00)

500
25.37 ab 44.89 b 16.35 b 41.96 b

(16.60) (4.62) (11.41) (3.54)

600
18.58 bc 32.34 c 3.67 c 31.43 c

(3.27) (4.38) (43.44) (8.25)

700
11.92 c 30.16 c 3.99 c 26.80 d

(16.16) (3.48) (57.70) (4.65)

Numbers in parentheses are the coefficients of variation (%). In the same column, the same letter means no
significant difference between groups.

For one-step activation, fibers were continuously treated at high temperatures for a long time;
therefore, the resultant products have higher weight loss and frequently undergo damages during
the process, whereas, for two-step activation, carbon fibers have formed during the first stage of
carbonization and then cooled down. The second temperature increase may not cause considerable
weight loss, and the structure of the product was relatively strong at maintaining a relatively intact
shape and was not easily damaged by pore-drilling [25]. However, when the second temperature
increased up to a temperature much higher than the first carbonization temperature, fiber weight loss
may take place again since the carbonization was incomplete in the first stage. Therefore, the lower
carbonization temperature in stage one would result in higher fiber weight loss. In addition,
during activation, when the content of noncarbon elements in the fiber was higher, the fiber was
more susceptible to damage because of oxidation.

Based on Alcañiz-Monge et al. [28], the diameters of fibers activated with CO2 would not
considerably change with the increasing weight loss rate. However, results of this present study
(Table 2) indicate that the diameters of groups treated through one-step activation were approximately
800 nm with no significant effect from the carbonization temperature, whereas those of groups
treated through two-step activation exhibited large fiber diameters with the increase in carbonization
temperatures. In one-step activation, the temperature directly increased up to 800 ◦C for carbonization
and was then treated with CO2-based activation. However, two-step activation requires a second
increase in temperature to up to 800 ◦C in a nitrogen atmosphere after carbonization. In this phase,
the carbon fibers have formed; however, when the second temperature increased up to a temperature
much higher than the first carbonization temperature, fiber shrinkage may take place again during the
second carbonization and activation. Therefore, the resultant diameters of fibers were relatively small
for the groups treated with a lower carbonization temperature. If treated with a higher carbonization
temperature, the second temperature increase may not considerably influence the fiber diameters.
Consequently, the results of two-step activation indicate that a higher carbonization temperature
(700 ◦C) corresponds with the less susceptibility of the fiber to damage during activation.
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Table 2. Diameter of produced LACFs.

Carbonization Temperature (◦C)
Fiber Diameter (nm)

One-Step Activation Two-Step Activation

15 min 30 min 15 min 30 min

400
792 a 765 a 622 a 464 a

(5.67) (18.09) (13.94) (22.56)

500
804 a 794 a 633 ab 593 b

(9.93) (13.61) (26.11) (22.63)

600
836 a 807 a 690 abc 664 bc

(8.16) (7.82) (10.96) (14.53)

700
841 a 814 a 760 bc 746 c

(23.91) (8.92) (20.17) (21.97)

Numbers in parentheses are the coefficients of variation (%). In the same column, the same letter means no
significant difference between groups.

The LACF fiber diameter distribution of each group can be found in Figures 4 and 5. Variations
of distributions among groups could be observed in the histogram and no apparent trend could be
concluded to associate processing conditions to the diameter distribution. That may be attributed to
the fusion of fibers during high-temperature processing [15,19], resulting in LACFs of large diameters
and various distributions.
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However, in terms of the average diameter of LACFs, carbonization temperature exerted
a significant effect on fiber diameter, and increase in carbonization temperature increased fiber
diameters for groups treated with the same heating programs. Moreover, no significant difference in
the diameter was observed among the groups treated through one-step activation, whereas a significant
difference in the diameter was observed among the groups treated through two-step carbonization
(Table 2). Diameters of fibers activated using CO2 did not differ significantly from those of
nonactivated fibers. Because CO2 has a high diffusion coefficient, fibers activated using CO2 produce
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deeper micropores without no change in fiber diameter. Hernández–Montoya et al. [24] mentioned
a similar result.Materials 2018, 11, x FOR PEER REVIEW  8 of 12 
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Figure 6 is the typical nitrogen physisorption isotherm plot for the LACFs developed in this study.
It is most similar to type IV(a) [29], although the knee part is not as bent as a typical IV(a) isotherm,
and the type IV adsorption isotherms of lignin-based ACF were also reported in literature [23].
This indicates that the material mainly consists of mesopores and a relatively small amount of
micropores. Based on the hysteresis loop shape, the lignin-based ACF can be categorized as the H2-b
type. According to the International Union of Pure and Applied Chemistry (IUPAC) definition [29],
the desorption branch falls abruptly when the relative pressure is approximately 0.30 because of pore
blocking, which generally occurs within ink bottle-like pores. In this study, the bottleneck width is
distributed over a wide range. Therefore, the pore structure of the activated carbon can be inferred to
be ink-bottle pores connected by bottlenecks of various widths. Nevertheless, previously, the activated
carbon fibers produced using rayon, pitch, and phenolic resins would have Langmuir-type adsorption
isotherms [30–32].

Previous studies have demonstrated that activated carbon treated through the two-step process by
using CO2 as the activation agent yields products with a high specific surface area, micropore volume,
mesopore volume, and micropore proportion [24,25,33]. The development of porosity and active sites
with a specific character is aided by physical activation because a partial oxidation occurs [24], as was
the case in the experiment in this study (Figure 7 and Table 3). The results indicated that the material
practically has mesopores in major and micropores in minor, according to overall observation. Figure 7
depicts the characteristic pore-size distribution in this study. Pore diameters in the LACFs ranged
approximately from 1.6 to 48 nm, indicating that, aside from mesopores, micropores also occupy
a slight part of the activated carbon, matching with the information observed based on adsorption
isotherms, and the micropore proportion would vary with processing conditions.
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Table 3. Specific surface area of produced LACFs.

Treatment
Carbonization

Temperature (◦C)
Activation
Time (min)

Surface
Area (m2/g)

Pore Volume Proportion Total Pore Volume
(mL/g)Micro (%) Meso (%)

Carbonization 700 112.15 12.37 87.63 0.023081

One-Step
Activation

400 15 64.10 9.50 90.50 0.028369
400 30 23.43 20.11 79.89 0.059510
700 15 147.40 13.18 86.82 0.047106
700 30 327.29 39.53 60.47 0.218590

Two-Step
Activation

400 15 98.43 35.04 64.96 0.136610
400 30 112.42 25.96 74.04 0.183690
700 15 369.94 35.17 64.83 0.448810
700 30 643.89 30.79 69.21 0.646930

In this study, the lignin fibers that were carbonized at 700 ◦C and activated at 800 ◦C for 30 min
had a surface area of approximately 644 m2/g and pore volume 0.647 mL/g, indicating the potential
to develop lignin-based activated carbon fibers for further applications. Although the values are not so
high as other related studies that treated ACF with chemical activations [23], the results are comparable
with another study that also used physical activation process [25], and higher than the results of PAC
treated with chemical activation reported in one research paper [34].

Furthermore, Figure 7 and Table 3 indicate that, in one-step activation, high carbonization
temperature or long activation time can provide high total pore volume and micropore proportion.
In addition, in two-step activation, when carbonization temperature or activation time increase,
the increased mesopores contribute to the pore volume and thus two-step activation generally resulted
in higher pore volume than one-step activation. However, the pore volume is not changed much with
a longer activation time, if the carbonization temperature is low.

Moreover, testing results (Table 3) indicate that, when carbonization temperatures were 400 ◦C,
the specific surface area of the fibers after activation was lower than that of carbonized fibers
without activation, implying that if carbonization is performed at a low temperature, drilling or
pore expansion cannot be performed, and the specific surface area cannot be significantly increased
even after activation.

4. Conclusions

Electrospinning technology was used to fabricate lignosulfonate fibers, which were carbonized
and activated to produce LACFs. The effect processing conditions have on the products was discussed.
The results showed that weight loss rate and specific surface area increased with increasing activation
temperature. The optimal carbonization temperature in this study is 700 ◦C; the temperature of
carbonization affects the activation of fibers, and incomplete carbonization can damage the fibers
through activation.

Furthermore, carbonization temperatures have a significant effect on the diameters of LACFs
when two-step activation was applied, and two-step activation treatment provides products with
a low weight loss rate and high specific surface area. In addition, the weight loss increased with
increasing activation time, and the two-step activation generally resulted in lower weight loss than
one-step activation did. The results of two-step activation indicate that fibers treated with a higher
carbonization temperature resulted in less susceptibility to damage during activation.

On the other hand, the LACFs produced in this study have a high specific surface area and
primarily contain mesopores and a relatively small amount of micropores. The two-step process
can produce LACFs with higher specific surface area and larger pore volume than does the one-step
process, and the material practically has mesopores in major and micropores in minor.

Moreover, in two-step activation, when carbonization temperature or activation time increases,
the increased mesopores contribute to the pore volume and the pore volume proportion, and the pore
structure of the activated carbon can be inferred to be ink-bottle pores connected by bottlenecks
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of various widths. Consequently, lignosulfonate-based activated carbon fibers can be used as
a highly efficient adsorption and filtration material, and further development of its applications
would be valuable.
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