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Abstract: Previous studies have revealed the influence of various lattice structures on the material
density and mechanical properties. However, the majority of the topologies that are considered as
study objects directly refer to metal/non-crystal lattice cell configurations. Therefore, this paper
proposes a configuration generation approach for generating a lattice structure, which can obtain a
lattice configuration that enjoys the advantages of both ultra-low weight and favorable mechanical
properties. Based on this approach, a new type of face-centered cubic lattice (all face-centered cubic,
AFCC) structure with comprehensively optimal properties in terms of mass and mechanical properties
is obtained. The experimental samples are formed with Ti6Al4V by the selective laser melting (SLM)
method. Quasi-static uniaxial compression performance experiments and finite element analysis
(FEA) are conducted on an AFCC structure and the control group body-centered cubic (BCC) structure.
The results demonstrates that our optimized AFCC lattice structure is superior to the BCC structure,
with elastic modulus and yield limit increases of 143% and 120%, respectively. For the same degree
of deformation, the energy absorbed increases approximately 2.4 times. The AFCC demonstrates
significant advantages in terms of its mechanical properties and anti-explosion impact resistance
while maintaining favorable ultra-low weight, which validates the hypothesis that the proposed
configuration generation approach can provide guidance for the design and further research on
ultra-light lattice structures in related fields.

Keywords: lattice structure; selective laser melting; FEA; ground structure method; topology
optimization

1. Introduction

In 2001, Ashby introduced the concept of an ultra-light lattice structure that is defined as a
statically/statically indeterminate porous-ordered microstructure that simulates the atomic lattice
configuration [1]. Lattice structures have attracted tremendous attention from researchers and
engineers for multifunctional design opportunities (i.e., low weight, high strength, high sound
absorption, crashworthiness, and thermal properties) as well as their significant potential for a wide
range of lightweight applications, e.g., in aerospace, automotive, and biomechanical engineering
areas [2–4]. Currently, the lightweight and mechanical properties of the lattice structure have become
a keystone of study. Ushijima et al. studied the mechanical properties of lattice structures through
theoretical modeling, finite element (FE) simulations, and experiments [5].

Since the lattice structure is formed by periodically arranged basic unit cells, the properties of
the unit cell thus have an important and even decisive influence on the structural performance [6].
Therefore, this concept has attracted researchers’ interest with studies focused on the lattice structures
of different unit cell topologies. Deshpande et al. studied the relative density, effective elastic
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properties, compressive properties, and shear properties of octahedron lattice structures through
theoretical modelling, FE simulations, and experiments [7]. Additionally, the influence of the
relative density on mechanical properties was analyzed. Neff and Zheng et al. investigated
the effect of the size and number of unit cells on the effective modulus and the impact of the
strut element parameters on the mechanical parameters in the diamond lattice, and constructed
a theoretical model of the stiffness matrix, tensile stress, yield stress, and shear stress [8,9]. Long
Bai et al. proposed the body-centered tetragonal (BCT) unit cell structure, giving full consideration
to the relative density, the mechanical properties under a compressive load, and other factors, and
successfully obtaining optimized cell parameters exhibiting both low weight and favorable mechanical
properties [10]. Maskery et al. deduced the equations of the BCC lattice structure in terms of the
relative density, modulus, and ultimate tensile strength based on the empirical formula of Gibson
and Ashby, and experimentally studied the effect of the number and size of the BCC unit cells on
the mechanical performance [11]. Wallach et al. performed research on the mechanical properties
of a triangle-composed three-dimensional (3D) triangle lattice structure and obtained an expression
for the stress–strain relationship and Poisson’s ratio of the unit cell structure. The influence of the
unit cell size on the elastic modulus, shear modulus, and Poisson’s ratio on the lattice structure was
investigated [12]. Kooistra et al. derived an expression for the relative density and ultimate stress in
a tetrahedral unit cell. The influence of the relative density on ultimate stress was also analyzed by
comparing the results of theoretical modeling and compression experiments [13]. Zheng et al. took the
3D Kagome lattice sandwich structure as their object of research to analyze the equivalent mechanical
properties of the Kagome unit cell and study the variation of the capacity to resist impact, because
the impact load strength, core geometry, and other factors change (as was found using MSC_Dytran
software (MSC_Dytran, Los Angeles, CA, USA)). A proposed optimal solution for resisting the impact
was introduced [14]. Mazur et al. analyzed the mechanical properties and deformation failure modes
of body-centered cubic (BCC), Face centred cubic unit cell with vertical struts (FCCZ), Face and
body centred cubic unit cell with vertical struts (FBCCZ), Face and body centred cubic unit cell with
vertical struts and no end webs (FBCCZO) and Face and body centred cubic unit cell with vertical and
horizontal struts (FBCCXYZ) lattice structures that shared the same unit cell size using experiments
and numerical analysis [15].

The previous studies mentioned above investigated the influencing factors of the characterization
model and mechanical properties in terms of the lattice structure based on a unit cell. Nevertheless,
these unit cell topologies of the lattice structure are generally obtained by simulating or referring to
metal lattice patterns or non-metallic crystal cells, such as octahedral, diamond, or BCC, rather than
by generating the lattice by theoretical modeling. Considering the lattice structure concept and the
existing features of its configuration, the lattice structure is constructed by certain special nodes in the
cell body (e.g., the vertex, face center, and body center) connected using struts, corresponding to a
truss-type structure. This truss-like discrete structure is also the research object of structural topology
optimization at the initial stage [16].

Therefore, we propose a generating method that uses discrete structure topology optimization
theory to obtain the optimized unit cell configuration of the lattice structure. First, the ground structure
design model of the lattice unit cell is established using the ground structure method; then, by taking
into account the lightweight and high-strength properties of the lattice structure such as the relative
density of the material and the mechanical properties under compressive load, a topology optimization
mathematical model of the unit cell is constructed. The firefly optimization strategy algorithm is
introduced to solve the model to obtain the optimal configuration and size of the unit cell. Last,
the method of selective laser melting (SLM) is adopted to manufacture the experimental samples
of the optimized lattice structure and the experimental samples of the typical BCC structure using
the material Ti6Al4V. The compression performance experiment, finite element analysis (FEA), and
comparative analysis are conducted to demonstrate the feasibility and correctness of the proposed
optimization design method and the obtained results.
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2. Model Establishment

2.1. Mathematical Model

2.1.1. Establishment of the Ground Structure

The ground structure is a set of nodes constructed by boundary nodes, load nodes, and structural
nodes, with any two arbitrary nodes connected by discrete strut elements [17]. The ground structure
method refers to a generating target topology structure approach that can select the minimum
cross-section area of each strut, or deletes unnecessary struts and nodes using an optimization
algorithm operated on an initial structure that contains all of the possible nodes and struts formed
by connecting each two nodes [18]. The ground structure method as a discrete structure topology
generation method is a commonly employed topology generation method. This method offers many
advantages when combined with modern intelligent bionic algorithms. For instance, this approach
can simultaneously simplify or enhance the strut structure and can consider the coupling relationship
between the cross-sectional variables and topological variables.

According to the definition of the ground structure, this work chooses the eight vertices—six
face-centered and one body-centered—to form a node set. In a porous foam structure, the elastic
modulus of the model will scale linearly with the relative density if a straight strut is used throughout
the entire model, thus limiting the deformation type to longitudinal stretching and compression only.
As a result, the majority of porous foam does not contain horizontal and vertical struts [19], which
can allow beam bending to play a role. Therefore, a ground structure that excludes the horizontal and
vertical struts, as shown in Figure 1, a strut element is formed between two adjacent nodes. According
to the spatial position, strut elements are divided into two groups: face struts and body heart struts.
The face struts function as a connection between the vertices and face centers. The heart struts connect
the vertices and the top of the body center. The number of strut elements that connect the 15 nodes
(excluding the vertical and horizontal struts) is 32.
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Figure 1. Ground structure schematic.

2.1.2. Solution for the Axial Force FN

Reference made the following assumptions for the lattice structure [5]:

• All of the struts in the unit cells are homogeneous with circular cross-sections.
• The material is isotropic, and the compressive and tensile stress–strain relationships are equivalent

for all of the strut elements.
• The strut element experiences only axial tension, compression, and bending; the effects of torsion

are negligible.

Based on the above assumptions, with reference to Euler–Bernoulli beam theory [20], the strut
elements can be considered Euler–Bernoulli beams.
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1 Establishment of Coordinate System

The x, y, and z coordinates in Figure 2 comprises the global coordinate system of the structure,
in which x̃i, ỹi, z̃i is the local coordinate system of the i-th element (i = 1, 2, . . . , 32), and x̃i is the
axis of the element. The direction of x̃i for the body center element is the vertex to the body center,
and the direction of x̃i for the face center element is vertex to the face center. Let the vector Pi (i = 1,
2, . . . , 32) be parallel to the z-axis and pass through the end of i-th element, then ỹi = m(Pi × x̃i) m > 0,
and z̃i = (x̃i × ỹi). As shown in Figure 2, the local coordinate system x̃, ỹ, z̃ of the OA strut element.
In the lattice structure, one vertex is shared by four unit cells, and one face center is only one unit cell.
The applied load F is four times greater than F1.
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2 Structural Stiffness Matrix

Based on the above assumptions, the relationship between the strain and the displacement, as well
as the generalized Hooke’s law, the element stiffness matrix in the global coordinate system is obtained:

Ke = TTK̃eT (1)

where K̃e is the element stiffness matrix in the local coordinate system, and T is the coordinate
transformation matrix from the global coordinate system to the local coordinate system.

K̃e =

[
k1 k2

k3 k4

]

where

k1 =


EA

l 0 0
0 12EI

l3
6EI
l2

0 6EI
l2

4EI
l
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 − EA
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where E is the elastic modulus of the raw material; A and l are the strut element cross-sectional area
and strut length, respectively; and I is the sectional moment of inertia.

T =


lx mx nx

− mx√
1−n2

x
− lx√

1−n2
x

0

− lxnx√
1−n2

x
− mxnx√

1−n2
x

√
1− n2

x


where lx, mx, and nx are the direction cosines of the angles between the x̃i (i = 1, 2, . . . , 32) axis of the
local coordinate system, and the x, y, and z-axis of the global coordinate system, respectively.

According to the deformation coordination condition and combining the element stiffness matrix,
the structural stiffness matrix K can be obtained in the global coordinate system.

3 Solution for the Axial Force FN

By the matrix displacement method, the relationship between the nodes load matrix and the
displacement matrix is obtained as:

P = K•∆ (2)

where ∆ is the displacement matrix of all of the nodes in the global coordinate system, and P is the
structural nodes load matrix, as determined by the applied load.

Extract the strut end displacement matrix ∆e from the nodal displacement matrix ∆ according

to ∆̃e =

[
T

T

]
∆e, which is the strut end displacement matrix ∆̃e in the local coordinate system.

Similarly, the equivalent node load matrix P̃e in the local coordinate system can be obtained from the
structural node load matrix P in the global coordinate system.

According to the principle of force balance, the internal force at the end of the element strut is:

F̃e = K̃e∆̃e − P̃e (3)

where F̃e is the element-end internal force matrix in the local coordinate system, and the first element
extracted from F̃e is the axial force FN.

3. Model Optimization

This study aims to obtain a new lattice structure that exhibits both low weight and superior
mechanical properties using topology optimization based on the proposed ground structure. Given a
material object, the mass depends on its volume. The volume of the lattice structure is the sum of the
volumes of the struts. The cross-sectional area and strut length are the parameters influencing the strut
volume. The length of each strut element is determined after the sizes of the unit cell structure are
known. Here, we treat the cross-sectional area of each strut as a design variable adjusted to obtain
the minimum volume. A mathematical model is constructed with regards to the constraints of the
applied forces.

3.1. Design Variables

We take the cross-sectional areas of 32 strut elements in the ground structure as the
design variables:

→
S = (S1, S2, . . . , Si, . . . , S32) (4)

where si is the cross-sectional area of the i-th strut element.
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3.2. Objective Function

The ground structure method can transfer the topology optimization problem to the cross-sectional
area optimization problem [18]. Thus, the goal of optimization in this article is to find cross-sectional
vectors for the case of the minimum volume satisfying the constraints. The objective function is
as follows:

f
(→

S
)
= min

(
32

∑
i=1

sili

)
(5)

where li is the strut length of the i-th strut element.

3.3. Constraints

With an applied load, the axial force of each strut element must be less than the product of the
allowed stress of the chosen material and the cross-sectional area of each strut element. Since the
volume of each strut element is non-negative, the constraints apply to the cross-sectional areas of the
strut element.

3.3.1. Force Constraints

To ensure sufficient strength for the structure, the actual stress of the strut element should be
lower than the ultimate stress with applied load. In strength calculations, the ultimate stress is divided
by a factor greater than one, and the result obtained is referred to as the allowable stress. The allowable
stress is the ceiling of the strut element working stress, which requires the work stress to not exceed
the allowable stress.

σ =
|FN |
AOA

≤ [σ] (6)

where σ is the working stress, AOA is the strut element cross-sectional area, and [σ] is the
allowable stress.

From Equation (6), we obtain:
|FN | ≤ AOA[σ] (7)

This is bound by the force as follows:

gi

(→
S
)
= |FN |i ≤ si[σ](i = 1, 2, . . . , 32) (8)

where |FN |i is the absolute value of the axial force of the i-th strut element.

3.3.2. Cross-Sectional Area Constraints

Since the volume is non-negative and the absolute value of the axial force in Equation (7) cannot
be less than zero, the area should not be less than zero. Therefore, the area constraints are given as:

si ≥ 0, (i = 1, 2, . . . , 32) (9)

3.4. Solution Process Based on the Firefly Algorithm

The firefly algorithm is a convenient, flexible, and highly universality random search algorithm
that can achieve the optimization through mutual attraction between the firefly individuals. The firefly
algorithm is a random optimization algorithm based on group search, which belongs to the group
intelligent optimization algorithm class [21]. The algorithm first initializes a set of solutions randomly,
and then continuously updates these solutions during the iterations until the optimal value of
the problem is found. Relative to other intelligent optimization algorithms, the firefly algorithm
enjoys the advantages of a simpler concept, clearer process, fewer parameters to be adjusted,
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easier implementation, high searching speed and precision; thus, it is a feasible and effective
optimization method.

3.4.1. Solution of the Optimization Model

Using the firefly algorithm combined with the models described above, the discrete variable strut
structure topology optimization process is shown in Figure 3. In this process, punishment factor ξ is
used to determine whether the axial force meets the constraint condition. If meeting the constraint
condition ξ = 1, otherwise ξ = 1000.Materials 2018, 11, x FOR PEER REVIEW  8 of 18 
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3.4.2. Establishment of the Optimization Mathematical Model

According to the constraints of Equations (8) and (9), combined with the objective function, an
evaluation function can be formed from the constraints and the objective function. The topologically
optimized mathematic model is given by:
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f ind
→
S = (s1, s2, . . . , si, . . . , s32)

min f (
→
S )

s.t.gi

(→
S
)
≤ si[σ](i = 1, 2, . . . , 32)
→
S ≥ 0

(10)

3.5. Optimization Results

For the ground structure that is subjected to the applied loads in Figure 2, the mathematical model
and flow chart of the strut structure topology optimization were established in the previous sections.
MATLAB software (MATLAB R2016a, Natick, MA, USA) is used to solve the model. The new unit
cell structure from the ground structure is based on the topology optimization method, as shown
in Figure 4, and is an all face-centered cubic (AFCC) structure, in which the AFCC structure node
consist of eight vertices Di (i = 1, 2, . . . , 8) and six face-centered Si (i = 1, 2, . . . , 6). Table 1 lists the
specific optimization results of the cross-sectional areas in one strut element; the cross-sectional area is
taken after the decimal point. B represents the body-centered point. A strut element is formed by two
adjacent nodes. For example, D7B represents an element composed of vertex D7 and body-centered
point B. Since the position update formula in the firefly algorithm contains random items of specific
coefficients, the difference in the cross-sectional area between the individual strut elements is caused.
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Figure 4. Generated optimal unit cell model based on the topology optimization method.

Table 1. Ground structure optimization results of the cross-sectional areas of each strut element.

Element A (mm2) Element A (mm2) Element A (mm2) Element A (mm2)

D3S5 0.5 D8S1 0.5 D7S3 0.5 D3B 0
D4S5 0.4 D5S1 0.6 D6S3 0.5 D4B 0
D1S5 0.4 D1S1 0.5 D2S3 0.5 D1B 0
D2S5 0.4 D4S1 0.4 D3S3 0.5 D2B 0
D7S4 0.5 D7S6 0 D5S2 0.4 D7B 0
D8S4 0.6 D8S6 0 D1S2 0.5 D8B 0
D4S4 0.5 D5S6 0 D2S2 0.4 D5B 0
D3S4 0.5 D6S6 0 D6S2 0.5 D6B 0

The obtained optimization results are subsequently processed. For the convenience of modeling,
the optimized radius results are rounded to one decimal and listed in Table 2.
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Table 2. Strut element radius represents the optimization result of the ground structure.

Element R (mm) Element R (mm) Element R (mm) Element R (mm)

D3S5 0.4 D8S1 0.4 D7S3 0.4 D3B 0
D4S5 0.4 D5S1 0.4 D6S3 0.4 D4B 0
D1S5 0.4 D1S1 0.4 D2S3 0.4 D1B 0
D2S5 0.4 D4S1 0.4 D3S3 0.4 D2B 0
D7S4 0.4 D7S6 0 D5S2 0.4 D7B 0
D8S4 0.4 D8S6 0 D1S2 0.4 D8B 0
D4S4 0.4 D5S6 0 D2S2 0.4 D5B 0
D3S4 0.4 D6S6 0 D6S2 0.4 D6B 0

The optimization results of the 32-strut element radii are presented in Table 2. The radius value
that is optimally calculated by the body-centered strut element is 0 mm, and the radius value of all
four side planes is 0.4 mm. To ensure the symmetrical distribution of the unit cell structure, the radii of
the strut elements on the ground (D5 D6 D7 D8) are set to 0.4 mm in the experiment.

4. FEA

FEA has high precision, low cost, and a short period, which is a common method for studying
metal lattice structures. This section uses ABAQUS for finite element simulation, simulates
quasi-static compression experiments of lattice structures, and predicts the mechanical properties of
lattice structures.

4.1. FEA Model

The BCC lattice structure has the characteristics of simple topology and isotropy, which render it
well-suited to the SLM-forming process, which is the most common lattice and has important practical
application value [5,22]. Therefore, this paper selects the isotropic BCC lattice structure as a reference
for the performance comparative analysis of the optimized isotropic AFCC structure. Relative density
is an important indicator to describe the ultra-light property in lattice material, and is one of the key
factors that influences the mechanical properties. To compare two types of lattice structures under the
same conditions, the controlling variable method is applied, requiring both structure configurations to
have the same relative density.

The 3D model of the AFCC and BCC lattice structure in this simulation is established in
Pro/Engineer. The model parameters are shown in Table 3, and the three-dimensional model is
shown in Figure 5.
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Table 3. Model parameters. AFCC: all face-centered cubic, BCC: body-centered cubic.

Model
Model Size

Length × Width × Height
(mm3)

Unit Cell Number
Length × Width × Height

Relative
Density

Cell Strut Radius
R (mm)

BCC 32 × 32 × 32 8 × 8 × 8 0.26 0.44
AFCC 32 × 32 × 32 8 × 8 × 8 0.26 0.4

4.2. FEA Results

In order to simulate the quasi-static compression experiments of lattice structures, the dynamic
explicit analysis in ABAQUS is used. The damage mode is simulated by Johnson–Cook damage model
efor quasi-static compression experiments. In consideration of no literature about the Johnson–Cook
model, parameters of Ti6Al4V were found by SLM. By referencing the research of Zhang et al. [23],
this article selects the Johnson–Cook constitutive model parameters and Johnson–Cook fracture model
parameters of hot rolled Ti6Al4V instead of SLM, which are assigned in the material property manager.
The difference in the forming process of the sample may result in performance differences, but it
does not affect the approximate prediction of the mechanical properties of the simulation results.
The quasi-static compression simulation of lattice structures by ABAQUS was conducted, which
predicts the mechanical properties of the structure before sample experiments, but not instead of
sample experiments.

From the FEA results, the load and displacement curves of the lattice structure (Figure 6), the stress
nephogram (Figure 7) and the failure diagram (Figure 8) can be obtained. It can be seen from the load
and displacement curves of the lattice structure that the deformation process of the lattice structure
can be divided into the elastic stage, the hardening stage, and the failure stage. The maximum loads
that the AFCC structure and the BCC structure can withstand are 111,200 N and 50,705 N, respectively.
It can be seen from the stress nephogram that the stress of both structures is concentrated at the node,
and the stress near the midpoint of the strut element is the smallest. It can be seen from the failure
diagram of the lattice structure that the BCC structure has fracture failure along the 45◦ direction, while
the AFCC structure has yield failure.
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5. Experimental Study

In this study, the experiment samples of the BCC reference group and the AFCC optimized
structure are manufactured using the Ti6Al4V material and the SLM forming process. Additionally,
the quasi-static uniaxial compression test is conducted using a universal material testing machine.
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5.1. Manufacturing of Sample and Experiment Conditions

The forming equipment is the SLM rapid prototyping machine (SLM500HL, SLM Solutions
Group AG, Lübeck, Germany), as shown in Figure 9a. The machine parameters are presented in
Table 4. The raw material is the Ti6Al4V titanium alloy powder, which is molded using the line
scanning method.Materials 2018, 11, x FOR PEER REVIEW  13 of 18 
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Table 4. Primary SLM500HL parameters.

Actual Power (W) Scanning Interval (mm) Layer Thickness
(µm) Density (%)

275 0.12 30 99.5

To characterize the mechanical properties of the experimental sample, the quasi-static uniaxial
compression test is performed using a universal material testing machine (CMT5205, Shenzhen Wance
Testing Machine Co., Ltd., Shenzhen, China) (Figure 9b). At room temperature, a single sample is
placed on a horizontal table of the test machine. The machine indenter compresses the sample at
the speed of 1 mm/min, and the load–displacement data are recorded. When plastic deformation or
destructive failure occurs, the load decreases rapidly in the load–displacement curve, at which point
the experiment terminates.

According to the data presented in Table 3, the lattice structure sample is constructed according to
the periodic arrangement using the SLM forming process. The manufactured BCC and AFCC samples
are shown in Figure 10.
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Figure 10. Selective laser melting (SLM) forming sample of AFCC and BCC structures with dimensions
of 32 mm × 32 mm × 32 mm.

5.2. Experimental Results

We performed the compression test for the two types of structures under the stated conditions.
Based on the test results, comparative analysis was conducted separately in terms of the mechanical
properties, failure modes, and energy absorption.
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5.3. Destructive Failure Model

The destructive failure graph shows that the AFCC optimized structure and the BCC reference
structure exhibit overall damage along the direction at 45◦, and that local deformation, double shear
slip, and localized failure all appear. These results are consistent with previous studies regarding
the cracking mechanism of the Ti6Al4V material based on the SLM formation. The phenomena of
the local damage [10,24], fracture at the nodes, and other points in the lattice structure observed in
the uniaxial compression test were attributed to the residual stress produced by high-temperature
gradients, powder particles that adhered to the surface of the strut, and other factors.

The BCC reference structure fractures along the global 45◦ direction are divided into two parts,
as shown in Figure 11 (a, C-C and D-D). The graph shows that the strut of the damaged unit cell
fractures and disengages from the node with a flattened cleft, which is classified as a brittle fracture.
The fracture plane is the plane where a set of nodes is observed with a neat fracture surface, indicating
that the node at a 45◦ inclined plane undergoes the maximum stress. Conversely, the AFCC optimized
structure does not experience global damage, and only plastic deformation failure occurs along the
45◦ direction in the strut element. As shown in Figure 11b, the orientation line slides along the
45◦ direction.
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In the material compression test, a typical stress–strain curve can be categorized into four
stages [25]:

(1) The process when the stress reaches its peak.
(2) The stress decreases with a shear slip band along the 45◦ direction.
(3) The stress increases to a relatively small peak, and the fracture occurs along the 45◦ direction.
(4) The occurrence of global structural damage.

Fracture damage to the structure is the most dangerous type of failure. To avoid structural fracture,
the discovery of the structural slip phenomenon plays a crucial role. Experimental results show that
the failure of the AFCC optimized structure occurs at the second stage at a time when global damage
has appeared in the reference BCC structure. In conclusion, for the same manufacturing and size
constraint conditions, the AFCC configuration obtained in this study shows better performance in
terms of preventing global damage.
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5.3.1. Mechanical Performance

Using a universal material testing machine, a quasi-static uniaxial compression test was conducted.
In the compression process, the relationship between the applied load F, the time t, and the sample
deformation δ = vt can be measured. The experimental load and displacement curves are shown
in Figure 12. The maximum load of the AFCC is 97,400 N, while the maximum load of the BCC is
43,900 N. Compared with BCC, the maximum load of the AFCC is about twice as large.
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The nominal stress σnom of the lattice structure is calculated by dividing the externally applied
load by the sample cross-sectional area W. The nominal strain εnom is obtained by dividing the
deformation δ by the initial height h of the lattice structural mode. Therefore, the experimental and
FEA stress–strain curves comparison of the AFCC optimized structure and BCC reference that are
shown in Figure 13 can be obtained.
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Figure 13. FEA and experimental stress–strain curves and fitting curves of AFCC and BCC
lattice structures.

For an accurate comparison of the elastic moduli of the two structures, linear fitting is applied to
the linear elastic stage of the stress–strain curve using MATLAB software. The obtained fitting curve is
shown by the dotted line. The fitting result shows that the elastic modulus values for BCC and AFCC
are approximately 787.1 MPa and 1917 MPa, respectively. The latter value is approximately 2.44 times
larger than the former value. In the compression experiment, the interaction of the beam-column
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reduces the elastic modulus, whereas the elastic modulus is increased in the stretching process.
Consequently, the linear elastic part in the stress–strain curve is not completely linear, but exhibits a
concave downward form [26]. There is an error between the elastic stage experiment and the FEA,
but the slope of the elastic stage obtained by the finite element simulation is similar to the slope of the
fitting curve.

The measured limit stress of AFCC is 95.2 MPa, which is approximately 2.2 times larger than
the measured limit stress of BCC, which is 42.87 MPa. For the ultimate stress analysis of AFCC and
BCC, the FEA results are 8.3 MPa and 8 MPa higher than the experimental results, respectively. This is
due to the machining error, the dimension error of the samples, the experimental conditions, and the
different forming process. So, the error between FEA and the experiment is acceptable.

5.3.2. Energy Absorption Performance

Relative to conventional materials, the metal 3D lattice material offers the advantages of low
weight, high strength, the ability to resist explosion and impact, efficiency for releasing and insulating
heat, the capacity to absorb electromagnetic waves and sounds, and other aspects [27]. Among these,
the ability to resist explosion and impact corresponds strongly to the structure energy density.

According to the test results, the energy analysis plots (Figure 14) of the AFCC and BCC structures
were obtained. The vertical axis represents the energy density of the lattice structure, which is
expressed as:

ρE =
Fδ

V
(11)

where F is the externally applied load (N) and V is the volume of the lattice sample (mm3).
The decreasing part of the curve implies that the structure has failed. The energy density is proportional
to the strain in the two lattice structures before failure, and the energy density of the AFCC structure is
considerably larger than that of the BCC under the same strain, indicating that the deformation of the
AFCC structure is much smaller than that of the BCC under the same impact. The curve of the ratio of
the two structures’ energy densities (η = ρE-AFCC/ρE-BCC) and the strain shows that the energy density
of the AFCC structure reaches a value that is approximately 2.4 times that of the BCC structure at the
elastic deformation stage in the compression process.
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6. Conclusions

Unlike studies in which molecule-simulating structures are directly employed to conduct a lattice
structure design, this study constructs a lattice unit cell ground structure that consists of a finite
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number of strut elements based on a discrete structure topology optimization method. A lattice
configuration unit cell optimization model is established with the cross-section areas of each strut
element in the ground structure. The cross-sections are taken as the design variables, the axial applied
force is taken as the constraint function, and the minimum volume is taken as the evaluation function.
Then, the firefly algorithm is employed as an optimization strategy to obtain the optimal size of each
strut element of the confirmed general unit cell ground structure. The strategy generates the optimal
new lattice structure (AFCC), which provides a theoretical reference for the design of other lattice
material configurations.

This work also uses a typical BCC lattice structure as a reference, with the manufacturing, tests,
and FEA performed for both the BCC reference sample and the optimized AFCC sample with the same
density parameters and under the same experimental and FEA conditions. Experimental and FEA
results show that the AFCC configuration outperforms the BCC configuration in terms of avoiding
global damage. The elastic modulus and yield limit are increased by 144% and 122%, respectively,
under the same lightweight condition, which emphasizes the prominent advantage in mechanical
properties; for the same deformation, the amount of energy absorbed by the AFCC structure is 2.4 times
larger than for the BCC structure, indicating a better ability to resist explosion and impact.

FEA provides effective evidence of the experimental results, while also reducing a great deal of
time and money for the study of the lattice structure. The proposed optimization model also applies to
other lattice structure materials. In practical engineering applications, with specific material properties
and manufacturing processes, the optimized lattice configuration and its size can be obtained by
setting the corresponding constraints. These parameters are crucial for determining the mechanical
properties of Ti6Al4V by SLM in FEA model. Next, we will further study the effect of the SLM forming
process on the failure performance of Ti6Al4V, and realize the perfect prediction of the simulation as
soon as possible.
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