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Abstract: The phase-field-crystal (PFC) method is used to investigate migration of grain boundary
dislocation and dynamic of strain-driven nucleation and growth of deformed grain in two dimensions.
The simulated results show that the deformed grain nucleates through forming a gap with higher
strain energy between the two sub-grain boundaries (SGB) which is split from grain boundary
(GB) under applied biaxial strain, and results in the formation of high-density ensembles of
cooperative dislocation movement (CDM) that is capable of plastic flow localization (deformed band),
which is related to the change of the crystal lattice orientation due to instability of the orientation.
The deformed grain stores the strain energy through collective climbing of the dislocation, as well
as changing the orientation of the original grain. The deformed grain growth (DGG) is such that
the higher strain energy region extends to the lower strain energy region, and its area increase is
proportional to the time square. The rule of the time square of the DGG can also be deduced by
establishing the dynamic equation of the dislocation of the strain-driven SGB. The copper metal is
taken as an example of the calculation, and the obtained result is a good agreement with that of
the experiment.
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1. Introduction

Grain boundary structures in nanometer- and sub-micro-sized polycrystalline materials during
plastic deformation processes have attracted tremendous attention many years motivated by their
wide potential used in technologies [1,2]. Many researches for grain boundary sliding (GBS) have been
achieved in conventional polycrystalline materials. Migration of grain boundary (GB) is a fundamental
mechanism in recrystallization and grain growth [1,3]. At present, the research of the motion of the
grain boundary dislocation (GBD) is an active study field in microstructure evolution, in particular,
in the collective motion of the GBD coupling with the applied stress or strain [2]. Recent research
has focused on the recognition that many GBs in crystalline materials can couple to applied shear
stresses and are moved by them in a manner similar to dislocation glide [3–10]. The coupling
can be responsible for the stress–induced grain growth in nanocrystalline materials and influences
the nucleation of new grain during recrystallization. There are two main modes of nanograin
growth [11–13], i.e., the shear-coupled migration of the GB, and nanograin rotation, and these two
modes are usually coupled [14]. The dominant mode of the operation of these two modes depends
on grain size [14]. Now researchers not only still pay more attention to motion of the GBs coupling
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with stress or strain, but also to the GB pre-melting (GBPM) [15–19] and the grain growth driven by
stress [20–23] at high temperature. With the rapid development of computer technology, the roles of
computer numerical simulation technology in materials are more and more prominent. Computer
numerical simulation technology, real experimental observation and theoretical model analysis are
the same important and are known as three great scientific research methods since the 21th century.
Now the technique of the numerical computational simulation has been extensively used to many
fields and can make up for the shortcoming [24] in real experimental observation. Molecular dynamic
(MD) [24–28] has been used to simulate the migration of the GB and the stress–driven grain growth.
Although much success is obtained by MD simulations, a weakness [29] of the MD approach is that
the applied strain rate in simulations is likely to deviate by several orders from the actual results.
Traditional phase field approach is also used to simulate the elastic deformation-driven grain growth
in copper polycrystals [30], while it is difficult to describe the details of the migration of the GB [31,32]
on nanoscale.

Elder [33,34] et al. proposed a phase field crystal (PFC) model based on density functional
theory in recent years, which can well simulate evolution of microscopic structure of nano- and
poly-crystalline materials on diffusive time scale and on atomic resolution scale, and the applied strain
rate in simulations is a good agreement with the actual results. Therefore, it has a great advantage
in simulating the evolution of the GB migration and grain growth on nanoscale. The PFC model is
uniquely suited to study grain growth under applied strain because it captures atomic motion over
diffusive timescales. Atomic resolution is required to resolve the lattice continuity across the GB and,
as we will show, the diffusive timescales are necessary to observe grain growth. In the past few years
the PFC has been successfully used to many fields of the research [35–48]. Although there have been
several studies [48–55] focused on cooperative dislocation movement (CDM) [46,51,52,55] of the GB
and grain growth by the PFC approach, so far, the mechanism of the strain-driven CDM of the SGB
split from the original GB [13] and also of the strain-driven nucleation and growth of the deformed
grain with localized strain energy are still unclear. The author has previously studied the CDM of the
strain-driven migration of the GB using the PFC method, the contents of which include new grain
generation through the splitting of the GB of the bicrystal [46], and two stage processes [52] of the
annihilation of the dislocations at high temperature, and pre-melting of the GB with proliferation [56]
and annihilation of the dislocation, and also the rotation [55] of the dislocation. However, there is
still a lack of research of microscope kinetic on the nucleation and growth of the deformed grain
with the localized plastic flow. In this paper, based on PFC simulation of the GB dislocation motion
and combined with continuous model, we explore the SGB migration and CDM under diviatoric
deformation, and analyze the phenomenon of the localized plastic flow. Furthermore, we study the
mechanism of the biaxial strain-driven nucleation of the deformed grain, and as well as the growth of
the deformed grain with higher localization strain energy, and deeply reveal the law of the growth of
the deformed grain by establishing the dynamic equation of the strain-driven dislocation movement.

2. Model and Method

In PFC model, a periodic order parameter [33] is defined by the local-time-averaged atomic
density ρ. The dimensionless free energy functional [33,44] F of the system is given as

F =
∫

f (ρ(x(1 + ε), y(1− ε)))dV =
∫

[ f (ρ(x, y)) + Eext(ε, x, y)]dV (1)

where f (ρ) is a local free energy density functional [34], which can be written as

f (ρ(x, y)) =
[

1
2

rρ2 +
1
4

ρ4 +
1
2

ρ(1 +∇2)
2
ρ

]
(2)
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where r is a parameter relate to temperature,∇2 is the Laplace operator. Eext is the energy of the system
changing by external force [2,41,44], be written as

Eext(ε, x, y) = Vext · ρ (3)

where ε is the strain. An analytical expression of the atomic density can be obtained from Equation (1)
under the minimum of free energy. Then, the atomic density for the two-dimensional triangular
structure in the one-mode approximation [33,34] can be written as

ρ = AT [cos(qx) cos(qy/
√

3)− cos(2qy/
√

3)/2] + ρ0 (4)

where ρ0 is the average value of ρ, the wave vector q =
√

3/2. The evolution of the atomic density of
the conserved field variable is described by the nonlinear Cahn-Hilliard dimensionless Equation [34,56]
as below

∂ρ

∂t
= ∇2(

δF
δρ

) = ∇2[rρ + ρ3 + (1 +∇2)
2
ρ + Vext] (5)

where Vext given in Reference [56]. Equation (5) can be solved by using the semi-implicit Fourier
spectral method [56–58].

For simplicity, a two-dimension (111) plane in an FCC lattice is chosen and used as a simulation
sample system. In order to more carefully study the strain-driven migration of GB which cause the
extension of deformation zone and the localized strain energy, in this paper, a bi-crystal system with
the small-angle symmetric tilt grain boundary (STGB) is designed in the two-dimension equivalent
(111) plane, which is gotten by using the atomic density distribution formula (4). In the present work,
we follow the Reference [29] to choose a square domain with Lx × Ly = 512∆x × 512∆y as a sample
for simulating, and to apply the periodic boundary condition. The expression of the tilt angle θ

for the STGB and the grain orientational direction are given in detail in reference [46]. Here we set
θ = ±4◦ to get a sample with bicrystalline structure. The parameters for the preparation of samples
are set as: r = −0.10, ρ0 = −0.180. Before the external strain applying to the sample, it is needed for
relaxation of the sample and the relaxing time will last for 1 × 105-time steps, in order that the system
can reach equilibrium state. After the relaxation, we can get the higher temperature sample with
a bi-crystal structure.

We perform the deformation for sample shown in Figure 1 and employ the periodic boundary
condition [48,56] on it.
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Figure 1. Exerting biaxial strain on the sample for deviatoric deformation: A tension is along x direction
with εx, and along y direction is a compression with εy.

The applying strain method in the PFC model under constant volume condition [48] can be
easily and directly used by periodic boundary condition without designing a complex modulation
compensation function [29] for boundary condition. Therefore, for conveniences, we use the constant
volume condition in order to exert the biaxial strain effect on the sample for the deviatoric deformation
in this work. Since the constant strain rate is applied to all atoms, the deformation state becomes
the affine deformation state, and the periodic boundary conditions can be easily used as a boundary
condition. According to Reference [48] for the tensile deformation, we perform the deformation
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simulation for sample shown in Figure 1 by using the constant volume condition [34] with the periodic
boundary conditions [48]. The strain has the form of ε = εx = εy =

.
εn∆t, where the strain rate is set

to be
.
ε = 6× 10−6/∆t, and ∆t is time step (ts) and n is the number of the time step. They are both in

the same time step ∆t = 0.5 in the semi-implicit Fourier spectral method in our PFC simulation for
density field evolution and strain rate loading (The Reference [34] reports that in real space operation,
∆t = 0.0075, the operation speed is very slow, and the efficiency of calculation is very low). Total
evolution times are 20,000-time steps. According to the constant area (volume) condition, we have

S = ∆x∆y = ∆x′∆y′ (6)

where ∆x and ∆y are the initial grid sizes, ∆x’ and ∆y’ are the grid sizes under deformation. At the
nth time steps of the simulation, the grid sizes in the x and y direction have the formula [48,52,56,59],
respectively, as below

∆x′ = ∆x(1 + ε) = ∆x(1 + n
.
ε∆t) (7)

∆y′ = ∆y/(1 + ε) ≈ ∆y(1− ε) = ∆y(1− n
.
ε∆t) (8)

In this case, a tension is along x direction, while along y direction is a compression. More detail
about the numerical computation of the deformation simulation can be seen in Reference [48,56,59].
The sample with the GB and the dislocation arrangement made by PFC is shown in Figure 2.

The elastic properties of the two-dimensional triangular state can be obtained by considering
the energy costs for deformation from the equilibrium state. The free-energy density associated with
deviatoric deformation can be calculated by considering modified forms of Equation (4), i.e., ρ(x(1 + ε),
y(1− ε)). In such calculation ε represents the dimensionless deformation. The results of the calculations
to determine the strain energy for the two-dimensional system given in Reference [34] can be written as

Fdev = Fmin + Fel = Fmin + [C11 − C12] · ε2 (9)

and the elastic constants are gotten as

C11/3 = C12 = C44 = α/4 (10)

These results are consistent with the symmetries of a two-dimensional triangular system, i.e.,
C11 = C12 + 2C44. Since the STGB of the bicrystals is flat and no curvature, the STGB migration driven
by deviatoric deformation is of the CDM. The strain energy can be written as fd = ∆Fdev = ∆Estr =
m(C11 − C12)·ε2 [30,60,61], m is a constant.
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Figure 2. (a) The dislocations structure in the Symmetric tilt grain boundary (STGB) in bicrystal 

system designed by PFC method. Inset: the dislocation configuration of the blue box area; (b) 

Schematic of the oblique dislocation arrangement (here the vertical dislocation arrangement is 

ignored, in order to highlight the slip motion of dislocations, which would be really helpful to understand 

the following results) in the STGB with four kinds of the dislocation I, II, III and IV; (c) The average 

spatial distribution of the order parameter of the atomic density inside the sample projects to x axis. 

In Figure 2a, the yellow circle areas indicate the place where there are dislocations in the GB, 

while the blue boxes indicate the magnified areas with the dislocation region and give the 

Figure 2. (a) The dislocations structure in the Symmetric tilt grain boundary (STGB) in bicrystal system
designed by PFC method. Inset: the dislocation configuration of the blue box area; (b) Schematic of
the oblique dislocation arrangement (here the vertical dislocation arrangement is ignored, in order to
highlight the slip motion of dislocations, which would be really helpful to understand the following
results) in the STGB with four kinds of the dislocation I, II, III and IV; (c) The average spatial distribution
of the order parameter of the atomic density inside the sample projects to x axis.
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In Figure 2a, the yellow circle areas indicate the place where there are dislocations in the GB, while
the blue boxes indicate the magnified areas with the dislocation region and give the configuration of
the dislocations. Since these vertically arranged dislocations in Figure 2a only reflect the nature of the
difference in misorientation of the GBs, here, the slip motion of the vertically arranged dislocations of
the grain boundaries is not obvious, but the slip motion is only expressed by the oblique rows of the
dislocations in Figure 2b. In order to highlight the dislocation slipping, here the vertical dislocations
are ignored. When paying attention to the annihilation of the GB dislocation, the vertically arranged
dislocations cannot be ignored, because it also participates in the annihilation. The Reference [52] gives
an analysis of this annihilation process.

3. Simulation Result and Discussion

3.1. Deformaed Grain Nucleation

Here we consider a two-dimension system of the sample. The crystalline symmetry of the sample
in two dimensions here is equivalent to the {111} family of planes in fcc lattice or the {0001} family of
planes in a hcp lattice. These close packed planes and the subsequent glide directions compose the
primary slip systems in many common types of ductile, metallic crystals [58]. Using the fcc lattice as
a reference, application of shearing in this geometry results in glide along a <110> direction within
a {111} slip plane, as shown in Figure 3. For simplicity, the two-dimensional (111) plane in a fcc lattice
of metal, for example, copper is chosen and used as a simulation system. Schematic illustrations of the
initial GBs and dislocation arrangement of the sample (here the vertical dislocation arrangement is
ignored) are given in Figure 2b. Each GB is composed of eight dislocations with two sets of Burgers
vector which are arranged in a straight line [59,61]. Therefore, there are two types of the GB dislocations
(i.e., lattice dislocation [61]) locating in the same GB. The dislocations in contrary GB are with opposite
Burgers vector. Hence there are four types of the GB dislocations in sample, which are denoted as I, II,
III and IV, respectively, as shown in Figure 2b. The average spatial distribution of the atomic density is
given in Figure 2c, which is a sum of the average density values over y-axis plotted as a function of x.
It can be seen that the order parameter amplitude at the GB is lower than that of the surrounding of
the GB. This indicates that the order degree of the GB is lower, owing to the dislocations [46,62,63].
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Figure 3. Three-dimensional (3D) atomic lattice of face-centered cubic (FCC) structure (a), the index of
direction of atomic lattice arrangement in (111) plane of FCC structure [62] in two dimensions (b).

Here we exert the deviatoric deformation on the sample, and observe the evolution of the CDM of
the GB, and also the nucleation and extension of the deformed grain. Figure 4a–f shows the separating
movement of the STGB dislocations and the new grain (i.e., the deformed grain) nucleation and growth
in the sample under the deformation (seeing the Figure 4c, the gap region with red slash is the region
between the SGBs, which is also the deformed grain with orientation 0◦). At the beginning, the system
is the bicrystal structure in Figure 4a. Under the biaxial strain, owing to activate the slip system,
the original STGBs are split into two SGBs to generate a gap (i.e., the new grain generates) in between
the two SGBs, then the deformed grain nucleates as shown in Figure 4a,b. (Although previous studies
reported similar results, they did not reveal these phenomena from the dynamics of deformed grains.
This is the biggest difference between the present work and the previous results [46,52]). Since the same
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type of the dislocations of the STGB moves collectively at the same speed and along the same direction,
they are in the same straight arrangement in whole process of the movement. The arrangement of
these dislocations is considered as the SGB [61,62], and denoted respectively as I, II, III and IV, which
constitute a four-grain system. The orientation angles of the four grains are respectively 4◦, 0◦, −4◦, 0◦,
shown in Figure 4c, where the grain with orientation 4◦and −4◦ is the original grains(OG) denoted as
1 and 3, while the grain gaps with orientation 0◦ are the new deformed grains (DG) denoted as 2 and 4.
According to the vector expression of the dislocation at the GB in Reference [61,62], the direction index
of Burgers vectors of dislocation in GB are shown in Figure 3b. The migration mechanism of the CDM
through gliding, decompounding and annihilating under the applied strain, can be used to reveal the
nature of the deformation of nanocrystalline (NC) material [64–70], creep [71], super-plasticity [11] at
high temperature.
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Figure 4. The snapshots of migration and annihilation of the dislocation of the SGB in sample under
the applied strain. Here the vertically arranged dislocations are ignored in the present paper in order
to highlight the slip motion of dislocations, which has some different from that in previous publication
such as Reference [46,52,56,62]. In these figures, the arrows indicate the directions of the slip motion
of the dislocations, and the gap indicates the region with red slashes between the SGBs where the
deformed grain is. The numbers 1, 2, 3, 4 represent respectively four grains, and 4◦, 0◦, −4◦ represent
the misorientation of the grains, respectively. White box area in the figure shows the dislocation
annihilation and the generation of the complete crystal. (Although previous studies reported similar
results, they did not reveal these phenomena from the dynamics of deformed grains. This is the biggest
difference between the present work and the previous results [46,52])

3.2. The Localized Strain Energy and Localized Plastic Flow

In order to more clearly understand the strain state of the newly generated deformed grain,
the spatial distribution of the strain energy is calculated using the energy Equation (1) of the PFC.
The snapshot of spatial distributions of the strain energy projecting to the x axis for the sample at
different amounts of the strain, which is a sum of the density values over y-axis plotted as a function of
x, are shown in Figure 5, in which the area surrounded by the red line corresponds to the increase of the
strain energy under the action of the strain. The red horizontal line in Figure 5 is the reference height
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of the energy before the biaxial strain exertion. The energy above the reference height, which is added
to the system, is the elastic strain energy in the early stage of deformation, while that is the plastic
strain energy in the later stage of the deformation. As shown in Figure 5a without the external applied
strain, the strain energy distribution for the original grain (OG) in the sample is concentrated on the
GB and its surrounding, and its energy is about 0.0170 greater than that 0.015 inside grain, which is
due to the strain energy of the dislocation stored. It can be seen that when the applied strain exerts on
the sample, the peak of the strain energy distribution at the GB rises up in Figure 5b. This indicates
that the localized strain energy is firstly concentrated on the GB. At this time, the width of the peak
of the energy distribution becomes widened in Figure 5b,c. This indicates that the dislocation of the
GB also moves along the direction perpendicular to the GB by gliding in Figure 4, and results in the
formation of the ensembles of the mobile lattice dislocation [64–66], which are the carriers of the plastic
flow [66,70–72]. The area swept by the ensembles of the mobile lattice dislocation (i.e., plastic flow) [71]
will get more strain energy by changing the orientation of the crystal lattice, as shown in Figure 5c,d.
Such a separated process of the SGB with the ensembles of the mobile lattice dislocation results in
plastic flow localization [65,73–76] (deformed band) in mechanically. This situation corresponds to
the nucleation and growth of the new softened deformation band (grain) [73]. The band or the gap
in between the two opposite SGBs separated can be considered as the new deformed grain with
orientation angle 0◦ shown in Figure 4 marked by grain 2 and 4.
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Figure 5. Snapshots of the spatial distribution of the strain energy inside the sample by the PFC
simulation is projected to x axis for different strain, which is a sum of the density values over y-axis
plotted as a function of x. The red line shows the profile of the spatial distribution of the strain energy.
The DG is the width of the deformed grain in these pictures, and the OG is the width of the original
grain in these pictures. Strain: (a) 0.000, (b) 0.0294, (c) 0.0516, (d) 0.0582, (e) 0.0664, (f) 0.0732.
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With the applied strain increasing, when the localization strain energy at the GB reaches the
maximum value of about 0.026 shown in Figure 5c, the height of the peak of the energy no longer
increases. At this time, the peak of the energy distribution of the curve for the GB begins to extend
to both sides to form a higher platform of the energy, as shown in Figure 5c–e. The width DG of the
platform in the energy distribution expresses the (band) width of the DG in Figure 5c–e, in which
the height of the peak of the energy distribution is proportional to the amount of the localized strain
energy in unit area in the DG. This indicates that the interior of the DG has accumulated more localized
strain energy, and the highest strain energy density in the original GB site of the grain keeps a constant,
which height is about 0.026 and is much higher than that about 0.015 inside the OG. There is an obvious
dividing boundary between the DG and the OG in the localized strain energy distribution. As the
area of the higher localization strain energy extends, finally, two higher energy platform regions meet
and connect as shown in Figure 5e. At this time, the height of the overall energy platform of the
sample increases from 0.015 up to 0.026, and the energy density is uniformly distributed in the whole
sample to become the non-localized uniform strain energy. This process is that the area with the higher
localized strain energy extends into the area with the lower strain energy, and the DG extends and
consumes the OG with lower strain energy to become a single deformed crystal with higher uniform
distribution of the strain energy, and the OG disappears as shown in Figure 5f.

It seems intuitive [73] that the strain energy would be reduced by the motion of the GBs
towards the grain with higher strain energy, however, the simulation results of this works for the
bicrystal with the applied strain shows that the SGB moves towards the OG with lower strain energy.
The similar phenomenon is also presented by Tonks et al. [73]. In addition, it is found that the
DG is softened by the applied deformation [30,72,73]. The softened DG, due to the plastic flow
localization (i.e., the collective cooperation movement of the dislocations driven by the strain) can
store more strain energy because it accommodates more of the applied strain than the hard OG [30,73].
The plastic flow localization usually occurs in the process of the deformation of nanocrystalline (NC)
metal [66–70] and metallic glass [74–76]. For example, because NC copper is three times more resistant
to deformation than coarse-grained copper, its deformation is homogeneous without apparent necking
by a steady plastic flow until sample failure occurred [30], i.e., the materials displayed near-perfect
elastic-plastic behavior [30]. Similar prefect elastic-plasticity in nano-materials is observed by other
researchers [30,71,73], both in tension and compression. This behavior can be explained by high atomic
diffusion and the small size of the grains, which will make it possible to activate superplastic-type
mechanisms at room temperature [11,30,56,65,70,73].

Figure 6a shows the localized strain energy change versus time and/or strain in a rectangular
region with red slash in Figure 4c. It can be seen that the strain energy curve for the GB region increases
slowly during the beginning stage in the range of 0–2%. When the strain reaches the ranges of 2–4%,
the energy increases gradually from 0.016 to 0.018. While the strain reaches the ranges of 4–5.5%,
the energy increases quickly from 0.018 to 0.023. After that, the strain energy of the curve reaches
a maximum value and keeps it at a constant 0.023. This indicates that the strain energy in unit area in
the region swept by the SGB dislocations, obtains the maximum value. It can also be seen in Figure 6b
that the energy in the region of the OG changes with time and/or strain increasing. When the strain ε

is less than 4%, the energy hardly changes and stays at 0.015, which is lower than that in Figure 6a.
This indicates that the internal strain energy of the OG is lower and is hardly accumulated under the
strain. When the strain reaches the range of 4–6%, the strain energy inside the OG increases quickly.
This indicates that the dislocation flow of the SGB of the DG enters into the interior of the OG and
makes the change of the orientation of the local lattice of the grain and transforms the OG into the
DG. When the strain reaches more than 6%, the strain energy of the region reaches the maximum and
keeps it at a constant about 0.023. This indicates that the OG has completely transformed into the DG,
and the strain energy of the whole system obtains a uniform distribution.

As external strain is exerted on the sample, it can be seen that the strain energy of the different
misorientations θ of the small-angle STGB increases with the strain of the deformation, as shown in
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Figure 7. The larger the misorientation θ of the GB, the more the strain energy stored in the GB are,
which is due to more dislocations in the GB with large θ. Under the condition of the small θ <10◦ of
the GB, the strain energy stored in the GB is approximately linear with the angle θ of the GB.
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Figure 6. The localized strain energy change versus strain (a) in the zone of a rectangular region with 
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Figure 6. The localized strain energy change versus strain (a) in the zone of a rectangular region with
red slash in Figure 4c; (b) in the zone of the original grain marked by grain 3 in Figure 4c.
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Figure 7. The increment percentage of the stored strain energy in deformed grain, which is calculated
by using the PFC with the strain energy of single crystal as a reference point, changes with strain (%) or
time steps for different misorientation θ of the GB.

3.3. Extension of Localized Deformation Zone

The extension of the local deformed region corresponds to the growth process of the deformed
grain. Figure 8 shows the average stress–strain (SS) curve of the sample system during the deformation.
In the SS curve of the figure, the initial strain is not zero because the local internal stress exists in
the GB dislocations in the sample and cannot be completely released, which can be seen in Figure 5a
without strain exerting. It also can be seen that at the initial stage, the average stress of the system
increases linearly with the strain in the range of the strain 0–2%, as shown in the ab section of the SS
curve. This is owing to the dislocation of the GB climbing along the GB, during which the deformation
of the sample belongs to the elastic deformation [74]. After that, the stress increases slowly in the range
of the strain 2–3.5% in the bc section of the SS curve. This indicates that the dislocation in the SGB
begins to move toward two sides of the GB by gliding, which means the plastic deformation occurs
obviously in this case. When the strain reaches the range of 3.5–5.0%, the stress decreases in the ce
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section of the SS curve and the strain softened occurs. According to Reference [74–76], the formation of
the mature localization deformed band (grain) can be considered as the reason for the strain softened.
When the strain reaches the range of 5.0–6.0%, the average stress for the system increases again in
the ef section of the curve. This means that the dislocation of the two rows of the SGB of the two
localization deformed bands (grain) moving toward each other interact by twisting under a resolved
shear strain [62] between the two dislocations approaching each other. After the strain reaches a value
greater than 6%, owing to annihilation of the dislocation in the SGB and to release of a part of the
stored strain energy in the dislocations, the stress begins to decline rapidly and reaches minimum
value at the strain 7%. Therefore, the transient soften-recovery process occurs at about 6–7% of strain.
This indicates that under the condition of the deviatoric deformation, the coordinated movement of the
GB dislocations can cause significant changes in the internal stress state of the system. Since the whole
process is of only the dislocation migration without any multiplication of the dislocations, there is no
any obvious hardening process for the deformation under the biaxial strain. Here, the deformation
and extension of the local deformation zone are different from the local shear deformation band in
metallic glass reported in Reference [74–76], and also different from Lűders band (LB) [77–80] at low
temperature. The deformation and extension of the local deformation zone in the present paper is
the result of the change of the orientation of the crystal local lattice through collective cooperative
slipping of the dislocations of the GBs, while the LB is a coherently propagating mode of plastic shear
with a front parallel to the primary slip planes at low temperature, which can be regarded as a solitary
plastic wave that propagates at the constant stress accompanying a sudden rise of the local strain rate
due to rapid dislocation multiplication [78]. Hähner [77] has pointed out that the instability of the
plastic deformation that leads to anomalous stress–strain curve and to the localization of plastic strain,
which may result from various underlying microscopic processes and a macroscopic deformation
condition. According to the classification by Estrin and Kubin [81], the stability of the M type is due to
that the local lattice orientation becoming unstable to activate the slip system. Here, the nucleation of
the deformation band (grain) is some related to the GB splitting to activate the slip system under the
strain, and the deformation band extension is related to the change of the local lattice orientation due
to the instability of the orientation [82].
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Figure 8. Stress-strain curve of the process of the deformation for the sample by the PFC simulation.
The unit of the stress is the dimensionless.

According to the criterion [74] for the localized shear bands, the explanation for the formation
of the localized deformation zone on the basis of the SS curve in Figure 8 can be given as following.
The localized deformation zone starts appearing at the strain labeled “c”, i.e., the maximum stress of
the SS curve, i.e., the plastic deformation starts obviously at this strain. When the sample is strained to
the point marked “e” in SS curve, one mature deformed zone is formed. Thus, the strain energy that is
spent during deformation of the sample from point “c” to “e” is the energy required to the formation
of the deformed grain with higher localized strain energy, accompanying with the high-density
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ensembles of the mobile lattice dislocation. Before the formation of a localized deformation zone
(grain), the energy dissipated area under the SS curve up to point “e” can be partitioned into two parts
labeled A and B. The energy in region A contributes to the local inelastic deformation and dissipates
throughout the whole sample. Therefore, the energy that gets spent during the formation of the mature
localized deformation zone in region B can be defined the energy as Usb. The red arrows in the SS
curve as shown in Figure 8 indicate the starting and the ending strains, i.e., the point “c” and “e” can
be used to estimate the values of Usb for the mature localized deformation zone. We consider that the
localization of the plastic flow through the formation of the localized deformation zone occurs if and
only if the total energy that is restored in the system at the onset of plastic deformation Up is equal
or larger than Usb. If Up < Usb, the strain energy in the area is insufficient to cause the localization,
therefore, the localized deformation zone does not occur. For the e-f-g sections of the SS curve in
Figure 8, the localized deformation zone transforms into non-localized deformation.

3.4. The Law of the Deformed Grain Growth

For the extension of the deformed grain, the curve of the area of the deformed grain growth (DGG)
changing with time, which is gotten by PFC simulation, is shown in Figure 9. The deformed grain with
0◦ orientation consumes the original grains with 4◦ or −4◦ orientation to extension. This process of the
DGG is the collective glide of the dislocation of the SGB, accompanying with the high strain energy
zone extending toward the low strain energy zone in the system shown in Figure 5b–e. Following the
conventional formula [32] of the grain growth, we express the formula of the extension of the area A
by the strain driving as below:

A− A0 = α× tβ (11)

We obtain the formula of the DGG by fitting the data of the PFC simulation shown in Figure 9
as below

∆A = A− 1.5 = 1.56× 10−5 × t2.0 (12)

where the growth coefficient α = 1.56 × 10−5, the initial constant A0 = 0.15, and the time index β = 2.0.
The area Equation (12) of the DGG is consistent with the rule of the time square t2. Noticing the way of
the SGB migration in Figure 4, the area A can be written as A = Lx, where L is the width of the sample
in a constant. Therefore, the DGG along x direction in the length formula can be rewritten as

∆D = x− x0 =
α

L
× t2.0 (13)

Transforming the area extension into the length extension of the grain, we can get the speed of the
growth along x direction is

vGB =
dx
dt

=
2α

L
t (14)Materials 2018, 11, 1805 12 of 24 
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It can be seen from Equation (14) that the speed of the extension along the x direction is a linear
increase with time and the DGG is in the state of the acceleration motion. In the literature [20,30,73],
the grain growth driven by the constant stress is simulated and analyzed, and the law of the grain
growth is also obtained, in which the size of the grain growth increases linearly with time, i.e., the time
index β = 1. However, the time index β in Equation (13) of the grain growth under the curvature [32]
is about β = 1/2, which is different from the mechanism of the grain growth driven by the external
force. Kill et al. [83] reported that the growth index of the NC Fe obeys the index law β = 1, while for
the metal Fe of coarse crystal, its grain growth index rule obeys the index rule β = 1/2. This indicates
that the mechanism of the grain growth is strongly dependent on the size of grain and the structure of
the GB. In the case of a circular grain shrinking [44] with large or small misorientation, it obeys the
β = 1/2 of the usually exponential rule, while for the grain shrinking of the middle misorientation,
the grain growth is not subjected to the β = 1/2 power-law due to the change of the mechanism of
the grain growth. Usually, for the mechanism of the grain growth of the curvature driven, most of
them obey the β = 1/2 power-law [84–86], while on the scale of the NC grains, its growth rule deviates
the β = 1/2 power-law to obey β = 1 exponential rule [83]. For the mechanism of the complex grain
growth, for example, the nanotwin-assisted grain growth [87] in the NC materials also does not obey
the β = 1/2 simple power-law.

Under the driving of the dynamic deviatoric strain in this work, the speed of the DGG for the
deformation process is obviously faster than that of the grain growth under the curvature [32,88,89] in
relaxation. Here, the GB dislocations slidings collectively and synchronously away from the original
GB under the biaxial strain are also different than that of the report in Reference [4–8], in which the
dislocations slide is only along the GB under the shear strain, therefore, the shape change of the
grain under the shear strain only occurs without any new grain generation [6,10]. However, in this
work, the original GB is split into two SGBs which move in two opposite direction under the biaxial
strain and generates new DG with new orientation, which is similar to the case of the GB splitting in
Reference [13]. By comparing the growth index, we can get the migration speed of the GB for the DGG
which is linear with time t in Equation (14), and the time index is β = 2 in Equation (13). Obviously,
the DGG under the biaxial strain is faster and accelerates with time, due to the exerted biaxial strain
changing linearly with time.

3.5. Dynamic of the DGG

Mcreynods et al. [88] have confirmed that the dislocation climbing fully compensates for the
translation of the lattice; the amount of translation predicted by coupling is compared to the number
of lattice sites added or removed by dislocation climbing. According to Cahn et al. [3,5] for the case of
the pure coupling (no sliding) in small angle tilt boundary, the tangential velocity vt of the lattice is
proportional to the normal velocity vn of the GB by the misorientation angle θ. The driving force for
GB migration and grain rotation stems from two sources: (1) internal structure, i.e., surface tension
due to GB curvature and net torque due to a reduction in GB energy that triggers grain rotation;
(2) externally applied stresses. Essentially, the growth rate (dD/dt) of the grain is proportional to
the driving force (P) [20,90,91] by a mobility parameter M, which captures the thermally activated
component of the kinetic. Here, the migration of the DGG is vertical to the GB direction, i.e., along the
x axis direction, while the gliding direction of the GB is along the y axis direction. The GB dislocation
moves via a combination [88] of the glide and climb, which allows the dislocation to move roughly
perpendicular to the planar interface instead of along the close-packed direction [86] of the Burgers
vector. The climbing mechanism also destroys or creates lattice sites to allow for the rigid body
translation [86]. According to the coupling movement of the GB suggested by Cahn et al. [3–5],
the dynamic equation of the SGB can be written as

vn =
dDx

dt
= MixPix + MexPex + βx

dDy

dt
(15)
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vτ =
dDy

dt
= SiyPiy + SeyPey + MiyPix + MeyPex + βy

dDx

dt
(16)

where Dx is the distance of the SGB migration and Dy is the distance of the dislocation movement
along the SGB and t is the time, and Pi is the driving force applied by internal structure, and Pe is the
driving force owing to externally applied stresses. Mi and Me are the migration parameters of the SGB
migration by the driving force Pi and Pe, respectively. S is the sliding coefficient in response to (dDy/dt)
= vτ, (dDx/dt) = vn, and β is the coupling constant [4–6] of the SGB movement. For the pure STGB there
are no dislocations gliding in the plane of the boundary [88]. Hence there is no dislocation mechanism
for sliding, i.e., Siy = 0 and Sey = 0. Since the grain shape in this PFC simulation is rectangular, and also
the SGB of the grain is a planar SGB, therefore, the driving force of the curvature is not considered.
Because there is no the difference of dislocation density between two sides of the SGB, no the migration
of the SGB is driven by dislocation density difference. Hence, we can ignore the role of internal stress,
and only consider the external applied force to drive the migration of the SGB. Hence, we get the
equation from Equations (15) and (16) as below

vn = MexPex + βxvτ (17)

vτ = MeyPey + βyvn (18)

According to Reference [3], we have βx = βy = πθ/180 (in radian), where θ <8◦ (in degrees),
then βx·βy <<1 for the small angle STGB, hence the βx·βy is a second order small amount which can be
ignored here. Under the deviatoric deformation, the formula of the solution for the dynamic equations
can be obtained from Equations (17) and (18), as

vn =
MexPex + βx MeyPey

1− βxβy
≈ MexPex + βx MeyPey = (1 + βx)MexPex (19)

vτ =
MeyPey + βy MexPex

1− βxβy
≈ MeyPey + βy MexPex = (1 + βy)MeyPey (20)

where we assume that Mex = Mey and Pex = Pey for simplicity. Equation (19) can be used to describe the
process of the grain growth driven by the external force, while Equation (20) can be used to describe the
local lattice rotation, and also the migration of the GB coupling with the applied shear force. Since the
material exhibits no grain motion under thermal activation alone, the driving force must be in some
form related to the work input into the system during the working operation. In the spirit of first
order kinetic [20], the driving force is assumed to be linearly proportional to the rate of mechanical
work done onto the system. Thus, at any moment during deformation, the driving force [20] can be
written as

Pex ∝ σx
dεx

dt
and Pey ∝ σy

dεy

dt
(21)

Then

Pex = η · σx
dεx

dt
and Pey = η · σy

dεy

dt
(22)

where σx and σy are the stress during deformation, dε
dt is the strain rate, and η is a proportional constant.

The kinetic approach suggests that mobility Mex plays an important route in grain growth. The current
GB mobility Me can be expressed in an Arrhenius-type equation

Mex = M0 exp(−QGB
RT

) (23)

where R is the gas constant, Mo a constant and QGB the activation energy for isothermal grain growth,
then, the grain growth speed along x direction is
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vGB = vn = (1 + βx)MexPex

= (1 + βx)M0 exp(QGB
RT )σx · η dεx

dt
(24)

Let ∆x0 and ∆y0 denote the length before deformation, and ∆x and ∆y are the length after
deformation, which can be written as ∆x = ∆x0(1 + εx) and ∆y = ∆y0 (1 + εy), then we have

∆x · ∆y = ∆x0(1 + εx) · ∆y0(1 + εy) = ∆x0 · ∆y0 · (1 + εx + εy + εxεy) = ∆x0 · ∆y0 (25)

Under the constant area condition of Equation (6), we can get the result from Equation (25)
as below

(1 + εx + εy + εxεy) = 1 (26)

where εx and εy is a small amount, i.e, εx and εy << 1, then εx·εy is the second order small amount
and can be ignored. Then we have εx + εy = 0, i.e., εx = −εy. Under this condition of the deformation,
the deviatoric deformation with the constant area in two dimensions occurs.

For a plane strain, we here have the relationship [91] between the strain and stress

εx =
1− µ2

E
(σx −

µ

1− µσy) (27)

εx =
1− µ2

E
(σx −

µ

1− µσy) (28)

εy =
1− µ2

E
(σy −

µ

1− µσx) (29)

where µ is the Poisson’s ratio, and E is the Young’s modulus. When εx = −εy is satisfy, we can have
σx = −σy from these formula above, therefore, we get εx = ((1 + µ)/E)σx and εy = −((1 + µ)/E)σx,
or σx = (E/(1 + µ))εx and σy = −σx = −(E/(1 + µ))εx.

Since the DGG and the migration of the SGB is along the x direction, then the rate of the DGG by
the driving force can be written from Equation (24) as

vGB = dDx
dt = (1 + βx)MexPex = η(1 + βx)Mexσx

dεx
dt = η(1 + βx)Mex · E

1−µεx
.
εx

= (1 + βx)Mex
ηE

1−µ (
.
εx)

2 · t
(30)

where εx =
.
εx · t,

.
εx is the strain rate. It can be seen that the dDx/dt is linear increasing with time in

Equation (30), and the DGG is accelerated under the strain. Thus, the distance of the migration of the
GB of the deformed grain is given as

Dx =
1
2
(1 + βx)Mex

ηE
1− µ (

.
εx)

2 · t2 =
1
2
(1 + βx)Mex

ηE
1− µ (εx)

2 ∝ (εx)
2 (31)

The rule of the DGG given in Equation (31) is agreement with Equation (13) obtained by fitting the
results of the PFC simulation. It can be seen in Equation (31) that the shape and size of the deformed
grain can be controlled through adjusting the strain εx. Comparing the Equations (14) and (30),
we can get

α = (1 + βx)Mex ·
η · E · L
1− µ · (

.
εx)

2 ∝ (
.
εx)

2 (32)

where the parameter α is related to the Me, E, L, ν, and
.
εx. We employ the GB mobility for pure Cu

metal [73], M0 = 2.5 × 10−6(m4/Js), Possion’s ratio µ = 0.308, the coupling constant βx = πθ/180 = 0.07,
θ = 4◦, ε = 7%,

.
ε= 6 × 10−6, E = 128 GPa, η = 9 × 10−6 (s), high temperature T = 1050 K for temperature

parameter r = 0.10 [52] of the PFC simulation, then we get the speed of the GB migration of Cu metal
VGB = 1.83 m/s, which is very close to the results of molecular dynamic simulation [60,71,92].
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According to the Equation (31), the approximate formula for the strain energy of the system under
a deviatoric deformation can be obtained from Figure 5a,b as below

∆E = h · Dx ≈ $ · ε2 (33)

where h is the increment of the energy platform height in Figure 5, and Dx is the width of the platform.
By connecting the Equations (31) with (33), then we have$ = 1

2 h · (1 + βx) ·Me · ηE
1−µ . It can be seen

that the Equation (33) is consistent with the rule of Equation (9) for the strain energy with item ε2

under a small strain condition.

3.6. Dynamic of Dislocation of STGB under Deviatoric Deformation

The motion of the GBD of the circular bi-crystal under a stress has been reported in Reference [3],
here in this work the complicated dislocation arrangement of the straight STGB of bi-crystal with
two sets of the dislocation structure under deviatoric deformation as shown in Figures 2b and 10a
will be discussed. Owing to the structure of the small angle STGB, the spacing of the two sets of the

dislocations [63] is D1 = D2 = D = b/θ,
→
b is the Burgers vector, and θ is the misorentation angle of

the STGB, shown in Figure 10a,b. The GB is along the y direction, the tilt angle θ is ±4◦ by y axis,
and the crystal orientation Φ is about 30◦ by y axis in Figure 10b. The GB in Figures 2b and 10a is split
into two SGBs as shown in Figure 4. Here we take the type of the dislocation B of the GB shown in
Figure 10a as an example to discuss the motion of the dislocations under the biaxial strain. The angle
between the vector of the dislocation and direction of the SGB (along y direction) is about Φ + θ ≈ 34◦,

shown in Figure 10b. The vector of the dislocation B,
→
b = a[011], can be decomposed of two vectors,

one is
→
b τ = a

2 [112] parallel to the SGB along the y direction arrangement, which forms a structure

similar to the Glissile extrinsic grain boundary dislocation (EGBD) [93,94], and the other is
→
b n = a

2 [110]
perpendicular to the SGB along the y direction arrangement, which forms a structure similar to the

sessile EGBD [94], as shown in Figure 10c. The SGB migration is that the dislocations
→
b n = a

2 [110] in
the SGB glides collectively perpendicular to the SGB direction and makes the grain grow, while that

the dislocation
→
b τ = a

2 [112] of the GB moves along the GB and leads the lattice orientation to change
in the place near the GB of the grain.
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Figure 10. Schematic of GB dislocation: (a) Two type dislocations A and B arranging alternatively in the
STGB, (b) Tilt angle θ of the STGB and atomic arrangement orientation Φ of the grain, (c) The dislocation

vector
→
b decomposition: one

→
b n is the vertical to the GB, which forms a similar structure of the sessile

extrinsic grain boundary dislocation (EGBD) [94] and leads to the GB migration and grain growth,

and the other
→
b τ is parallel to the GB, which forms a similar structure of the glissle EGBD and leads to

the dislocation motion along the GB and the grain orientation change.
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It can be seen in Figure 10c that the slip direction of the dislocation
→
b = a[011] is parallel to

the slip system (the direction of the lattice arrangement) of the sample shown in Figure 4, and takes
approximately the angle 30◦ by y axis. Trautt et al. [2] has pointed out that the dislocation motion
being vertical to the GB and parallel to the GB are all of the combinations of two kinds of movement
of climbing and gliding in two-dimensional triangular state in the PFC simulation. Although the

dislocation
→
b n and

→
b τ of the GB moves along the direction of the normal stress σx and σy as shown in

Figure 10c, the motion of the dislocations is the combination of climbing and sliding motion, instead of

pure climbing or sliding motion of the dislocation, which is due to that the Burgers vector
→
b n = a

2 [110]

and
→
b τ = a

2 [112] are not fully parallel to the direction of the slip system. The deformed grain grows
through the dislocation of the SGB gliding as shown in the red box of Figure 11, while that of the SGB
sliding makes the original grain shrink in blue box of Figure 11.
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Figure 11. Schematic of the alternating arrangement of the dislocations of the GBs is separated into
two planar SGBs under the deviatoric deformation and generates new deformed grain 2 and 4 with
orientation θ2 and θ4, respectively. More detail snapshots for evolution of the dislocation of the SGB
can be seen in Reference [55].

The SGB migration resembles a continuous, viscous movement [92] of the dislocations under
an applied persistent force. According to Reference [63], irrespective of the underlying mechanism of
the GB drift velocity, the velocity v should be related linearly to driving force P, i.e., v = MP, provided
that PΩ/kT <<1 (where Ω is the atomic volume, k is the Boltzmann constant and T the absolute
temperature). The phenomenological Equation (14) indicates that under the action of the internal and
external constant force, the GB motion is in uniform speed motion. The motion of the system is in
stable dynamic equilibrium, while the actual dislocation motion of the GB is a process of the change of
the velocity under a net force. Therefore, in order that the system can finally reach a stable equilibrium,
it requires the kinetic equation should include a term of a damping force [93]. The dislocation motion,
in addition to the external stress, are also affected by the damping force, which is assumed to be directly
proportional to the velocity of the dislocation motion [65,93]. The dynamic of a single dislocation
motion is well described by the equation of motion for a point mass in a damped medium for the
stick-slip character of the dislocation movement [65]. For kinetic equation of the dislocation of the SGB
for the DGG in damped medium, according to the Equation (A7a) in Appendix, under the condition of
Hx0 = 0, we can get the formula of the velocity along x direction as

vx(t) =
αy

βx
· t +

[
1− e−βx ·t

]
βx

[
−

αy

βx

]
, (34)

where αy =
(
αy/m) · b · sin θ, βx = βx/m, Hx0 = Hx0 /m = 0 . When t→ +∞, we get
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vx(t) =
αy

βx
· t− 1

βx

[
αx

βx

]
=

αy

βx
(t− 1

βx
) ≈

αy

βx
· t (35)

For a long time evolution of the DGG, we approximately have vx(t) ≈
αy

βx
· t, which is an good

agreement with Equations (14) and (30). This indicates that the velocity of the dislocations is linear
with time t in a stable state under a damped force. We can get the migrated distance of the SGB in the
initial condition x(t = 0) = 0 from Equations (A8a) and (A8b) in Appendix as below:

x(t) =
αy

2βx
t2 − 1

βx

[
αy

βx

][
t +

1
βx

(
e−βx ·t − 1

)]
(36)

x(+∞) =
αy

2βx
· t2 − 1

βx

[
αy

βx

][
t− 1

βx

]
≈

αy

2βx
· t2, (t→ +∞) (37)

By comparing the growth index, we can see the DGG relationship in Equation (37) is linear with
time square t2, and is a good agreement with Equations (11) and (31) and also the time index is β = 2.

For pure Cu metal, lattice constant a = 0.361 nm mass density ρ = 8900 kg·m−3, activation
energy of the dislocation QGB = 0.23 eV, dislocation mass (per unit length of dislocation line),
m = 2.4× 10−16 kg·m−1, Burger vector b = a〈111〉/2 = 0.3126 nm βdis = β0 exp(−Qdis

RT ), β0 = 14.5 Pa·s,
β0 is the damping coefficient at room temperature, T = 1050 K, Young’s modulus E = 128 GPa, αx = E

.
ε

1+µ

and αy = − E
.
ε

1+µ ,
.
ε = 6× 10−6(s−1), then we get approximately the speed of the dislocation migration

of Cu metal vdis = 1.98 (m/s) at ε = 7%, which is close to the results of the previous section.

4. Conclusions

(1) Under biaxial strain, the deformed grain nucleates through the original GB splitting to form
the gap between two SGBs. The collective dislocation migration of the SGB is the movement of the
ensembles of the mobile lattice dislocations, which causes the localized strain energy and the localized
plastic flow. This is owing to the change of the crystal lattice orientation due to the instability of the
orientation under the biaxial strain.

(2) The deformed grain is of new orientation and high localized strain energy. With the deformed
grain extending, the higher strain energy zone of the deformed grain extends through the SGB
migration into the lower strain energy zone of the original grain. The SGB is the boundary line
between the high localized strain energy zone of the deformed grain and low strain energy zone of the
original grain.

(3) The DGG is that the SGB propels toward the interior of the original grain, and the speed of
propulsion of the DGG is linear to the time, and the law of the DGG follows β = 2 of the time index of
the growth. The process of the DGG is faster than that of the growth of the grain under the curvature.
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Appendix A. Dynamic Equation of Dislocation for STGB Migration and DGG

Considering the applied strain shown in Figure 1, in which the σx and σy are the normal stress
components, respectively, we can get the stress tensor of the external force field, and write as

→
σ =

 σx 0 0
0 −σy 0
0 0 0

 (A1)

According to the Reference [63] the force of the stress tensor which is subjected to the dislocation
can be written as

→
F =

→
b · σ̂× d

→
l =

(
bx, by, bz

){
σij
} i

j
k

× d
→
l =

(
bσx cos φ ·

→
i + bσy sin φ ·

→
j + 0

)
×

 0
0
1


= b

∣∣∣∣∣∣∣
i j k

σx cos φ σy sin φ 0
0 0 1

∣∣∣∣∣∣∣ =
(
bσy sin φ,−bσx cos φ, 0

) (A2)

From the Equation (A2), the applied force component along x and y direction exerting on the
dislocation can be written as

Fx = σyb sin φ = αy · b · t sin θ =
(
αy · b sin φ

)
t (A3a)

Fy = −σxb cos φ = −αx · b · t · cos θ = −(αx · b · cos φ)t (A3b)

where σx = αx · t and σy = αy · t, αx and αy are the proportional constant, which are αx = E
.
ε

1+µ and

αy = − E
.
ε

1+µ , respectively, and E is Young’s modulus and
.
ε is the strain rate.

The Equations (17) and (18) indicates that under the action of the internal and external constant
force, the GB motion is uniform motion. The motion of the system is in a stable state, while the
actual dislocation motion of the GB is the process of the acceleration of the velocity under the net
force exerting. Therefore, it will be required that the kinetic equation should include a term of
a damping force, in order that the motion can finally reach a stable motion. The dislocation motion,
in addition to the external stress, is also affected by the damping force [93], which is assumed to be
directly proportional to the velocity of the dislocation motion. The reason for the damping is that
the dislocation is in the state of viscous motion [93]. The atomic potential field of the lattice can be
approximately considered as the uniform potential field, and the periodicity of the potential field is
ignored, which is the resistance for dislocation motion. Under the action of the constant external stress,
the separation of two sets of the dislocations in the GB occurs. This process is similar to that of partial
dislocation separation under applied stress [95]. The two sets of the GB are separated to form two
SGBs. The region between the two separated GBs is the completely elastic-plastic zone [70], which can
exert an attractive force on the separated GBs [95] by a steady deformation flow, to dray the SGBs to
go back. We use the Hx0 to denote the drag force on the SGB, which direction is vertical to the SGB, i.e.,
along [110] direction of x axis.
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According to the analysis for the forces exerting on the dislocation in the previous part above,
the dynamic of a single motion dislocation is well described by the equation of the motion for a point
mass in damped medium [65,93,96], and the dynamic equation can be written as [93],

m
d2x
dt2 = Fx(t)− βx

dx
dt

+ Hx0 =
(
αy · b · sin φ

)
t− βx ·

dx
dt

+ Hx0 (A4a)

m
d2y
dt2 = Fy(t)− βy

dy
dt

= (−αx · b · cos φ)t− βy ·
dy
dt

(A4b)

Supposing the damping coefficient β can be expressed in an Arrhenius-type equation

βdis = β0 exp(−Qdis
RT

) (A5)

where Qdis is activation energy for dislocation movement, and β0 is the damping coefficient at
room temperature. Dynamic equation of the dislocation of the grain growth along x direction from
Equation (A4a), we have

d2x
dt

= αy · t− βx ·
dx
dt

+ Hx0 (A6a)

where αy = αy · b · sin θ, βx = βx/m, Hx0 = Hx0 /m . Let dx
dt = vx, then the equation can be written as

dvx

dt
+ βx · vx − αy · t− Hx0 = 0 (A6b)

under the initial condition, vx(t = 0) = 0, the velocity solution can be written as

vx(t) =
αy

βx
· t +

[
1− e−βx ·t

]
βx

[
Hx0 −

αy

βx

]
(A7a)

when t→ +∞, we get

vx(t) =
αy

βx
· t + 1

βx

[
Hx0 −

αx

βx

]
(A7b)

During the initial stage, the solution satisfies vx(t) ≈ Hx0 · t, while for a long time we have
a stable form of the speed vx(t) ≈

αy

βx
· t. The speed is linear with time t. Under the initial condition

x(t = 0) = 0, we can get x(t) from Equation (A7a) by integral,

x(t) =
αy

2βx
t2 +

1
βx

[
Hx0 −

αy

βx

][
t +

1
βx

(
e−βx ·t − 1

)]
(A8a)

t→ +∞, x(+∞) =
αy

2βx
· t2 +

1
βx

[
Hx0 −

αy

βx

][
t− 1

βx

]
(A8b)

It can be seen that x(t) is proportional to t2 when time is long enough. Dynamic equation of the
dislocation of the grain growth along y direction, from Equation (A4b), we have

d2y
dt2 =

F(t)
m
−

βy

m
dy
dt

= −αx · t− βy ·
dy
dt

(A9a)

where αx = αx
m b cos θ, βy =

βy
m . Set dy

dt = vy, then we have

dvy

dt
+ βy · vy + αx · t− Hy0 = 0 (A9b)
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Under the initial condition vy(t = 0) = 0, the velocity solution can be gotten

vy(t) = −
αx

βy
· t + 1

βy

[
αx

βy

](
1− e−βy ·t

)
(A10a)

When

vy(∞) = −αx

βy
· t + 1

βy

[
αx

βx

]
≈ −αx

βy
· t, t→ ∞ (A10b)

Under the initial condition y(t = 0) = 0, we get the solution by integral as,

y(t) = − αx

2βy
· t2 +

1
βy

[
αx

βy

][
t +

1
βy

(
e−βy ·t − 1

)]
(A11)

y(+∞) = − αx

2βy
· t2 +

1
βy

[
αx

βy

][
t− 1

βy

]
, t→ ∞ (A12)

It can be seen that y(t) is proportional to t2 when time is long enough.

References

1. Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci.
2006, 51, 427–556. [CrossRef]

2. Trautt, Z.T.; Adland, A.; Karma, A.; Mishin, Y. Coupled motion of asymmetrical tilt grain boundaries:
Molecular dynamics and phase field crystal simulations. Acta Mater. 2012, 60, 6528–6539. [CrossRef]

3. Cahn, J.W.; Taylor, J.E. A unified approach to motion of grain boundaries, relative tangential translation
along grain boundaries. Acta Mater. 2004, 52, 4887–4898. [CrossRef]

4. Cahn, J.W.; Mishin, Y.; Suzuki, A. Duality of dislocation content of grain boundaries. Philos. Mag. 2006,
86, 3965–3976. [CrossRef]

5. Cahn, J.W.; Mishin, Y.; Suzuki, A. Coupling grain boundary motion to shear deformation. Acta Mater. 2006,
54, 4953–4964. [CrossRef]

6. Mishin, Y.; Asta, M.; Li, J. Coupling grain boundary motion to shear deformation. Acta Mater. 2010,
58, 1117–1126. [CrossRef]

7. Chunmei, L.; Nanpu, C.; Zhiqian, C.; Zhangjing, X. Liangliang, H. Intermallic growth and interfacial
properties of the grain refiners in Al alloys. Materials 2018, 11, 636.

8. Gorkaya, T.; Molodov, D.; Gottstein, G. Concurrent grain boundary motion and grain rotation under
an applied stress. Acta Mater. 2011, 59, 5674–5686. [CrossRef]

9. Molodov, D.A.; Gorkaya, T.; Gottstein, G. Migration of grain boundaries under applied mechanical stress.
Scr. Mater. 2011, 65, 990–993. [CrossRef]

10. Gottstein, G.; Shvindlerman, L.S. On the retardation of grain boundary motion by small particles. Scr. Mater.
2010, 63, 1089–1091. [CrossRef]

11. Rupert, T.J.; Gianola, D.S.; Gan, Y.; Hemker, K.J. Experimental observations of stress-driven grain boundary
migration. Science 2009, 326, 1686–1690. [CrossRef] [PubMed]

12. Jianjun, L.; Soh, A.K. Toughening of nanocrystalline materials through shear-coupled migration of grain
boundaries. Scr. Mater. 2013, 69, 283–286.

13. Bobylev, S.V.; Ovido, L.A. Stress-driven migration, convergence and splitting transformations of grain
boundary in nanomaterials. Acta Mater. 2017, 124, 333–342. [CrossRef]

14. Liu, P.; Mao, S.C.; Wang, L.H.; Han, X.D. Direct dynamic atomic mechanisms of strain-induced grain rotation
in nanocrystalline. Scr. Mater. 2011, 64, 343–347. [CrossRef]

15. Alsayed, A.M.; Islam, M.F.; Zhang, J.; Collings, P.J.; Yodh, A.G. Premelting at defects within bulk colloidal
crystals. Science 2005, 309, 1207–1211. [CrossRef] [PubMed]

16. Tallon, J.L. Premelting near crystal defects. Nature 1978, 276, 849–851. [CrossRef]

http://dx.doi.org/10.1016/j.pmatsci.2005.08.003
http://dx.doi.org/10.1016/j.actamat.2012.08.018
http://dx.doi.org/10.1016/j.actamat.2004.02.048
http://dx.doi.org/10.1080/14786430500536909
http://dx.doi.org/10.1016/j.actamat.2006.08.004
http://dx.doi.org/10.1016/j.actamat.2009.10.049
http://dx.doi.org/10.1016/j.actamat.2011.05.042
http://dx.doi.org/10.1016/j.scriptamat.2011.08.030
http://dx.doi.org/10.1016/j.scriptamat.2010.08.005
http://dx.doi.org/10.1126/science.1178226
http://www.ncbi.nlm.nih.gov/pubmed/20019286
http://dx.doi.org/10.1016/j.actamat.2016.11.026
http://dx.doi.org/10.1016/j.scriptamat.2010.10.029
http://dx.doi.org/10.1126/science.1112399
http://www.ncbi.nlm.nih.gov/pubmed/15994377
http://dx.doi.org/10.1038/276849a0


Materials 2018, 11, 1805 21 of 24

17. Bartis, F.J. Thermodynamic Equations for Dysprosium-Aluminum Garnet near Its Néel Point. Nature 1977,
268, 427–430. [CrossRef]

18. Oxtoby, D.W. New perspectives on freezing and melting. Nature 1990, 347, 725–728. [CrossRef]
19. Pusey, P.N. Freezing and melting: Action at grain boundaries. Science 2005, 309, 1198–1201. [CrossRef]

[PubMed]
20. Yao, B.; Simkin, B.; Majumder, B.; Smith, C.; Bergh, M.; Cho, K.; Sohn, Y.H. Strain-induced grain growth of

nanocrystalling Al in trimodal composites during forging. Mater. Sci. Eng. A 2012, 536, 103–109. [CrossRef]
21. Mompiou, F.; Legros, M.; Caillard, D. Direct observation and quantification of grain boundary

shear-migration coupling in polycrystalline Al. J. Mater. Sci. 2011, 46, 4308–4313. [CrossRef]
22. Barmak, K.; Eggeling, E.; Kinderlehrer, D.; Sharp, R.; Ta’Asan, S.; Rollett, A.D.; Coffey, K.R. Grain growth

and the puzzle of its stagnation: The curious tale of a tail and an ear. Prog. Mater. Sci. 2013, 58, 987–1055.
[CrossRef]

23. Zhang, Y.; Tucker, G.J.; Trelewicz, J.R. Stress-assisted grain growth in nanocrystalline matals: Grain boundary
mediated mechanisms and stabilization. Acta Mater. 2017, 131, 39–47. [CrossRef]

24. Qi, Y.; Krajewski, P.E. Molecular dynamics simulations of grain boundary sliding: The effect of stress and
boundary misorientation. Acta Mater. 2007, 55, 1555–1563. [CrossRef]

25. Williams, P.L.; Mishin, Y. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation.
Acta Mater. 2009, 57, 3786–3795. [CrossRef]

26. Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Simulating the shape-memory behavior of amorphous
switching domains of poly by molecular dynamics. Macromol. Chem. Phys. 2013, 214, 1273–1283. [CrossRef]

27. Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H. Amorphous structure of grain boundaries and grain junctions
in nanocrystalline silicon by molecular-dynamics simulation. Acta Mater. 1997, 45, 987–996. [CrossRef]

28. Wang, H.L.; Wang, X.X.; Liang, H.Y. Molecular dynamics simulation of strain effects on surface melting for
metal Cu. Acta Phys. Sin. 2005, 54, 4836.

29. Stefenovic, P.; Haataja, M.; Provatas, N. Phase field crystal study of deformation and plasticity in
nanocrystalline materials. Phys. Rev. E 2009, 80, 046107. [CrossRef] [PubMed]

30. Tonk, M.; Millet, P. Phase field simulation of the elastic deformation-driven grain growth in 2D copper
polycrystals. Mater. Sci. Eng. A 2007, 528, 4086–4091. [CrossRef]

31. Takaki, T.; Tomita, Y. Static recrystallization simulations starting from predicted deformation microstructure
by coupling multi-phase-field method. Int. J. Mech. Sci. 2010, 52, 320–324. [CrossRef]

32. Fan, D.; Chen, L.Q. Computer simulation of grain growth using a continuum field model. Acta Mater. 1997,
45, 611–622. [CrossRef]

33. Elder, K.R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett.
2002, 88, 245701. [CrossRef] [PubMed]

34. Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase
field crystals. Phys. Rev. E 2004, 70, 051605. [CrossRef] [PubMed]

35. Yu, Y.M.; Backofen, R.; Voigt, A. Morphological instability of heteroepitaxial growth on vicinal substrates:
A phase-field crystal study. J. Cryst. Growth 2011, 318, 18–26. [CrossRef]

36. Elder, K.R.; Rossi, G.; Kanerva, P.; Sanches, F.; Ying, S.-C.; Granato, E.; Achim, C.V. Patterning of
heteroepitaxial over layers from nano to micron scales. Phys. Rev. Lett. 2012, 108, 226102. [CrossRef]
[PubMed]

37. Gao, Y.J.; Huang, L.L.; Deng, Q.Q.; Lin, K.; Huang, C.G. Simulation of epitaxial growth on convex substrate
using phase field crystal method. Front. Mater. Sci. 2014, 8, 185–187. [CrossRef]

38. Mkhonta, S.K.; Elder, K.R.; Huang, Z.F. Exploring the Complex World of Two-Dimensional Ordering with
Three Modes. Phys. Rev. Lett. 2013, 111, 035501. [CrossRef] [PubMed]

39. Balakrishna, A.R.; Carter, W.C. Combining Phase-field-crystal method with a Cahn-Hilliard model for binary
alloys. Phys. Rev. E 2018, 97, 043304. [CrossRef] [PubMed]

40. Mellenthin, J.; Karma, A.; Plapp, M. Phase-field crystal study of grain-boundary premelting. Phys. Rev. B
2008, 78, 184110. [CrossRef]

41. Gao, Y.J.; Luo, Z.R.; Huang, L.L.; Mao, H.; Huang, C.G.; Lin, K. Phase Field Crystal Study of Nano-crack
Growth and Branch in Materials. Model. Simul. Mater. Sci. Eng. 2016, 24, 055010.

42. Gao, Y.J.; Lu, Y.J.; Kong, L.Y.; Deng, Q.Q.; Huang, L.L. Phase field crystal model and its application for
microstructure evolution of materials. Acta Metall. Sin. 2018, 54, 278–292.

http://dx.doi.org/10.1038/268427a0
http://dx.doi.org/10.1038/347725a0
http://dx.doi.org/10.1126/science.1116597
http://www.ncbi.nlm.nih.gov/pubmed/16109873
http://dx.doi.org/10.1016/j.msea.2011.12.079
http://dx.doi.org/10.1007/s10853-011-5369-z
http://dx.doi.org/10.1016/j.pmatsci.2013.03.004
http://dx.doi.org/10.1016/j.actamat.2017.03.060
http://dx.doi.org/10.1016/j.actamat.2006.10.016
http://dx.doi.org/10.1016/j.actamat.2009.04.037
http://dx.doi.org/10.1002/macp.201200450
http://dx.doi.org/10.1016/S1359-6454(96)00236-4
http://dx.doi.org/10.1103/PhysRevE.80.046107
http://www.ncbi.nlm.nih.gov/pubmed/19905390
http://dx.doi.org/10.1016/j.msea.2011.02.007
http://dx.doi.org/10.1016/j.ijmecsci.2009.09.037
http://dx.doi.org/10.1016/S1359-6454(96)00200-5
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://www.ncbi.nlm.nih.gov/pubmed/12059316
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://www.ncbi.nlm.nih.gov/pubmed/15600626
http://dx.doi.org/10.1016/j.jcrysgro.2010.08.047
http://dx.doi.org/10.1103/PhysRevLett.108.226102
http://www.ncbi.nlm.nih.gov/pubmed/23003626
http://dx.doi.org/10.1007/s11706-014-0243-y
http://dx.doi.org/10.1103/PhysRevLett.111.035501
http://www.ncbi.nlm.nih.gov/pubmed/23909335
http://dx.doi.org/10.1103/PhysRevE.97.043304
http://www.ncbi.nlm.nih.gov/pubmed/29758731
http://dx.doi.org/10.1103/PhysRevB.78.184110


Materials 2018, 11, 1805 22 of 24

43. Greenwood, M.; Rottler, J.; Provatas, N. Phase-field-crystal methodology for modeling of structural
transformations. Phys. Rev. E 2011, 83, 031601. [CrossRef] [PubMed]

44. Wu, K.-A.; Voorhees, P. Phase-field-crystal modelling of nanocrystalline grain growth. Acta Mater. 2012,
60, 407–419. [CrossRef]

45. Tang, S.; Wang, Z.J.; Guo, Y.L.; Wang, J.C.; Yu, Y.M.; Zhou, Y.H. Orientation selection process during the early
stage of cubic dendrite growth: A phase-field-crystal model. Acta Mater. 2012, 60, 5501–5507. [CrossRef]

46. Gao, Y.J.; Deng, Q.Q.; Quan, S.L.; Zhou, W.Q.; Huang, C.G. Phase-field-crystal simulation of dislocation
movement at high temperature. Front. Mater. Sci. 2014, 8, 176–184. [CrossRef]

47. Adland, A.; Karma, A.; Spatschek, R.; Buta, D.; Asta, M. Phase-field-crystal study of grain boundary
premelting and shearing in bcc iron. Phys. Rev. B 2013, 87, 024110. [CrossRef]

48. Hirouchi, T.; Takaki, T.; Tomita, Y. Development of numerical scheme for phase field crystal deformation
simulation. Comput. Mater. Sci. 2009, 44, 1192–1197. [CrossRef]

49. Toth, G.I.; Teyze, G. Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch. Phys. Rev. Lett. 2012,
108, 025502. [CrossRef] [PubMed]

50. Berry, J.; Rottle, J.; Sinclair, C.; Drovatas, N. Atomistic study of diffusive-mediated plasticity and creep using
phase crystal method. Phys. Rev. B 2015, 90, 134103. [CrossRef]

51. Tarp, J.M.; Angheluta, L.; Mathiesen, J.; Goldenfeld, N. Intermittent dislocation density fluctuations in crystal
plasticity from a phase field crystal model. Phys. Rev. Lett. 2014, 113, 265503. [CrossRef] [PubMed]

52. Gao, Y.J.; Qin, H.L.; Deng, Q.Q.; Luo, Z.R.; Huang, C.G. Phase Field crystal Simulation of grain boundary
annihilation under strain. Acta Phys. Sin. 2015, 64, 106105.

53. Omori, T.; Kusame, T.; Kawata, S.; Ohnuma, I.; Stuton, Y.; Araki, Y.; Ishida, K.; Kainuma, R. Abnormal grain
growth induced by cyclic heat treatment. Science 2013, 341, 1500–1502. [CrossRef] [PubMed]

54. Rao, S.I.; Dimiduk, D.M.; Awady, J.A. Screw dislocation cross slips and screw dipole annihilation. Acta Mater.
2015, 101, 10–15. [CrossRef]

55. Gao, Y.J.; Huang, L.L.; Zhou, W.Q.; Deng, Q.Q.; Luo, Z.R.; Huang, C.G. Phase field model for dislocation
movement and rotation under strain. Sci. China Technol. 2015, 45, 306–321.

56. Gao, Y.J.; Huang, L.L.; Deng, Q.Q.; Zhou, W.Z.; Luo, Z.R. Phase field crystal simulation of dislocation
configuration evolution in dynamic recovery. Acta Mater. 2016, 117, 238–251. [CrossRef]

57. Cheng, M.; Warren, J.A. An efficient algorithm for solving the phase field crystal model. J. Comput. Phys.
2008, 227, 6241–6248. [CrossRef]

58. Gomez, H.; Nogueira, X. An unconditionally energy-stable method for the phase field crystal equation.
Comput. Methods Appl. Eng. 2012, 249, 52–62. [CrossRef]

59. Hirouchi, T.; Takaki, T.; Tomita, Y. Effects of temperature and grain size on phase field crystals deformation
simulation. Int. J. Mech. Sci. 2010, 52, 309–319. [CrossRef]

60. Schonfelder, B.; Wolf, D.; Phillpot, S.R.; Furtkamp, M. Molecular dynamic method for the simulation of grain
boundary migration. Interface Sci. 1997, 5, 245–262. [CrossRef]

61. Hirth, J.P.; Pond, R.C.; Lothe, J. Disconnections in tilt walls. Acta Mater. 2006, 54, 4237–4245. [CrossRef]
62. Gao, Y.J.; Deng, Q.Q.; Huang, L.L.; Ye, L.; Wen, Z.C.; Luo, Z.R. Atomistic modeling for mechanism of crack

cleavage extension on nano-scale. Comput. Mater. Sci. 2017, 130, 64–75. [CrossRef]
63. Hirth, J.P.; Lothe, J. Theory of Dislocations; McGraw-Hill Inc. Press: New York, NY, USA, 1968; pp. 250–350,

678–680.
64. Bobylov, S.V.; Norozov, N.E.; Ovidko, I.A. Cooperative GB sliding and migration process in nanocrystalline

solids. Phys. Rev. Lett. 2010, 105, 055504. [CrossRef] [PubMed]
65. Bobylev, S.V.; Gutkin, M.Y.; Ovidko, I.A. Decay of low-angle tilt boundary in deformed nanocrystalline

materials. J. Phys. D Appl. Phys. 2003, 37, 269. [CrossRef]
66. Semboshi, S.; Sato, M.; Kaneno, Y.; Iwase, A.; Takasugi, T. Grain Boundary Character Dependence on

Nucleation of Discontinuous Precipitates in Cu-Ti Alloys. Materials 2017, 10, 415. [CrossRef] [PubMed]
67. Rajagopalan, J.; Han, J.H.; Sail, M.A. Plastic deformation recovery in freestanding nanocrystalline Al and Au

thin films. Science 2007, 315, 1831–1834. [CrossRef] [PubMed]
68. Yan, B.; Liu, Y.; Wang, Z.; Liu, C.; Si, Y.; Li, H.; Yu, J. The Effect of Precipitate Evolution on Austenite Grain

Growth in RAFM Steel. Materials 2017, 10, 1017. [CrossRef] [PubMed]
69. Jia, D.; Ramesh, K.T.; Ma, E. Effects of nanocrystalline grain sizes on constitutive behavior and shear band in

iron. Acta Mater. 2003, 51, 3495–3509. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.83.031601
http://www.ncbi.nlm.nih.gov/pubmed/21517507
http://dx.doi.org/10.1016/j.actamat.2011.09.035
http://dx.doi.org/10.1016/j.actamat.2012.07.012
http://dx.doi.org/10.1007/s11706-014-0229-9
http://dx.doi.org/10.1103/PhysRevB.87.024110
http://dx.doi.org/10.1016/j.commatsci.2008.08.001
http://dx.doi.org/10.1103/PhysRevLett.108.025502
http://www.ncbi.nlm.nih.gov/pubmed/22324697
http://dx.doi.org/10.1103/PhysRevB.92.134103
http://dx.doi.org/10.1103/PhysRevLett.113.265503
http://www.ncbi.nlm.nih.gov/pubmed/25615353
http://dx.doi.org/10.1126/science.1238017
http://www.ncbi.nlm.nih.gov/pubmed/24072918
http://dx.doi.org/10.1016/j.actamat.2015.08.070
http://dx.doi.org/10.1016/j.actamat.2016.06.021
http://dx.doi.org/10.1016/j.jcp.2008.03.012
http://dx.doi.org/10.1016/j.cma.2012.03.002
http://dx.doi.org/10.1016/j.ijmecsci.2009.09.036
http://dx.doi.org/10.1023/A:1008663804495
http://dx.doi.org/10.1016/j.actamat.2006.05.017
http://dx.doi.org/10.1016/j.commatsci.2017.01.003
http://dx.doi.org/10.1103/PhysRevLett.105.055504
http://www.ncbi.nlm.nih.gov/pubmed/20867932
http://dx.doi.org/10.1088/0022-3727/37/2/016
http://dx.doi.org/10.3390/ma10040415
http://www.ncbi.nlm.nih.gov/pubmed/28772774
http://dx.doi.org/10.1126/science.1137580
http://www.ncbi.nlm.nih.gov/pubmed/17395826
http://dx.doi.org/10.3390/ma10091017
http://www.ncbi.nlm.nih.gov/pubmed/28862680
http://dx.doi.org/10.1016/S1359-6454(03)00169-1


Materials 2018, 11, 1805 23 of 24

70. Sergueeva, A.V.; Mara, N.A.; Mukherjee, A.K. Grain boundary sliding in nanomaterials at elevated
temperatures. J. Mater. Sci. 2007, 42, 1433–1438. [CrossRef]

71. Sun, Z.; Petegem, S.V.; Cerrellino, A.; Durest, K.; Blum, W.; Swygenhoven, H.V. Dynamic recovery in
nanocrystalline Ni. Acta Mater. 2015, 91, 91–100. [CrossRef]

72. Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater.
2009, 57, 5146–5155. [CrossRef]

73. Tonk, M.; Millet, P.; Cai, W.; Wolf, D. The elastic strain energy driving force for grain boundary migration
using phase field simulation. Scr. Mater. 2010, 63, 1049–1052. [CrossRef]

74. Zhong, C.; Zhang, H.; Cao, Q.P.; Wang, X.D.; Zhang, D.X. Non-localized to localized plastic flow transition
in metallic glasses. Scr. Mater. 2016, 114, 93–97. [CrossRef]

75. Sundararajan, G.; Tirupataiah, Y. The localization of plastic flow under dynamic indentation conditions:
Experimental results. Acta Mater. 2006, 54, 565–575. [CrossRef]

76. Vinogradov, A.; Lasarev, A. Propagation of shear bands in metallic glasses and transition from serrated to
non-serrated plastic flow at low temperature. Acta Mater. 2010, 58, 6736–6743. [CrossRef]
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