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Abstract: Unlike conventional steel strands, the smart strand supports strain-measuring function
and adopts different materials for its core wire and helical wires. This study intends to analytically
derive the nonlinear stress-strain model of this strand made of two materials. The effect of the
bending moment and torsional moment of the helical wires on the overall load within the range of
geometric shapes shown by actually used strands is verified to be negligible and is thus ignored
in order to simplify the analytical model. Moreover, the slight difference between the actual and
analytic behaviors, which only appears in the slope varying part in the case of bilinear behavior,
such as that of steel, is also ignored. The proposed constitutive model of the smart strand obtained
by introducing the experimental stress-strain relation between the carbon fiber reinforced polymer
core wire and the helical steel wires is in good agreement with the experimental data. The previous
analytical models are applicable only to strands made of a unique linear material, whereas the model
proposed in this study is also applicable to strands in which the core wire and the helical wires are
made of two different materials, exhibiting nonlinear behavior.
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1. Introduction

In prestressed concrete (PSC) structures, the jacking force is introduced mainly through the
strands. The smart strand was developed recently to be able to measure the prestress force in PSC
structures throughout their service life since their erection. The smart strand is achieved by replacing
the core wire of the traditional steel strand by a steel tube [1,2], a CFRP (Carbon Fiber-Reinforced
Polymer) rod [3], or a GFRP (Glass Fiber-Reinforced Polymer) rod [4] in which an optical fiber sensor
is installed (Figure 1). Such an arrangement results in the application of different materials for the core
wire and its surrounding helical wires, and necessitates providing a new load-strain model for the
smart strand.
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Figure 1. Composition of a seven-wire strand: (a) Steel strand; (b) Smart strand. 
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of steel strands. These researchers derived load-strain models for strands made of linear elastic steel 
and ropes made of bundles of strands, and could obtain results accurately simulating the linear elastic 

Figure 1. Composition of a seven-wire strand: (a) Steel strand; (b) Smart strand.

Costello [5] and Velinsky [6] conducted studies to analytically derive the load-strain relationship
of steel strands. These researchers derived load-strain models for strands made of linear elastic steel
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and ropes made of bundles of strands, and could obtain results accurately simulating the linear elastic
behavior. Other studies also numerically analyzed the behavior of strands and ropes. Shibu et al. [7]
investigated the influence of the boundary conditions at the ends of the rope made of bundles of
steel strands through numerical analysis. Erdönmez and İmrak [8] considered friction and slip in
the analysis of steel strands and ropes. Nawrocki and Labrosse [9] accounted for various conditions
(rolling, sliding, pivoting) between the wires of the steel strand. Jiang and Henshall [10] considered
the effect of a fixed-end termination on the contact forces in the analysis of inelastic steel strands.
All of these studies concerned strands in which the core wire and helical wires are made of steel, and
thus they are not applicable in the case of a core wire and helical wires made of different materials.
In addition, Jiang and Henshall [10] were the only ones who considered the material nonlinearity in
their numerical analysis.

The present study intends to analytically derive the load-strain relationship of strands in which
the core wire and helical wires are made of different materials, as is the case for the smart strand.
The formulation is conducted for cases where the core wire and helical wires are made of linear
materials and nonlinear materials.

2. Compatibility of the Strand

This chapter deals with the relation between the geometric parameters of the wire before and after
deformation. The adopted process is basically similar to that of Costello [5], but the formulation is
conducted to allow different materials for the core wire and helical wires. This implies some difference
in the compatibility conditions, considering the different Poisson’s ratios exhibited by the core and
helical wires.

The strand presents a straight core wire surrounded by m helical wires. When the radius of
the core wire is R1 and that of the helical wire is R2, the helix radius r2 of the helical wire before
deformation of the strand is:

r2 = R1 + R2 (1)

In addition, the initial helix angle α2 of the helical wire can be expressed as follows using the helix
radius r2 and the pitch p2:

tan α2 =
p2

2πr2
(2)

The strand undergoes deformation according to the application of the load, as shown in Figure 2.
Once the strand is loaded, the diameters of the core and helical wires change respectively into
R1(1− ν1ε1Z) and R2(1− ν2ε2Z) due to the Poisson’s effect, and lead to the helix radius (r2) of the
helical wire becoming R1(1− ν1ε1Z) + R2(1− ν2ε2Z). Denoting the post-deformation helix angle by
α2, the change ∆α2 of the helix angle is:

∆α2 = α2 − α2 (3)

If the strand is straight, then its longitudinal strain εps and the longitudinal strain ε1Z of the core
wire will be equal. In addition, the corresponding longitudinal strain ε2Z of the helical wire can be
expressed as follows:

εps = ε1Z = (1 + ε2Z)
sin α2

sin α2
− 1 (4)

The rotational strain β2 of the helical wire can be expressed as the product of the helix radius of the
helical wire, r2, and the angle of twist per unit length of strand, τs, leading to the following equation:

β2 = r2τs =
r2

r2

1 + ε1Z
tan α2

− 1
tan α2

(5)
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Due to the Poisson’s ratio effect, the helix radius of the helical wire after deformation, r2, becomes:

r2 = r2 − (ν1R1ε1Z + ν2R2ε2Z) (6)

where ν1 and ν2 are the Poisson’s ratios of the core wire and helical wire, respectively.
Since ∆α2, ε1Z and ε2Z are very small in Equations (3)–(5), Equations (4) and (5) can be

approximated as follows:

ε1Z = ε2Z +
∆α2

tan α2
(7)

β2 = r2τs =
ε2Z

tan α2
− ∆α2 +

ν1R1ε1Z + ν2R2ε2Z
r2 tan α2

(8)

Combining Equations (7) and (8), and solving the system of equations gives:

ε2Z = C1ε1Z + C2 (9)

∆α2 = (1− C1) tan α2ε1Z − C2 tan α2 (10)

where the coefficients C1 and C2 are:

C1 =
r2 tan2 α2 − ν1R1

r2 tan2 α2 + r2 + ν2R2
(11)

C2 =
r2

2τs tan α2

r2 tan2 α2 + r2 + ν2R2
(12)

Accordingly, the change in curvature with respect to the y-axis, ∆κ2Y, as well as the change in
twist per unit length, ∆κ2Z, can be linearized as follows:

∆κ2Y = −2 sin α2 cos α2

r2
∆α2 +

ν1R1ε1Z + ν2R2ε2Z
r2

cos2 α2

r2
(13)

∆κ2Z =
1− 2 sin2 α2

r2
∆α2 +

ν1R1ε1Z + ν2R2ε2Z
r2

sin α2 cos α2

r2
(14)
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3. Load-Strain Relation

This chapter derives the load-strain relation for both linear and nonlinear materials. Figure 3
presents the components of the load applied to the helical wire.
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3.1. Linear Materials

This section derives the load-strain relation when the core wire and helical wire are made of
different linear materials.

The moment with respect to the y-axis of the helical wire, M2Y, and the torsional moment with
respect to the longitudinal z-axis of the helical wire, M2Z, can be expressed as follows:

M2Y = E2 I2Y∆κ2Y (15)

M2Z = G2 I2P∆κ2Z (16)

where E2 and G2(= E2
2(1 + ν2)

) are the elastic modulus and the shear elastic modulus of the helical wire,

respectively; and I2Y(= πR4
2

4 ) and I2P(= πR4
2

2 ) are the moment of inertia and the polar moment of inertia
with respect to the y-axis of the helical wire, respectively. These moments enable one to obtain the
component F2Y of the section force in the y-axis of the helical wire.

F2Y = M2Z
cos2 α2

r2
−M2Y

sin α2 cos α2

r2
(17)

The component F2Z of the section force in the longitudinal axis of the helical wire is:

F2Z = E2 A2ε2Z (18)
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where A2 is the cross-sectional area of one helical wire. Summing up the components of the section
force of the helical wire in the longitudinal direction of the strand for all the helical wires gives the
resisting force F2 acting on all the helical wires in the longitudinal direction of the strand.

F2 = m2(F2Z sin α2 + F2Y cos α2) (19)

The component F1Z of the section force in the longitudinal direction of the core wire is equal to
the resistance force F1 of the core wire along the length of the strand, and can be obtained as follows:

F1 = F1Z = E1 A1ε1Z (20)

The force F acting on the strand is obtained as the sum of the resistance forces acting in the core
and helical wires.

F = F1 + F2 (21)

In order to evaluate the contribution of each component of the force acting on the strand,
Equation (21) is rearranged as follows by separating the components:

F = F1Z + m2F2Z sin α2 −m2M2Y
sin α2 cos2 α2

r2
+ m2M2Z

cos3 α2

r2
(22)

where the contributing percentage of each term to the force acting on the strand is listed in Table 1 by
using the actual shape range of the seven-wire strand with a diameter of 15.2 mm (2.56 mm ≤ R1 ≤
2.60 mm, 2.50 mm ≤ R2 ≤ 2.52 mm, 182.4 mm ≤ p2 ≤ 273.6 mm). In Equation (22), the first term
F1Z and the second term m2F2Z sin α2 contribute 15–16% and 84–85% to the strand force, respectively.
Meanwhile, the third and fourth terms have nearly 0% contribution to the strand force.

Table 1. Contribution of each term of Equation (22) in the shape change of the steel strand.

Shape (mm) Contributing Percentage to Strand Force (%)

R1 R2 p2 First Term Second Term Third Term Fourth Term

2.56 2.52 182.4 15.4 84.6 0.0 0.0
2.56 2.52 273.6 15.0 85.0 0.0 0.0
2.60 2.50 182.4 16.0 84.0 0.0 0.0
2.60 2.50 273.6 15.6 84.4 0.0 0.0

Let us now see the effect of the rotation of the strand on each term of Equation (22). Table 2
arranges the contribution of each term of Equation (22) on the strand force in occurrence of rotations
by 90 degrees and −90 degrees per meter of the steel strand. Similar to Table 1, it appears that the
contributions of the third and fourth terms of Equation (22) are practically null.

Table 2. Contribution of each term of Equation (22) in the case of rotation of the steel strand.

Rotation (Degree/m) Contributing Percentage to Strand Force (%)

First Term Second Term Third Term Fourth Term

90 14.4 85.7 0.0 0.0
−90 17.5 82.5 0.0 0.0

From an engineering standpoint, the third and fourth terms can be ignored, and the strand force
F can be replaced as follows by the simplified force FS:

FS = E1 A1ε1Z + m2E2 A2ε2Z sin α2 (23)
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3.2. Nonlinear Materials

The possibility to simplify the force acting on the strand by summing up the force components in
the longitudinal direction of the core and helical wires was verified in the precedent section. The present
section intends to obtain this force by means of a simplified equation in the case where the core and
helical wires are made of different, nonlinear materials.

First, the force of the core wire can be obtained by integrating the stress σ1Z(ε1Z) developed in
the core wire over its cross-sectional area.

F1Z =
∫

A1

σ1Z(ε1Z)dA (24)

Since the strain is constant over the cross-sectional area of the core wire, Equation (24) can be
rewritten as follows:

F1Z = A1σ1Z(ε1Z) (25)

Besides, the strain in the helical wire can be expressed as ε2Z − x∆κ2Y, where ε2Z is the strain
along the length of the helical wire and x∆κ2Y corresponds to the change in the curvature relative to
the y-axis of the helical wire, in which x is the distance from the center of the cross-section of the helical
wire in the x-axis direction. Similar to the core wire, the force of the helical wire can also be obtained
by integrating the stress σ2Z(ε2Z − x∆κ2Y) over its cross-sectional area.

F2Z =
∫

A2

σ2Z(ε2Z − x∆κ2Y)dA (26)

Because of the symmetry of the helical wire with respect to the y-axis, x∆κ2Y will not have any
effect on F2Z in the case of a linear stress-strain relation in the section. Figure 4 depicts the distribution
of the longitudinal strain together with the stress distribution inside the cross-section of the helical
wire. Considering a bilinear behavior for the material of the helical wire, the stress will also exhibit
linear distribution, as expressed below, when the strain range inside the cross-section is smaller than
the yield strain εsy as in (a), or is larger than εsy as in (c).∫

A2

σ2Z(ε2Z − x∆κ2Y)dA ∼=
∫

A2

σ2Z(ε2Z)dA (27)

Note that Equation (27) does not hold in the part where the range of the strain in the cross-section
includes the yield strain, as in (b). However, |R2∆κ2Y| runs around 1.5% to 3.4% of |ε2Z| for the
actual shape range of the seven-wire strand with a diameter of 15.2 mm (2.56 mm ≤ R1 ≤ 2.60 mm,
2.50 mm ≤ R2 ≤ 2.52 mm, 182.4 mm ≤ p2 ≤ 273.6 mm). This represents the largest difference that
could occur due to |x∆κ2Y|. This difference becomes smaller at the center of the section where the
contribution to F2Z is higher, as the cross-sectional area is larger. Consequently, the effect of x∆κ2Y
is ignored here, since it induces difference only in the limited portion where the stress distribution
is not linear. Accordingly, F2Z of Equation (26) can be replaced by F2Z,S without integration, shown
as follows:

F2Z,S =
∫

A2

σ2Z(ε2Z)dA = A2σ2Z(ε2Z) (28)

Finally, the load-strain relation of the strand made of nonlinear materials resulting from this
process can be obtained as follows:

FS = A1σ1Z(ε1Z) + m2 A2σ2Z(ε2Z) sin α2 (29)

Substituting the linear material models of the core and helical wires in Equation (29) results in the
load-strain model for linear materials in Equation (23).
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Figure 4. Stress distribution according to strain distribution in the longitudinal direction of helical wire:
(a) before yielding; (b) during yielding; (c) after yielding of helical wire.

4. Verification

Comparison is done with actual experimental data to validate the established load-strain relation.
The stress-strain relation of the materials used for the core and helical wires constituting the

strand is necessary to apply the proposed model in Equation (29). The smart strand adopted for the
verification in this study is composed a CFRP core wire and steel helical wires. Material models are
thus necessary for the CFRP wire and steel wire. To that end, tensile tests were conducted as shown in
Figure 5 for the CFRP wire and steel strand. In addition, tensile test was also performed on the smart
strand itself to validate the proposed method. As described in Figure 5, both ends of the steel strand
were fixed by pressure grips to prevent sliding between the core wire and the helical wires. Two grips
were installed at the ends of the CFRP wire wrapped by six helical wires. T700 carbon fiber of Toray
Industries is used for the CFRP wire. Note that the volume fraction of the CFRP wire is 80%.
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Figure 5. View of tensile test conducted on CFRP (Carbon Fiber-Reinforced Polymer) wire, steel strand,
and smart strand.

The following stress-strain relation was obtained from the tensile test of the CFRP wire. Here, the
strain is derived from the FBG (Fiber Bragg Grating) wavelength of the optical fiber embedded in the
CFRP wire:

σCFRP(ε) = ECFRPε (30)

where the elastic modulus (ECFRP) of the CFRP core wire is 173 GPa.
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The results of the direct tensile test of the steel strand were used to indirectly derive those of the
steel wires. In other words, the stress-strain relation of the steel wire was obtained by solving the
following optimization problem to minimize the difference between the experimental curve of the
steel strand and Equation (29):

min
n

∑
i
(Fs,i − Fe,i)

2 , i = 1, . . . , n (31)

where n is the number of data; Fe,i is the ith load value in the test; and Fs,i is the value of the load
obtained by substituting the ith strain of the test in Equation (29). The bilinear stress-strain model of
the steel material was applied by Menegotto [11], Hoehler and Stanton [12], and other researchers for
repeated loading, as well as by Mattock [13] for monotonically increasing loading. Since the material
model for monotonically increasing load is sufficient, this study adopts the comparatively simple
model of Mattock, expressed in Equation (32).

σs(εs) = Esεs

A +
(1− A)[

1 + (Bεs)
C
]1/C

 (32)

where σs is the stress; εs is the strain; and Es, A, B, C are material model constants, for which values
resulting from the optimization are 200 GPa, 0.025, 109, and 10.8, respectively. Figure 6 plots the smart
wire (CFRP wire) and steel wire.
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The substitution of these material models for the CFRP wire and steel wire into Equation (29)
provides the load-strain relations of the steel strand and smart strand. In the steel strand, the diameter
of the core wire (R1) is 2.6 mm and that of the helical wire (R2) is 2.51 mm. The Poisson’s ratio of the
core and helical wires (ν1, ν2) is 0.3, and the lay length of the steel strand (p2) is 225 mm. In the smart
strand, the core wire has a diameter (R1) of 2.65 mm with a Poisson’s ratio (ν1) of 0.3, and the helical
wire is identical to that of the steel strand.

The comparison of the analytical and experimental results in Figure 7 reveals their good agreement.
The concordance observed for the steel strand is obvious since the material model of the steel wire
used in the analytical formula for the steel strand was derived based upon the experimental results of
the steel strand. Moreover, good agreement is also observed for the smart strand even if the analytical
results for the smart strand were obtained by substituting the material models of the CFRP core wire
and steel wire derived individually. These results demonstrate the feasibility and validity of the
method deriving the load-strain model of strands made of two materials proposed in this study.
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5. Conclusions

The load-strain model of the strands was analytically derived considering the case where the
core and helical wires are made of different materials, such as in the smart strand. This model can be
applied not only for linear materials but also for nonlinear materials. Moreover, all the parameters
determining the shape of the strands, such as the diameter of the core and helical wires and the pitch,
can be considered.

The effect of the bending moment and torsional moment of the helical wires on the overall load
within the range of geometric shapes shown by actually used strands was verified to be negligible, and
was thus ignored in order to simplify the analytical model. Moreover, the slight difference between the
actual and analytic behaviors, appearing only in the slope varying part in the case of bilinear behavior,
such as that of steel, was also ignored. The proposed constitutive model of the smart strand obtained
by introducing the experimental stress-strain relation between the CFRP core wire and the helical steel
wires was in good agreement with the experimental data.

The previous analytical models are applicable only to strands made of a unique linear material,
whereas the model proposed in this study is also applicable to strands in which the core wire and the
helical wires are made of two different materials, exhibiting nonlinear behavior.
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