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Abstract: A simple electrophoretic deposition method was developed to prepare graphene oxide
(GO) films on the frameworks of nickel foam without any conductive agents and polymer binders.
Then, GO was transformed into thermally-reduced graphene oxide (RGO) at an appropriate
temperature. The effects of deposition voltage and thermal reduction temperature on the
electrochemical properties of RGO were investigated by cyclic voltammetry (CV) and galvanostatic
charge/discharge. The appropriate combination of deposition voltage and thermal reduction
temperature was established. Moreover, scanning electron microscopy, thermal gravimetric analysis,
differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray
diffractometry were applied to validate the results, which showed that the highest specific capacitance
of RGO was obtained when the deposition voltage was 60 V and the thermal reduction temperature
was 300 ◦C. The specific capacitance values calculated by CV and galvanostatic charge/discharge
were 139 F·g−1 (0.005 V·s−1) and 151 F·g−1 (1 A·g−1), respectively. The specific capacitance of RGO
maintained 55% and 66% of the initial value when the scan rate and the current density were increased
up to 0.3 V·s−1 and 10 A·g−1, respectively. RGO also displayed an excellent cycling stability by
maintaining 98% of the initial specific capacitance after 500 cycles.

Keywords: graphene oxide; electrophoretic deposition; thermal reduction; supercapacitor;
electrochemical performance

1. Introduction

Energy scarcity is one of the serious challenges of the 21st century; the depletion of
fossil fuel resources and the worsening environmental problems create an urgent demand for
environmentally-friendly high-power energy storage devices to satisfy the power demands [1,2].
Supercapacitors have recently attracted significant attention because they can operate at high
charge/discharge rates over an almost unlimited number of cycles, enable energy recovery in
heavy-duty systems, and are relatively inexpensive [3].

The electrode material is the most important factor in the supercapacitor, which directly affects
the properties of the supercapacitor. The electrode material is usually divided into three kinds,
corresponding to carbon material, conductive polymer, and metallic oxide. Among them, carbon
material is regarded as the most promising electrode material applied in industry. The carbon material
includes activated carbon, porous carbon, carbon nonotubes, and grapheme [4]. Activated carbon can
be prepared by the activation method with some materials (such as mesophase pitch, poly, sucrose,
and so on) as the precursors. The activation agents include KOH [5], NaOH [6], CO2 [7], and so
on. The activated carbons (ACs) prepared from mesophase pitch with KOH etching were used to
fabricate electrodes for electric double layer capacitors (EDLC) [5]. The performance of the ACs in
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the organic solvent (1 M of Et4NBF4 in propylene carbonate) was investigated with voltage sweep
cyclic voltammetry and constant-current charge-discharge cycling. The sample with a surface area of
2258 m2·g−1 possessed a specific capacitance as high as 145 F·g−1. Xu et al. [6] prepared mesoporous
activated carbons with high surface area by NaOH activation for non-aqueous EDLC. The material with
optimized pore size presented both a high capacitance of 155 F·g−1 and outstanding rate capability
in non-aqueous electrolytes. As the current density was increased to 18,000 mA·g−1, it remained
109 F·g−1, an attractive value for EDLC.

Lu et al. [7] prepared activated sucrose-derived carbons (ASCs) by the pyrolysis of sucrose
followed by the activation with CO2 gas for 1–5 h at 900 ◦C. The material exhibited a comparatively
high specific capacitance of about 160 F·g−1 and an excellent frequency response in a two-electrode
EDLC cell with 1 M H2SO4 as the electrolyte. Although activated carbon is most widely used in EDLC,
there are two inherent shortcomings corresponding to low specific capacitance at a high current and
poor rate capacity performance. Porous carbon is also a promising electrode material used in the
supercapacitor, which is usually produced by the template method.

Liu et al. [8] prepared the ordered hierarchical mesoporous/microporous carbon nanomaterial
(OHMMC) derived from mesoporous titanium-carbide/carbon composites by the template method.
The material exhibited a hexagonal mesostructure of 3 nm, around which a large number of
microporous with the size ranging from 0.6 to 1.3 nm were observed. The unique structure endowed
the material with excellent electrochemical properties. Its specific capacitance reached 146 F·g−1 at a
current density of 100 mA·g−1 in 1 M (C2H5)4NBF4/PC electrolyte. Moreover, it also exhibited the
excellent cycle performance (83% of its initial capacity was maintained after 5000 cycles). Liu et al. [9]
synthesized the order mesoporous carbon nanofiber arrays (MCNAs) from a crab shell biological
template. The arrays with a very high specific area (1266 m2·g−1) included a larger number of
highly-ordered mesopores with diameters of about 11.5 nm. The specific capacitance of MCNAs was
152 F·g−1 at a current density of 100 mA·g−1 in 1 M (C2H5)4NBF4/PC electrolyte.

Huang et al. [10] directly synthesized three-dimensional, hierarchically ordered, porous carbon
(HOPC) by means of a simple one-pot synthesis procedure. The designed porous textures of the 3D
HOPC materials were composed of highly-ordered, fcc macropores (300 nm), interconnected porous
structures, including macroporous windows (170 nm), hexagonally-ordered mesopores (5.0 nm),
and useful micropores (1.2 nm). 3D HOPC-g-1000 (g = graphitic, 1000 = pyrolysis temperature of
1000 ◦C) with partially graphitic nanostructures had a low gravimetric specific capacitance (73.4 F·g−1

at 3 mV·s−1), but a better rate performance and excellent cycling performance (>5400 cycles). It can be
seen that porous carbon with the anticipated structure and physicochemical properties can be produced
by selecting the suitable template, carbon source, and processing parameters. However, a few issues
need to be overcome (such as high cost, low productivity, complicated preparation process, and so on).
Carbon nanotubes are widely concerned about due to their unique structure, high electroconductivity,
excellent mechanical properties, and good chemical/thermal stability. Those advantages are what
the supercapacitor needs. An et al. [11] synthesized single-walled CNTs by DC-arc discharge under
a helium pressure of 13,332 Pa, and investigated the key factors determining the performance of
supercapacitors using single-walled CNTs as the electrode. A maximum specific capacitance of
180 F·g−1 and a large power density of 20 kW·kg−1 were obtained at an energy density of 6.5 Wh·kg−1

in 7.5 N KOH aqueous solution. Hiraoka et al. [12] fabricated the carbon nanotubes with a very high
specific area of 2240 m2·g−1 by opening single-walled carbon nanotubes (SWNT) forests via controlled
oxidation. The specific capacitance reached 114 F·g−1 in a tetraethylammonium tetrafluoroborate
(Et4NBF4)/propylene. Although the investigations into carbon nanotubes as the electrode material
of the supercapacitor have been carried out, the complicated preparation process, high cost, and
comparatively low specific area still seriously limit their application in industry.

Graphene has been considered an ideal electrode material for supercapacitors because of
its outstanding conductivity, superior theoretical capacitance, high theoretical surface area, and
electrochemical stability [13]. Many routes have been developed so far to prepare graphene for
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supercapacitors [14,15]. One of the promising routes for the large-scale and low-cost preparation of
graphene is the reduction of graphene oxide (GO) [16–18], in which GO is first prepared by oxidizing
graphite, which is subsequently converted into GO by chemical exfoliation [19]. GO can be viewed as a
graphene layer that is asymmetrically decorated with oxygen-containing functional groups on the basal
plane and along the edges [20]. Finally, GO is further transformed into reduced graphene oxide (RGO)
by chemical or thermal reduction. Chemical reduction is effective for producing graphene. However,
the strong reducing agents (such as hydrazine) used in this method are hazardous and toxic [21,22].
Consequently, several chemical reduction systems composed of safe and environmentally-friendly
agents have been explored to produce graphene. Liu et al. [23] fabricated RGO by solvothermal
synthesis. In this method, a reaction system composed of GO (60 mg) and ethanol (60 mL) is heated
at temperatures that range from 413 to 493 K for 10 h. The product is dried in vacuum at 323 K for
24 h. Their results revealed that only the carbonyl group is retained. Tao et al. [24] also prepared RGO
by solvothermal synthesis. In their method, GO is dispersed in deionized water and heated in an
autoclave at 180 ◦C for 12 h to obtain reduced GO hydrogels. Then, the hydrogels are freeze-dried to
obtain the corresponding reduced GO foams. The agents used in these methods are clean and green.
However, they are complicated, time-consuming, and require high temperatures.

Thermal reduction was recently introduced as an efficient method of obtaining graphene [25].
The thermal reduction of GO is more convenient than chemical reduction and does not use hazardous
reductants. Xia et al. [26] prepared RGO through the thermal reduction of GO at 850 ◦C for 6 h. RGO was
mixed with acetylene black and polytetrafluoroethylene at a mass ratio of 8:1:1. The electrode was
prepared by pressing the mixture onto a 1 cm2 nickel foam at 10 MPa and dried at 70 ◦C overnight.
Li et al. [27] also prepared RGO by thermal reduction. They rapidly heated GO at 800 ◦C for 30 s to
obtain RGO. RGO, SnO2 nanoplatelets, carbon black, and poly were mixed and dispersed in the ethanol
solution to obtain the slurry, which was coated onto a nickel foam to form an electrode. Xiao et al. [28]
prepared RGO through the thermal reduction of GO at 300 ◦C for 3 h. They assembled the electrode
by coating a nickel foam with a slurry consisting of RGO, acetylene black, conducting graphite, and
ethanol. Notably, RGO is usually prepared in powder form, which needs to be mixed with additives
to form an electrode [29–31]. However, additives may decrease the conductivity of the electrode.
Moreover, manual smearing methods, such as press slice [32], spray-coating [33], and spin coating [34],
are usually used to assemble the mixture and the substrate into an electrode, thereby making the
electrochemical properties of the electrode difficult to control precisely. Therefore, a new method of
preparing RGO-based electrodes with good reproducibility and without additives should be sought.

Electrophoretic deposition (EPD) is regarded an economical and versatile alternative of preparing
GO films with controllable thickness and morphology on different substrates [35,36]. Wang et al. [37]
directly deposited GO on carbon fibers (CFs) by EPD with an applied voltage of 160 V in isopropyl
alcohol as the electrolytic solution. Their results indicated that a thin layer of GO sheet with a wrinkled
structure was successfully deposited on the CF. Ghasemi et al. [38] prepared a thin GO film on stainless
steel (SS) by EPD from an aqueous dispersion of GO with an applied voltage of 4 V for 5 min. The film
adhered to the SS without peeling off from the surface. Xiong et al. [39] studied the deposition of GO
on nickel foam by EPD. Their reaction system was composed of GO (200 mg) and ethanol (100 mL),
and the deposition was conducted for 1 min at a voltage of 2 to 5 V. After EPD, the substrate covered
with GO is thermally reduced at high temperatures [40,41], during which GO is thermally reduced.
Therefore, GO-based electrodes are prepared by EPD followed by thermal reduction.

However, the effects of deposition voltage and thermal reduction temperature on the
electrochemical properties of RGO electrodes have not been investigated in detail. Deposition
voltage is an important parameter of EPD because it directly affects the thickness and morphology
of deposits. A low voltage may result in the incomplete covering of the substrate, thereby reducing
the stored energy of the RGO-based supercapacitor significantly. On the contrary, a high voltage
may lead to the control of deposition by the diffusion of GO particles, which not only reduces the
deposition rate, but also deteriorates the quality of the deposited GO. Thermal reduction temperature
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is also an important factor in the final electrochemical properties of RGO. A high temperature
contributes to enhancing the conductivity and the surface area of RGO by the exfoliation of RGO
and the removal of oxygen-containing groups in GO, thereby improving the EDLC of RGO [40].
However, the pseudocapacitance contribution may be eliminated due to the complete removal
of the oxygen-containing groups. The analyses above indicate that an RGO prepared with the
optimum combination of deposition voltage and thermal reduction temperature can exhibit the
best electrochemical properties.

In this paper, GO was deposited on nickel foam by EPD in an aqueous dispersion of GO,
and then thermally reduced to RGO at high temperatures. The effects of deposition voltage and
thermal reduction temperature on the electrochemical performance of RGO electrodes were studied
systematically. The appropriate combination of the deposition voltage and thermal reduction
temperature was established.

2. Experimental

Nickel foam with high specific surface area can effectively prevent the stacking and agglomeration
of GO particles and carry many active substances (GO), which are endowed with a high specific
capacitance [42]. As the anode, commercial nickel foam (20 mm× 25 mm, Shanxi Power Source Battery
Materials Co., Ltd., Taiyuan, Shangxi, China) was treated in 0.1 mol·L−1 in diluted hydrochloric acid
by ultrasonic waves for 30 min and cleaned with deionized water, ethanol, and acetone. Then, the
nickel foam was weighed using a BSA124S electronic balance (0.1 mg, Sartorious, Beijing, China).
Flaky graphite (20 mm × 25 mm, Beijing Electrical Carbon Factory, Beijing, China) was chosen as the
cathode. GO (50 mg), prepared through a modified Hummers method, [43] was mixed with 100 mL
of deionized water, and then processed for 2 h by ultrasonic waves to yield a stable GO suspension
(0.5 mg·mL−1) as the electrolyte.

The schematic of EPD is depicted in Figure 1. The GO suspension was poured into an electrocoat
tank. Two graphite pieces were symmetrically placed on both sides of a piece of nickel foam, between
which 1 cm was maintained. The applied deposition voltages were 20, 40, 60, 80, and 100 V. The anode
was naturally air-dried after deposition. Then, the GO deposited on the nickel foam was transformed
into RGO in a muffle stove in an argon atmosphere at 200, 300, and 400 ◦C for 2 h. The electrode was
weighed again to obtain the weight of RGO by subtracting the weight of the nickel foam.
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Figure 1. Schematic diagram of the EPD process.

The morphology of GO before and after thermal reduction was examined using a S-3400 scanning
electron microscope (SEM, Hitachi , Tokyo, Japan). The thermal reduction properties of GO were
characterized by an SDT Q600 V20.9 Build 20 thermal gravimetric and differential thermal analyzer
(TGA–DTA, TA Instruments, New Castle, DE, USA), a Nicolet FT-IR370 (Thermo Fisher Scientific,
Waltham, MA, USA) Fourier transform infrared spectrometer (FTIR), and a Raman spectrometer
(Renishaw, Dongguan, Guangdong, China). Phase constituents of nickel foam before and after
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treatment (Electrophoretic deposition and thermal reduction) were identified using a X’ Pert Pro
X-ray diffractometer (XRD, PANalytical, Eindhoven, ZuidHolland, The Netherlands) with Cu Kα

radiation (λ = 0.1540560 nm).The electrochemical performance was measured by cyclic voltammetry
(CV) and galvanostatic charge/discharge on a CHI 6082D (CH Instruments Ins, Shanghai, China)
electrochemical workstation with the nickel foam covered with RGO as the working electrode, the
graphite sheet as the counter electrode, and the saturated calomel electrode (SCE) as the reference.
A 0.5 M Na2SO4 aqueous solution was selected as the electrolyte. The CV scans were recorded from
−0.2 to 0.8 V (vs. SCE) at different scan rates (0.005, 0.01, 0.05, 0.1, and 0.3 V·s−1). Galvanostatic
charge/discharge was performed in the potential range of −0.2 to 0.8 V at different constant current
densities (1, 1.5, 3, 5, and 10 A·g−1).

3. Results and Discussion

3.1. Morphological Characterization of GO

Figure 2 show the relationship curve between the voltage and deposition amount of GO.
Both approximately present a linear relationship. These data were processed by the least squares
method, and the fitting result is as follows:

W = 0.00604V + 0.27825 (1)

where W is the deposition amount (mg·cm−2) and V is the voltage (V).
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Figure 2. Relationship between voltage and deposition amount.

The resistance is approximately constant in the electrodeposition system. According to Ohm’s law,
a high voltage causes many GO particles to move and deposit on the nickel foam. This law is consistent
with the experimental result. However, this agreement does not mean that a better deposition quality
can be obtained with a higher deposition voltage.

The above analyses indicate that a layer of high-quality GO can be obtained at a deposition voltage
of 60 V. Figure 3 shows the morphological evolution of the nickel foam with the change in deposition
voltage. When a low deposition voltage (20 and 40 V) is used, some frameworks in the nickel foam are
not completely covered with GO (Figure 3b). The naked zones without active substances lead to the
loss of specific capacitance. However, when an extremely high deposition voltage is applied (80 and
100 V), some GO particles may aggregate on the edges of the frameworks, spread around, and finally
cover some holes around the frameworks (Figure 3d). This activity prevents ions from migrating
toward the inner part of the nickel foam, thereby decreasing the specific capacitance. Obviously, the
nickel foam with all frameworks tightly covered with a dense layer of GO (60 V) exhibits the best
performance (Figure 3c). This finding is further confirmed by SEM.
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Figure 4a shows that the initial nickel foam is composed of numerous three-dimensional,
cross-linked frameworks, among which many pores can be clearly observed. After deposition at 20, 40,
and 60 V, the nickel foam presents a similar structure as shown in Figure 4c,e,g in low-magnification
SEM images. However, the high-magnification SEM images clearly reveal a regular change before and
after deposition. The framework consists of equiaxial grains and the grain boundary is clearly visible
prior to deposition. The grain boundary becomes obscure after deposition at 20 V, thereby indicating
that the framework is covered with a thin layer of GO. Several fold-like patterns are formed around
the edges of the frameworks at 40 V. These patterns become more obvious at 60 V. This phenomenon is
relevant to the edge effect. The charge density around the electrode edge is higher than that in the
other zones and proportional to the electric field strength. Therefore, more GO particles tend to be
deposited around the electrode edge the stronger the electric field. The deposited GO on the electrode
edge flows slowly under gravity when the electrode is removed from the GO dispersion, thereby
resulting in the formation of fold-like patterns that are approximately parallel to the direction of gravity.
The morphology of GO significantly changes at 80 V. Some bright white blocky and strip-shaped
products appear on the edges of the frameworks (Figure 4i). When the deposition voltage is further
increased to 100 V similar, but larger, products are visible and some holes around the frameworks are
covered (Figure 4j). These products may be the over-deposited GO. When GO is radiated by secondary
electrons in the SEM observation, numerous electrons aggregate on the surface of GO due to its poor
electrical conductivity, thereby resulting in the formation of white zones [44].
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3.2. Thermal Reduction Properties of GO

GO cannot store electrons as an insulated material [45]. Therefore, the deposited GO must
be reduced to graphene with a strong ability to store numerous electrons at a certain temperature.
The oxygen-containing functional groups in GO cannot be removed efficiently when the temperature
is extremely low. However, a high temperature may burn the nickel foam. Therefore, an appropriate
thermal reduction temperature should be selected. The appropriate temperature is confirmed by TGA
and DTA tests (Figure 5). The TGA curve shows that the weight loss of GO can be divided into four
stages as marked in Figure 5. The weight loss is negligible when the temperature is below 40 ◦C. In the
first stage, whose temperature ranges from 40 to 100 ◦C, the weight loss is approximately 15%, which
is ascribed to the evaporation of physically-absorbed water in GO. As the temperature increases from
100 to 160 ◦C (the second stage), the slope of the curve is lower than that at the first stage, thereby
suggesting a decreasing weight loss rate. The weight loss of approximately 9% at this stage mainly
results from the evaporation of chemically-absorbed water in the GO. When the temperature exceeds
160 ◦C, the weight loss is suddenly accelerated, accompanied with an abrupt weight loss of 16% in
a narrow temperature range of 160 to 240 ◦C. The weight loss at this stage is mainly caused by the
removal of numerous labile oxygen-containing functional groups in GO, which is consistent with
previous studies [46]. Slightly more weight is lost with the further increase in temperature due to
some gasification reactions that occur between carbon and the impurities (such as oxygen) in N2 [47].
The DTA result is consistent with that of TGA. A marked exothermic DTA signal is observed at the
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third stage. The TGA and DTA test results show that the oxygen-containing functional groups of
GO decomposition are decomposed at approximately 160 ◦C and decomposition is completed at
approximately 240 ◦C. Therefore, 300 ◦C is selected as the thermal reduction temperature, and 200 and
400 ◦C are selected as references.

Materials 2017, 10, 936 7 of 18 

 

is completed at approximately 240 °C. Therefore, 300 °C is selected as the thermal reduction 
temperature, and 200 and 400 °C are selected as references. 

 

 
Figure 4. SEM images of (a,b) initial nickel foam and nickel foam covered with GO deposited at 
different voltages :(c,d) 20 V; (e,f) 40 V; (g,h) 60 V; (i) 80 V; and (j) 100 V. Figure 4. SEM images of (a,b) initial nickel foam and nickel foam covered with GO deposited at

different voltages :(c,d) 20 V; (e,f) 40 V; (g,h) 60 V; (i) 80 V; and (j) 100 V.



Materials 2017, 10, 936 8 of 18

Raman spectroscopy is used to characterize the change in the molecular structure of the deposited
GO (60 V) before and after thermal reduction (300 ◦C). Figure 6 shows that three distinct characteristic
peaks can be observed in the Raman spectrum of the deposited GO before thermal reduction: the
D-band, G-band, and broad 2D-band around 1337, 1595, and 2700 cm−1, respectively. The D-band
is due to the defects or edges [48], and the G-band corresponds to the E2g phonon at the Brillouin
zone [49]. After thermal reduction, the D-band and the G-band are shifted to 1340 and 1607 cm−1,
respectively, thereby indicating the reduction of GO by thermal treatment.
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FTIR is used to analyze the oxygen-containing functional groups of GO before and after thermal
reduction at different temperatures (Figure 7). Five oxygen-containing functional groups can be clearly
identified prior to thermal reduction. A strong and broad absorption peak (peak 1) is at approximately
3427 cm−1, which can be attributed to the stretching vibration of –OH in water and GO [32]. The weak
peak (peak 2) at 1730 cm−1 is related to the stretching vibrations of C=O in the carboxyl and carbonyl
groups. The two strong peaks (peaks 3 and 4) at 1630 and 1371 cm−1 result from the bending vibration
of –OH in the carboxyl groups. The C–O epoxide group can be identified by the peak (peak 5) at
1054 cm−1. The above result confirms that many oxygen-containing functional groups (hydroxyl,
carboxyl, carbonyl, and epoxide) exist in the deposited GO, which has also been verified by several
studies [15,22]. After the thermal reduction at 200 ◦C, only the intensity of peak 1, which is related
to –OH, decreases obviously. The other peaks only slightly decrease in intensity. Those characteristic
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peaks change after thermal reduction at 300 ◦C. The intensity of the three peaks that are related to –OH
(peaks 1, 3, and 4) decreases, and those of the latter two are nearly invisible. This finding indicates that
hydroxyl groups can be removed efficiently by thermal reduction. Moreover, the two peaks at 1730
and 1054 cm−1 (peaks 2 and 5) also become weak. The intensity of all peaks is further reduced by the
thermal treatment at 400 ◦C. The FTIR result shows that GO can be reduced by thermal treatment.
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3.3. XRD Results

Figure 8a shows XRD patterns of Ni, GO/Ni, and RGO/Ni. Their patterns are highly similar,
which indicates that their phase constituents are same. Three sharp peaks are located at 2θ = 44.6◦,
2θ = 51.9◦, and 2θ = 76.4◦, which are in accordance with the JCPDS card (No. 04-0850 for Ni).
This illustrates that phase constituents of nickel foam are unchanged after deposition and thermal
reduction. Due to deposited GO on nickel foam is very litter, no GO and RGO are observed from
Figure 8a. In order to identify GO and RGO clearly, sufficient GO was scraped off from many pieces of
GO/Ni electrodes (prepared at 60 V) and collected for XRD analyses. Then GO powder was thermally
reduced at 300 ◦C and further identified by XRD. Figure 8b displays XRD patterns of GO and RGO
powder. For the powder deposited at 60 V, a board (001) diffraction peak is observed clearly at about
2θ = 10◦, indicating that the existence of GO [35]. After thermal reduction at 300 ◦C, the diffraction
peak (2θ = 10◦) related to GO disappears and a broader and weaker (002) peak arises near 24◦ [38],
suggesting the reduction of GO [50].
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3.4. Electrochemical Properties of RGO

GO was deposited at 60 V and reduced at 200, 300, and 400 ◦C. The effect of reduction temperature
on the specific capacitance of RGO is assessed by CV. Figure 9 shows the CV profiles of RGO (200,
300, and 400 ◦C) and nickel foam at a scan rate of 0.005 V·s−1 in the potential range of −0.2 V to
0.8 V. The CV curve of nickel foam presents an approximate line. The integrated area of the profile is
negligible, thereby indicating a small capacitance. The shape of the CV curves significantly changes
when GO is deposited on the nickel foam and undergoes thermal reduction at different temperatures.
A rectangular shape with a large integrated area is observed and indicates that RGO possesses a high
capacitance. The specific capacitance of RGO can be calculated according to the following equation:

Cm =

∫
idV

2×m× ∆V × S
(2)

in which Cm is the specific capacitance measured from CV tests (F·g−1),
∫

idV is the integrated area of
CV curves, m is the mass of RGO (g), ∆V is the potential range (V), and S is the scan rate (V·s−1).
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The integrated area of the nickel foam curve in Figure 9 is subtracted to obtain an accurate specific
capacitance of RGO. The specific capacitance values of RGO (200, 300, and 400 ◦C) before and after
subtraction are 105, 139, and 98 F·g−1, respectively. Therefore, the effect of the nickel foam on specific
capacitance is negligible. The thermal reduction temperature has a significant effect on the specific
capacitance of RGO. The CV curve of RGO thermally reduced at 400 ◦C has a nearly rectangular shape
with the smallest area, thereby indicating that its capacitance mainly comes from EDLC. The contribution
of pseudocapacitance to the specific capacitance is nearly negligible. The CV curve of RGO begins to
deviate from the rectangular shape and the specific capacitance is significantly increased when the
temperature is reduced to 300 ◦C. The change is closely related to the oxygen-containing functional
groups in the RGO. More groups in the RGO can be maintained at 300 ◦C than at higher temperatures,
thereby not only increasing the surface wettability and accessible electroactive surface area, but also
providing high pseudocapacitance than in that thermally reduced at 400 ◦C [25]. Pseudocapacitance
mainly comes from the reversible redox reactions among the hydroxyl groups, namely, carbonyl,
carboxyl, and lactone groups. These redox reactions can be expressed as follows [51]:

> C−OH =⇔> C = O + H+ + e− (3)

−COOH⇔ −COO + H+ + e− (4)

> C = O + e− ⇔> C−O− (5)
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With the further decrease in temperature to 200 ◦C, the above reactions should occur more
easily due to the existence of more oxygen-containing functional groups than at higher temperatures.
The capacitance should be improved correspondingly. However, this is not the case. The capacitance
is lower than that of the RGO that is thermally reduced at 300 ◦C. Pseudocapacitance depends on
the redox reactions in RGO. However, the EDLC mainly results from the free electrons in RGO.
Several studies have investigated the effect of temperature on the conductivity of RGO. The results
indicated that the conductivity of RGO (200 ◦C) is poor, thereby indicating that few electrons exist in
RGO (200 ◦C). Therefore, the decrease in the capacitance of RGO (200 ◦C) should be attributed to the
dramatic reduction in the number of free electrons.

The galvanostatic charge/discharge curves of RGO (200, 300, and 400 ◦C) are shown in Figure 10.
The curve of the RGO that is thermally reduced at 400 ◦C exhibits a typical symmetrical triangular
shape, thereby demonstrating the EDLC characteristic. The other curves (especially that of the RGO
that is thermally reduced at 300 ◦C) present a nonlinear pseudocapacitive characteristic, and obvious
oxidation reduction peaks can be clearly observed. The specific capacitance of RGO can be calculated
according to the following equation:

Cm =
I·∆t

m·∆v
(6)

where Cm is the specific capacitance measured from galvanostatic charge/discharge curve (F·g−1),
I represents the constant discharge current (A), m is the mass of RGO (g), and ∆v is the potential
range (V).
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The specific capacitance values of the RGO thermally reduced at 200, 300, and 400 ◦C are 118, 151,
and 92 F·g−1, respectively. The results are similar to those measured by CV, thereby further illustrating
that 300 ◦C is the appropriate reduction temperature.

GO is deposited at different voltages (20, 40, 60, 80, and 100 V) and reduced at 300 ◦C, which is
the appropriate temperature. The effect of voltage on the specific capacitance of RGO is assessed by
CV and galvanostatic charge/charge. Figures 11 and 12 show the CV profiles and the galvanostatic
charge/discharge curves of the RGO. The following specific capacitances of the CV measurements
are derived: 87 F·g−1 (20 V), 121 F·g−1 (40 V), 139 F·g−1 (60 V), 120 F·g−1 (80 V), and 120 F·g−1

(100 V). The following specific capacitances of the galvanostatic charge/discharge measurements are
derived: 95 F·g−1 (20 V), 124 F·g−1 (40 V), 151 F·g−1 (40 V), 120 F·g−1 (40 V), and 118 F·g−1 (100 V).
The specific capacitance presents a similar change trend with the increasing voltage. The highest
specific capacitance is obtained at the deposition voltage of 60 V. The specific capacitance increases
with the voltage when the voltage is less than 60 V. However, the specific capacitance decreases
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with a further increase in voltage. This phenomenon can be explained clearly by the change in the
morphology of the deposited GO. The deposited GO layer is comparatively leveled at a comparatively
low voltage (<60 V). However, many crumpled patterns are observed around the frameworks of the
nickel foam at 60 V, thereby significantly enhancing the specific area of GO. A high specific area implies
that many oxygen-containing function groups per unit mass of RGO are exposed to the electrolyte,
thereby providing more pseudocapacitance. Meanwhile, the EDLC is also proportional to the specific
area. A high specific area can endow the RGO with a high EDLC. The high deposition rate at high
voltages (80 and 100 V) promotes the spread of GO from the frameworks to the gaps among the
frameworks. Some gaps in the nickel foam surface may be sealed off, thereby separating the RGO
inside the nickel foam from the electrolyte. The specific capacitance decreases with the significant
reduction of the effective specific area exposed to the electrolyte.
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The effect of the charge/discharge rate on the specific capacitance of RGO prepared at the
appropriate deposition voltage (60 V) and thermal reduction temperature (300 ◦C) was investigated.
Figure 13 shows the CV profiles of RGO at different scan rates from 0.005 to 0.3 V·s−1. Rectangular
curves are still obtained at a high scan rate (0.3 V·s−1), thereby indicating that RGO has excellent
capacitance properties. Using Equation (2), the following specific capacitances of RGO at different
scan rates are derived: 139 F·g−1 (0.005 V·s−1), 130 F·g−1 (0.01 V·s−1), 109 F·g−1 (0.05 V·s−1), 98 F·g−1
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(0.1 V·s−1), and 77 F·g−1 (0.3 V·s−1). The specific capacitances decrease with the increase in scan rate.
However, the charge/discharge time is greatly shortened. The charge/discharge durations are 400 s
(0.005 V·s−1), 200 s (0.01 V·s−1), 40 s (0.05 V·s−1), 20 s (0.1 V·s−1), and 7 s (0.3 V·s−1), respectively.
The galvanostatic charge/discharge curves obtained at different current densities (1 A·g−1 to 10 A·g−1)
also exhibit a symmetrical triangular structure (Figure 14). The specific capacitances of the RGO
at different current densities are 151 F·g−1 (1 A·g−1), 135 F·g−1 (1.5 A·g−1), 121 F·g−1 (3 A·g−1),
114 F·g−1 (5 A·g−1), and 100 F·g−1 (10 A·g−1). The charge/discharge times are 151, 90, 40, 23, and
10 s, respectively. The results are consistent with those in CV. The specific capacitances present a
decreasing incline with the increasing charge/discharge rate, which is related to the diffusion of ions
in the electrolyte. Both EDLC and pseudocapacitance depend on the diffusion of ions. The diffusion
rate of ions falls behind the charge/discharge rate when the latter is too high, thereby decreasing the
specific capacitance.

As mentioned above, some carbon materials had been prepared for the electro material of
the supercapacitor [5–12]. As shown in Table 1, their specific capacitance is usually 70–160 F·g−1.
Compared with the previously reported specific capacitance of the carbon materials, the RGO electrode
prepared in this work shows a high specific capacitance, which can be easily found in Table 1. Moreover,
the preparation of the electrode is also simpler than those reported.

Table 1. Comparison of specific capacitance between this work and reported references.

Electrode Specific Capacitance (F·g−1) Current Density or Scan Rate References

RGO 151 1 A·g−1 This work
ACs 145 20 A·g−1 [5]
ACs 155 0.05 A·g−1 [6]
ACs 160 0.1 A·g−1 [7]

OHMMC 146 0.1 A·g−1 [8]
MCNAs 152 0.1 A·g−1 [9]

3D HOPC 73.4 3 mV·s−1 [10]
CNTs 180 100 mV·s−1 [11]
SWNT 114 1 mV·s−1 [12]
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Figure 15 shows that the specific capacitance of RGO is a function of the charge/discharge rate.
RGO retains approximately 55% of the value obtained in 0.005 V·s−1 as the scan rate is increased from
0.005 to 0.3 V·s−1 and approximately 66% of the values obtained in 1 A·g−1 when the current density
is increased from 1 to 10 A·g−1. Therefore, RGO exhibits an outstanding rate performance.
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The charge/discharge rate is an important performance indicator of a supercapacitor and
determines its speed of storing or releasing a certain amount of energy. In addition to the capacity
retention ratio mentioned above, the rate performance can be characterized by an index-specific
capacitance obtained per unit time (F·g−1·s−1). Figure 16 illustrates the relationship between the index
and the charge/discharge rate. The CV data are processed by the least squares method, and the fitting
result is as follows:

C = 35.54143s + 0.61465 (7)

in which s is the scan rate (V·s−1) and C is specific capacitance obtained per unit time (F·g−1·s−1).
The galvanostatic charge/discharge data are also processed by the least squares method, and the

fitting result is as follows:
C = d (8)

in which d is the current density (A·g−1) and C is specific capacitance obtained per unit time (F·g−1·s−1).
Along with the increase in the charge/discharge rate, the specific capacitance obtained per unit

time approximately presents a linear increase. A high charge/discharge efficiency can be obtained with
a high charge/discharge rate. The specific capacitance of 0.3 V·s−1 is half that of 0.005 V·s−1; however,
its specific capacitance obtained per unit time of charge/discharge is 31 times that of 0.005 V·s−1.
Similarly, the specific capacitance of 10 A·g−1 is two thirds that of 1 A·g−1; however, the specific
capacitance obtained per unit time is 10 times that of 1 A·g−1. The results further show that RGO
presents an excellent rate performance and can store or release a large amount of energy in a short
time. A high charge/discharge ratio contributes to the extensive application of RGO in the industry.
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current density.

Cycling stability is another important supercapacitor parameter. The cycle performance of RGO
(deposited at 20, 60, and 100 V and reduced at 300 ◦C) is evaluated by CV for 500 cycles at 0.05 V·s−1

(Figure 17). The specific capacitances of RGO deposited at 20 and 100 V gradually decline with the
increasing cycling number. After 500 cycles, the specific capacitance remains at approximately 90%
(20 V) and 97% (100 V) of the initial value. The specific capacitance of the RGO deposited at 60 V
slightly increases from the initial 102.1 to 104 F·g−1 after 100 cycles. This response may be because
more oxygen-containing functional groups are activated during the cycling process than at other
stages [52]. Then, the specific capacitance begins to decrease. After 500 cycles, approximately 98% of
the specific capacitance is retained, thereby demonstrating the excellent cycle stability of RGO.
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scan rate of 0.05 V·s−1 up to 500 cycles.

4. Conclusions

1. Deposition voltage has a significant effect on the morphologies of deposited GO. At a low
deposition voltage (less than 60 V), the frameworks in the nickel foam are not completely covered
with GO. Some holes around the frameworks are covered at a high deposition voltage (higher
than 60 V). The frameworks in the nickel foam are only covered with a uniform dense deposition
layer at the deposition voltage of 60 V.

2. GO is reduced in a very narrow temperature range of 160 to 240 ◦C. The thermal reduction of
GO at 300 ◦C contributes to the enhancement of the EDLC. At the same time, several of the
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oxygen-containing functional groups in GO are maintained, which is beneficial to the increase
in pseudocapacitance.

3. The specific capacitance of RGO is closely related to the deposition voltage and the thermal
reduction temperature. The RGO deposited at 60 V and thermally reduced at 300 ◦C exhibits
the highest specific capacitance of all. The specific capacitances calculated by using CV and
galvanostatic charge/discharge are 139 and 151 F·g−1, respectively.

4. The specific capacitance of RGO is also connected with the charge/discharge rate. Along with
the increase in charge/discharge rate, the specific capacitance presents the decreasing trend,
accompanied with the increase in charge/discharge time (CV: 0.005 V·s−1, 139 F·g−1/400 s;
0.01 V·s−1, 130 F·g−1/200 s; 0.05 V·s−1, 109 F·g−1/40 s; 0.1 V·s−1, 98 F·g−1/20 s; 0.3 V·s−1,
77 F·g−1/6.7 s. Galvanostatic charge/discharge: 1 A·g−1, 151 F·g−1/151 s; 1.5 A·g−1,
135 F·g−1/90 s; 3 A·g−1, 121 F·g−1/40.4 s; 5 A·g−1, 114 F·g−1/20.8 s; 10 A·g−1 100 F·g−1/10 s).
The specific capacitance obtained per unit time (F·g−1·s−1) is used to characterize the
charge/discharge efficiency. The index is increased linearly with the charge/discharge rate
(CV: 0.005 V·s−1, 0.35 F·g−1·s−1; 0.01 V·s−1, 0.65 F·g−1·s−1; 0.05 V·s−1, 2.7 F·g−1·s−1; 0.1 V·s−1,
4.9 F·g−1·s−1; 0.3 V·s−1, 11 F·g−1·s−1. Galvanostatic charge/discharge: 1 A·g−1, 1 F·g−1·s−1;
1.5 A·g−1, 1.5 F·g−1·s−1; 3 A·g−1, 3 F·g−1·s−1; 5 A·g−1, 5 F·g−1·s−1; 10 A·g−1, 10 F·g−1·s−1).

5. The RGO deposited at 60 V and thermally reduced at 300 ◦C exhibits an excellent cycle stability
and maintains approximately 98% of the initial specific capacitance after 500 cycles.
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