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Abstract: In this article, we present a strategy to decouple the relative influences of colony, domain
and lamella boundary strengthening in fully lamellar titanium aluminide alloys, using a physics-based
crystal plasticity modeling strategy. While lamella and domain boundary strengthening can
be isolated in experiments using polysynthetically twinned crystals or mircomechanical testing,
colony boundary strengthening can only be investigated in specimens in which all three strengthening
mechanisms act simultaneously. Thus, isolating the colony boundary strengthening Hall–Petch
coefficient KC experimentally requires a sufficient number of specimens with different colony sizes λC
but constant lamella thickness λL and domain size λD, difficult to produce even with sophisticated
alloying techniques. The here presented crystal plasticity model enables identification of the colony
boundary strengthening coefficient KC as a function of lamella thickness λL. The constitutive
description is based on the model of a polysynthetically twinned crystal which is adopted to a
representative volume element of a fully lamellar microstructure. In order to capture the micro
yield and subsequent micro hardening in weakly oriented colonies prior to macroscopic yield,
the hardening relations of the adopted model are revised and calibrated against experiments with
polysynthetically twinned crystals for plastic strains up to 15%.
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1. Introduction

After decades of academic and industrial research, γ-based fully lamellar titanium aluminides
(TiAl) outperform most competing high-temperature lightweight materials up to temperatures around
800 ◦C [1–3]. Their exceptional properties originate from the dense arrangement of three types of
microstructural boundaries, namely lamella, domain and colony boundaries [4,5]. Despite advances in
understanding the three corresponding Hall–Petch effects, their relative contributions to the strength
of fully lamellar TiAl is not yet consistently quantified. Micromechanical modeling helps to separate
and thus quantify these effects as shown in the following.

1.1. Microstructure and Micromechanics of Fully Lamellar TiAl

1.1.1. Lattice Structures and Orientation Relation

Figure 1 schematically illustrates a fully lamellar microstructure of γ-based TiAl with its
grain-shaped colonies, each subdivided into countless γ lamellae with a minor fraction of dispersed α2

lamellae. The crystallographic lattices of both phases are depicted in Figure 2.
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Figure 1. Schematic illustration of fully lamellar microstructure with magnification of lamellae. λL:
lamella thickness; λD: domain size; λC: colony size. (SEM micrograph: courtesy of Michael Oehring,
Helmholtz-Zentrum Geesthacht)

The tetragonal L10 lattice of the γ phase exhibits four twinning systems 1
6 〈112], four ordinary

slip systems 1
2 〈110] and eight super slip systems, namely all systems involving a c component. Plastic

deformation of the hexagonal D019 lattice of the α2 phase is carried by prismatic, pyramidal and basal
slip. Table 1 lists respective deformation mechanisms for both phases.
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Figure 2. Crystallographic lattices of constituent phases with most relevant deformation mechanisms.
left: hexagonal D019 lattice of α2 phase (Ti3Al); right: tetragonal L10 lattice of γ phase (TiAl).

Table 1. Slip and twinning systems in γ and α2 phase with morphological classification according to [6].

γ Phase

System Mechanism Classification Index

(111)[110] ordinary slip longitudinal 1




α

(111)[011] super slip longitudinal 2
(111)[101] super slip longitudinal 3
(111)[110] ordinary slip mixed 4
(111)[011] super slip mixed 5
(111)[101] super slip mixed 6
(111)[110] ordinary slip transversal 7
(111)[110] ordinary slip transversal 8
(111)[011] super slip transversal 9
(111)[101] super slip transversal 10
(111)[011] super slip transversal 11
(111)[101] super slip transversal 12
(111)[112] twinning longitudinal 1





β
(111)[112] twinning transversal 2
(111)[112] twinning transversal 3
(111)[112] twinning transversal 4

α2 Phase

System Mechanism Classification Index

〈1120〉(0001) basal slip longitudinal 1–3


α〈1120〉{1100} prismatic slip mixed 4–6

〈1126〉{1121} pyramidal slip transversal 7–12
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The lattices of the α2 and γ lamellae in each colony are aligned following the orientation relation
(111)γ ‖ (0001)α2 allowing coexistence of six orientation variants of the γ lattice that manifest in the
domain structure, shown in Figure 1 (see, e.g., [7] for details). Separation distances of lamella, domain
and colony boundaries are denoted by λL, λD and λC throughout this paper.

1.1.2. Influence of Microstructural Boundaries on Strength

There is general agreement that colony, lamella and domain boundaries all give rise to Hall–Petch
strengthening [4,5,8–17]. Thus, the yield strength of fully lamellar TiAl is a function of three Hall–Petch
slopes K and the inverse square roots of corresponding microstructural lengths:

σY = f
(

KC√
λC

,
KD√
λD

,
KL√
λL

)
. (1)

The Hall–Petch slopes KL and KD for lamella and domain boundary strengthening can be
separately determined from experiments with polysynthetically twinned crystals (i.e., specimens
that only contain parallel lamellae of one specific orientation) [8,11,18,19] or by micromechanical
testing [20,21]. Colony boundary strengthening, however, can exclusively be investigated in specimens
in which naturally all three strengthening mechanisms act simultaneously. Isolating the corresponding
Hall–Petch slope KC thus requires a sufficient number of specimens with different colony sizes but
(at least nearly) the same lamella thickness and domain size, hard to produce even with sophisticated
alloying techniques [13,22]. Thus, only few of the reported KC values [10,13,14,16,17,23,24] were
determined meeting this demand. In fact, the domain size λD was given in neither of the cited
references, but, since it is suspected to be correlated to lamella thickness λL [12,25], specimens with
the same λL should exhibit similar values of λD. However, the KC values determined for (nearly)
constant λL [13,14,16]—and thus constant λD—still differ significantly for different values of λL and
λD. Understanding colony boundary strengthening as the dislocation pile-up stress, required to
activate slip/twinning in an adjacent colony (cf. Figure 3), supports the idea of a functional relation
between colony boundary strength and strength of respective slip/twinning systems as suggested
in [12].
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Figure 3. Illustration of dislocation pile-up stress at a colony boundary possibly activating
slip/twinning in the adjacent colony. For λI I

C = λI
C but λI I

L < λI
L and λI I

D < λI
D, the strength of

respective systems in the right image will be higher than in the left one, requiring a higher pile-up
stress to be activated and thus making colony boundary strengthening a function of λL and λD.

Consequently, this implies that

• KC is a function of λL and λD, since strengths of slip/twinning systems in adjacent colonies are
determined by lamella and domain boundary strengthening and

• experimentally determined KC values are only valid for the given combination of λL and λD,
rendering identification of the functional relation KC = f (λL, λD) unreasonably labor-intensive.
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With these implications, reported experimental values for the Hall–Petch slope KC may be
regarded as a few points in a space spanned by KC, λL and λD, insufficient to reveal the functional
relation KC = f (λL, λD).

1.2. Scope of Present Paper

Other than in experiments, the choice of any specific combination of colony size, domain size
and lamella thickness is not restricted in numerical simulations. Therefore, a well designed
micromechanical model can be used to reveal KC = f (λL, λD), finally enabling microstructure sensitive
prediction of macroscopic yield stress of fully lamellar TiAl alloys.

While capturing selected micromechanical effects like, e.g., the plastic anisotropy of polysynthetically
twinned crystals, the micromechanical models set up in the past (e.g., [13,26–39]) are limited
to isothermal conditions and/or temperatures near room temperature. Furthermore, the model
parameters in these formulations are generally found for one specific combination of temperature and
microstructural lengths, necessitating recalibration of the model whenever the mechanical behavior
shall be analyzed at different temperatures or for a different set of microstructural parameters.
Therefore, we set up a thermomechanically coupled crystal plasticity model of a polysynthetically
twinned crystal that incorporates lamella and domain boundary strenghtening as well as the typical
yield stress temperature anomaly to enable yield stress prediction between room temperature and
900 ◦C [18].

In the present paper, we aim to adapt this model to a representative volume element (RVE) of
a polycolony fully lamellar microstructure in order to identify the functional relation KC = f (λL, λD).
Since a pronounced microyield has been observed in weakly oriented colonies prior to macroscopic
yield (cf. digital image correlation (DIC) analyses in [40]), the hardening relations of the constitutive
model [18] are revised to capture hardening of single colonies/polysynthetically twinned crystals up
to several percent of plastic strain. The revised hardening model is subsequently calibrated against the
uniaxial compression experiments with polysynthetically twinned crystals reported in [9].

2. Modeling

In this section, the thermomechanically coupled crystal plasticity model from [18] is
revisited and extended in order to capture above mentioned microhardening as well as colony
boundary strengthening.

2.1. Kinematics and Stress Measures

With the multiplicative split of the deformation gradient F into an elastic part FE and a plastic
part FP

F = FE · FP, (2)

the elastic representation of the right Cauchy–Green tensor CE can be defined as strain measure via

CE = FT
E · FE (3)

and the second Piola–Kirchhoff stress S reads

S = JEF−1
E · σ · F−T

E . (4)

Here, JE = det FE is the Jacobian and σ the Cauchy stress. Correspondingly, the Mandel
stress reads

M = CE · S. (5)
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2.2. Thermomechanics and Temperature Evolution

The procedure of thermomechanical coupling follows the line of arguments in, e.g., [41–43] and
is thus just briefly recalled here. The Helmholtz free energy ψ is assumed to be a function of CE,
absolute temperature θ and plastic internal variables qn. It is additively split into an elastic and a
plastic part, reading

ψ(CE, θ, qn) = ψE(CE, θ) + ψP(θ, qn). (6)

As derived in, e.g., [41], introducing the relation between Helmholtz free energy ψ, internal
energy ε and entropy η in the form ψ = ε − ηθ and inserting the corresponding time derivative
ψ̇ = ε̇− η̇θ − ηθ̇ and subsequently the balance of internal energy into the Clausius–Duhem inequality,
yields the following relations for stress and entropy:

S = 2ρ0
∂ψ

∂CE
, (7)

η = −∂ψ

∂θ
, (8)

with ρ0 being the density in reference configuration. Furthermore, the dissipation D reads

D = M : LP − ρ0 ∑
n

∂ψ

∂qn
q̇n

︸ ︷︷ ︸
Dmech

− Q
θ
· ∇0θ

︸ ︷︷ ︸
Dtherm

≥ 0. (9)

In this, LP denotes the plastic velocity gradient and Q is the heat flux vector described via
Fourier’s law Q = −κ∇0θ. The first two terms in Equation (9) represent the mechanical dissipation
Dmech during plastic deformation, while the last term denotes the thermal dissipation Dtherm due to
heat conduction.

To obtain the temperature evolution equation, the time derivative of the Helmholtz free energy is
inserted into the energy balance together with Equations (7) and (8). With the specific heat capacity

cp = −θ
∂2ψ

∂θ2 , this yields

ρ0cp θ̇ = −Div Q + M : LP − ρ0 ∑
n

∂ψ

∂qn
q̇n

︸ ︷︷ ︸
Dmech

+ρ0r +
1
2

θ
∂S
∂θ

: ĊE + ρ0θ ∑
n

∂2ψ

∂θ∂qn
q̇n, (10)

with r being the external heat supply per unit mass. With evolving plasticity (q̇n > 0), Dmech is lowered,
i.e., energy is stored in the plastic internal variables qn instead of being dissipated as heat. If the plastic
internal variables decrease, e.g., due to thermally activated recovery (q̇n < 0), the before stored energy
is released in the form of heat.

2.3. Crystal Plasticity

Crystal plasticity models are based on Schmid’s law, which defines the resolved shear stress τα on
slip system α via

τα := sα ·M · nα, (11)

with sα and nα being slip direction and slip plane normal of the respective slip system.
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Following the ideas from [44], mechanical twinning in the γ phase is treated as a unidirectional
shear mechanism acting in the twinning plane and obeying Schmid’s law, i.e., Equation (11). This leads
to the following definition of the plastic velocity gradient LP (cf. [44])

LP = ḞP · F−1
P = [1− f ]

Nsl

∑
α

να [sα ⊗ nα]

︸ ︷︷ ︸
slip

+
Ntw

∑
β

γT gβ

[
sβ ⊗ nβ

]

︸ ︷︷ ︸
twinning

. (12)

Herein, shear rate of slip system α and the twinning rate of twinning system β are denoted by να

and gβ, the total twinned volume fraction is given by f and γT denotes the material specific twinning
shear. Other than in the original formulation of LP from [44], lattice reorientation and subsequent slip
in twinned regions are neglected since twins in γ lamellae are generally very narrow [5].

2.3.1. Flow and Twinning Rule

Slip

The flow rule relates the resolved shear stress τα to the resulting shear rate να on slip system α via
the viscoplastic powerlaw (cf. [45])

να = ν0

∣∣∣∣
τα

τY
α

∣∣∣∣
n

sign(τα). (13)

In this, τY
α is the current critical resolved shear stress and ν0 and n are the reference shear rate and

the strain rate sensitivity exponent.

Twinning

To ensure that twinning is unidirectional and that the twinned volume fraction does not exceed
the theoretical limit of f = 1.0, the relation of resolved shear stress τβ and twinning rate gβ is modeled
via (cf. [44])

gβ =





ν0
γT

[
τβ

τT
β

]n
for τβ > 0 and f < 1.0,

0, else.
(14)

Herein τT
β denotes the current twinning resistance of twinning system β and the reference twinning

rate is determined by dividing the reference shear rate ν0 by twinning shear γT [44,46].

2.3.2. Defect Density Evolution

In crystal plasticity, plastic deformation is represented by the accumulated shear of underlying
deformation mechanisms instead of discretely resolving defects like dislocations or twins. The defect
density evolution is, however, directly correlated to the stored energy of cold work, enables a consistent
definition of dissipation and provides a physics-based way to describe work hardening and thermal
recovery processes as, e.g., investigated in [15,47]. Therefore, we introduce the twinned volume
fractions fβ for twinning systems β and the dislocation densities ρdis

α for slip systems α as well as

the total dislocation density ρdis given by ρdis = ∑Nsl

α ρdis
α and the total twinned volume fraction f

(see Equation (12)), which is determined via f = ∑Ntw

β fβ ≤ 1.0. Although not specifically intended
here, a micromechanical model capable of tracking the evolution of these defect densities in TiAl alloys
may, e.g., grant valuable insight into forming processes in which the defect density dictates necessary
forming forces and the number of annealing steps [47].
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Dislocation Density Evolution

The dislocation densities ρdis
α are assumed to evolve with the generation/recovery formulation

(cf. [48–50])
ρ̇dis

α = Aα(ρ
dis
α )|να| − Rα(ρ

dis
α , θ). (15)

The first term on the right side represents the dislocation generation due to shear on slip system
α (|να| > 0). Herein, Aα is described by the saturation relation [48,49]

Aα = Aα,0

[
1−

[
ρdis

α

ρdis
α,sat

]pα
]

, (16)

where Aα,0 is the reference accumulation coefficient, ρdis
α,sat is the saturation value for dislocation density

and pα > 0 is a constant.
The second term in Equation (15) describes static thermal recovery and follows an Arrhenius type

law (cf. [47,49])

Rα = Rα,0 exp
(
−QR

kBθ

)〈
ρdis

α − ρdis
α,min

ρdis
ref

〉qα

, (17)

where Rα,0 denotes the reference recovery rate, QR is the activation energy for recovery, kB denotes the
Boltzmann constant, ρdis

α,min is the minimum dislocation density for recovery to take place and ρdis
ref is

a reference dislocation density. The exponent qα > 0 is a constant.

Twin Evolution

In the context of thermomechanical modeling, it has to be noted, that—other than in conventional
metallic materials—twinning is not only a room temperature mechanism in TiAl alloys. In fact,
twinning is rather pronounced at elevated temperatures and even plays a significant role in creep
deformation [5,51]. Therefore, twinning is not restricted to room temperature in this model.
The twinned volume fractions fβ are assumed to evolve directly with the corresponding twinning
rates, i.e.,

ḟβ = gβ. (18)

2.3.3. Critical Resolved Shear Stresses

The slip and twinning system strengths τY
α and τT

β from Equations (13) and (14) can be written
as follows:

τY
α = τY

α,0 + ∆τY
α , (19)

τT
β = τT

β,0 + ∆τT
β . (20)

Here, τY
α,0 and τT

β,0 are the temperature and micro structure dependent initial slip and twinning

system strengths and ∆τY
α and ∆τT

β denote their evolution due to plastic deformation, i.e., represent
work hardening.

Initial Slip/Twinning System Strength

As mentioned earlier, the yield strength of fully lamellar TiAl alloys is mainly determined by three
coexisting Hall–Petch effects. Depending on its orientation with respect to the lamellae, a slip/twinning
systems shear plane does either cross the lamella or the domain boundaries. Respectively, either λL or
λD is the determining microstructural length for Hall–Petch strengthening [6,8,19]. The colony size
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λC, however, has the same influence on all slip/twinning systems independent of their orientation.
The initial slip/twinning system strengths can thus be written as

τY
α,0 = τR +

kD/L√
λD/L

+
kC√
λC

, (21)

τT
β,0 = τR +

kD/L√
λD/L

+
kC√
λC

, (22)

with τR being the lattice resistance to slip/twinning. The here introduced Hall–Petch coefficients k
are defined on the slip/twinning system level and are not directly comparable with the measured
Hall–Petch coefficients K. In polysynthetically twinned crystals, however, kD and kL may be
determined from measured KD and KL values using the Schmid factors of selectively activated
slip/twinning systems in certain orientations of the lamella plane with respect to load (cf. e.g., [18]).
The last terms in Equations (21) and (22) are obviously only meaningful when modeling polycolony
microstructures and thus have to be set to zero for simulations of polysynthetically twinned crystals.

The temperature dependence of τY
α,0 and τT

β,0 of the γ phase—especially the typical yield stress
temperature anomaly—is incorporated in the parameters in Equations (21) and (22) as shown in [18].
The temperature dependent initial critical resolved shear stresses of the α2 phase are modeled according
to [18], thus not involving the Hall–Petch strengthening shown in Equation (21).

Evolution of Slip System Strength

Once the resolved shear stress τα exceeds τY
α,0, the slip systems strength increases due to dislocation

interaction and nucleation of twins. In the reported crystal plasticity models of fully lamellar TiAl,
work hardening was usually treated in a simplified way using, e.g., linear [26,29,31–33,35,37] or
hyper secans [36,39,46] hardening laws, mostly neglecting the interaction with and between evolving
twins. This proved sufficient for modeling the yield point of polysynthetically twinned crystals
since, in this case, the plastic strains remain small. The micro yield in weakly oriented colonies,
however, involves considerable local plastic strains. With the dislocation densities and twinned
volume fractions, introduced earlier, we may thus set up a more physical, defect density-based work
hardening description.

In general, hardening ∆τY
α of slip system α can be expressed by

∆τY
α = ∆τY

α,s|s + ∆τY
α,s|t, (23)

where ∆τY
α,s|s denotes strengthening due to dislocation interactions and ∆τY

α,s|t denotes strengthening
of slip system α by twin activity.

The slip|slip interaction ∆τY
α,s|s is best described in terms of the dislocation density via the

well-known relation
∆τY

α,s|s = aGbα

√
ρdis. (24)

Herein, G = E
2[1+ν]

denotes the shear modulus determined in terms of Young’s modulus E and
Poisson’s ratio ν and bα is the length of the Burgers vector of system α. The constant coefficient a ≈ 0.5
in TiAl alloys [5].

The boundaries of evolving twins β act as strong barriers to dislocation motion (cf. e.g., [52,53]),
thus reducing the free path length of non-coplanar (ncp) slip systems α (i.e., nα ∦ nβ). Since the
representation of twins by their volume fraction neither provides information about their number nor
their thickness, the resultant strengthening of non-coplanar slip systems cannot be modeled as function
of the inverse square root of the actual free path length as done in e.g. [54,55]. Thus, several authors
introduced formulations to account for this source of Hall–Petch type strengthening as function of
twinned volume fraction [27,52,56]. Based on the formulation from [27], we introduce the following
relation for the corresponding term ∆τY

α,s|t
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∆τY
α,s|t =

∑
ncp
β hαβ fβ

1.0−∑
ncp
β fβ

, (25)

with hαβ being a coefficient for hardening of slip system α due to twinning on non-coplanar system β.

Evolution of Twinning System Strength

The strength τT
β of twinning system β increases with nucleation of non-coplanar twins

(i.e., nβ ∦ nβ′ ) and with interaction of twinning dislocations with the slip dislocation network [55].
In a general form, this can be written as

∆τT
β = ∆τT

β,t|t + ∆τT
β,t|s, (26)

introducing ∆τT
β,t|t as the strengthening due to nucleation of non-coplanar twins and ∆τT

β,t|s to account
for interaction of twinning dislocations with slip dislocations.

Hall–Petch strengthening of twinning system β by non-coplanar twins β′ is modeled as for slip
systems, reading

∆τT
β,t|t =

∑
ncp
β′ hββ′ fβ′

1.0−∑
ncp
β′ fβ′

. (27)

Herein, hββ′ is again a hardening coefficient.
As described in [55], twinning dislocations may interact with slip dislocations, although this effect

is not as severe as the other strengthening mechanisms. The corresponding formulation from [55] reads

∆τT
β,t|s = Gbβ

Nsl

∑
α

Cβαbαρdis
α , (28)

where Cβα accounts for interaction between twinning system β and slip system α.
Figure 4 qualitatively shows the evolution of slip/twinning system strength.
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Figure 4. Qualitative illustration of hardening laws, i.e., Equations (24), (25), (27) and (28).
(a) strengthening of slip systems α and twinning systems β with total dislocation density ρdis; influence
of interaction coefficient Cβα; (b) strengthening of slip systems α and twinning systems β with volume
fraction of non-coplanar twins; influence of hardening coefficient hαβ resp. hββ′ .

The hardening relations are not dependent on temperature, which is a reasonable assumption for
the modeled defect structures, since they cannot be overcome by thermal activation [5].
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2.4. Helmholtz Free Energy

As stated earlier, the Helmholtz free energy is assumed to be a function of the elastic
Cauchy–Green strain tensor CE, temperature θ and plastic internal variables qn. The dislocation
densities ρdis

α are well suited plastic internal variables, since they are directly related to the stored
energy of cold work, enabling a physically meaningful representation of mechanical dissipation and
temperature evolution.

While the stored energy of cold work increases linearly with dislocation density, the energy
stored in the form of twin/matrix interfaces is given by the fixed interface energy per twin boundary
(i.e., the stacking fault energy) and, thus, does not change with twin growth [5]. Therefore, the discrete
number of twins has to be known to correctly assess their contribution to stored energy of cold
work. Since resolving the discrete number of twins is not possible with the here presented continuum
theory, we neglect the corresponding contribution to stored energy of cold work by assuming that the
Helmholtz energy is no function of the twinned volume fraction.

With these assumptions, the Helmholtz free energy from Equation (6) is rewritten as

ρ0ψ := ρ0ψE(CE, θ) + ρ0ψP(ρ
dis
α , θ). (29)

The elastic part of the Helmholtz free energy ρ0ψE is assumed to follow a Neo-Hookean behavior
(cf. [18])

ρ0ψE =
µ

2
[tr CE − 3] +

λ

2
ln2 JE − µ ln JE − 3αtK[θ − θ0]

ln JE
JE

+ ρ0cp

[
θ − θ0 − θ ln

θ

θ0

]
− [θ − θ0]S0,

(30)

where µ = E
2(1+ν)

and λ = νE
(1+ν)(1−2ν)

are the Lamé constants, αt denotes the thermal expansion

coefficient, K = E
3−6ν is the bulk modulus and S0 is the absolute entropy density. The plastic part of

the Helmholtz free energy ρ0ψP reads [48,49]

ρ0ψP = aG
Nsl

∑
α

b2
αρdis

α . (31)

With this definition of the Helmholtz free energy and relations (7) and (10), the stress and the
temperature evolution read

S =µ[I − C−1
E ] +

[
λ ln JE −

3αtK
JE

[θ − θ0][1− ln JE]

]
C−1

E , (32)

ρ0cp θ̇ =−Div Q + M : LP − a
Nsl

∑
α

[
G− θ

dG
dθ

]
b2

αρ̇dis
α + ρ0r +

1
2

θ
∂S
∂θ

: ĊE. (33)

2.5. RVE Generation and Discretization

In the following, two representative volume elements (RVEs) are set up to serve as geometries
for the intended finite element analysis—one for a polysynthetically twinned crystal and one for a
polycolony fully lamellar microstructure.

2.5.1. RVE of a Polysynthetically Twinned Crystal

As shown in [18,33], it is sufficient to discretize only seven lamellae to represent the geometry of a
polysynthetically twinned crystal, i.e., one α2 lamella and one for each γ orientation variant. Figure 5
schematically depicts the chosen representative volume element.
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1

Figure 5. Representative volume element of polysynthetically twinned crystal. ϕ: angle between
uniaxial load and lamella plane; γI−I I I

M/T : six orientation variants of γ phase (three matrix and three
twin orientations).

This RVE is subjected to periodic boundary conditions and its rotation with respect to the uniaxial
load is realized as described in [57]. The geometry is meshed using linear hexahedral elements.

2.5.2. RVE of a Polycolony Microstructure

Due to the high aspect ratio of the lamellae and their large number per colony, a one-to-one
discretization of a polycolony fully lamellar microstructure is computationally highly inefficient.
Therefore, numerical homogenization schemes and/or geometrical simplifications are inevitable.

We set up an RVE with a reduced number of lamellae per colony but ensure that the volume
fractions of α2 and γ lamellae are correctly reflected in each colony. The RVE is shown in Figure 6.

γI
M

γII
M

γIII
M

γI
T

γII
T

γIII
T

α2

Figure 6. Representative volume element of polycolony fully lamellar microstructure consisting of
36 lamellar colonies. Separate depiction of the α2 phase and the orientation variants of the γ phase
shows their distribution within the colonies.
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The shapes of the 36 colonies in this RVE are based on a randomized 2D Voronoi diagram.
Periodicity is achieved by repeating the diagram in a matrix pattern. The 2D Voronoi diagram is
extruded in the z-direction, resulting in a columnar 3D representation of colonies. Subsequently,
the lamella boundaries are introduced by Boolean intersection of appropriately oriented planes with
the single columnar Voronoi cells. The orientation of the lamella plane in each colony is uniquely
defined by only one angle ϕi rotating around the z-axis. To minimize the influence of texture, the
orientations of the colonies are evenly distributed between ϕi = 0◦ and ϕi = 360◦ (i.e., ϕi = i 360◦

ncol
for

i = 1, 2, ..., ncol). Furthermore, the orientation of the γ phase along the lamellae is not altered, i.e., each
lamella contains only one γ orientation.

This RVE is subjected to periodic boundary conditions and meshed using linear wedge elements.

3. Parameter Identification

The introduced defect density-based hardening model is best calibrated against experiments with
polysynthetically twinned crystals or micropillar compression tests since both allow for investigating
the micromechanical behavior of a single colony without the influence of neighboring colonies and
colony boundaries. Although micropillar compression has the clear advantage of enabling the analysis
of single colonies within the actual microstructure [20,21], currently more data is available on the plastic
deformation of polysynthetically twinned crystals. In [9], the plastic deformation of polysynthetically
twinned crystals is analyzed for eight different load angles between 0◦ and 90◦ and up to plastic strains
of about 15% yielding a good data base for the here intended model calibration.

3.1. Constitutive Assumptions

3.1.1. Morphological Classification

As stated in [6], all slip and twinning systems in fully lamellar TiAl can be uniquely classified
according to their morphology to be either

• longitudinal (s ‖ lamellar plane; n ⊥ lamellar plane),
• mixed (s ‖ lamellar plane; n 6⊥ lamellar plane) or
• transversal (s ∦ lamellar plane; n 6⊥ lamellar plane).

systems (cf. Table 1). As shown in [6] and later confirmed by other authors, e.g., [6,18,26,35,57],
assigning the same model parameters to all slip and twinning systems of a morphological class
effectively reproduces the plastic deformation behavior of the lamellar compound while leaving only
three parameter sets that have to be identified instead of one per individual slip/twinning system.

3.1.2. Hall–Petch Strengthening by Evolving Twins

Due to their different orientations with respect to the lamella plane, evolving longitudinal
and transversal twins in the γ lamellae presumably contribute to a different extent to the strength
of non-coplanar slip and twinning systems. Transversal twins evolve as many thin needles that
subdivide the γ lamellae [58] and, thus, strongly reduce the free path length of longitudinal and mixed
deformation systems. Other transversal deformation systems do, however, not necessarily have to
cross these twins (cf. Figure 7), consequently being strengthened by them to a lesser extent. Little is
known about the evolution of longitudinal twins since they are harder to capture in experiments
because they cannot be distinguished from original lamellae after plastic deformation. However, it is
very unlikely that several longitudinal twins nucleate within a single lamella since this is energetically
unfavorable. Longitudinal twins will more likely grow from an already existing lamella boundary
slightly reducing the lamella thickness but most probably not causing excessive strengthening of
non-coplanar deformation systems (cf. Figure 7). Therefore, we distinguish strengthening by
longitudinal and transversal twinning in the here derived parameter set.
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longitudinal twinning
(more likely)

longitudinal twinning
(not likely)

α2 (Ti3Al)

γ (TiAl)

developing transversal
twin

developing
longitudinal twin

transversal twinning

Figure 7. Comparison of possible evolutions of longitudinal and transversal twins in γ lamellae.

3.1.3. Modeling Super Slip

Initial Critical Resolved Shear Stress

Since it has been frequently observed experimentally that super slip systems are less active than
ordinary slip systems, they are suspected to exhibit a (slightly) higher critical resolved shear stress [4].
Unfortunately, the isolated critical resolved shear stress of super slip systems could not yet be accessed
experimentally. Therefore, the contribution of super slip to the deformation of fully lamellar TiAl and
appropriate modeling approaches have been discussed to some extent in the past. Some authors did,
e.g., not allow any super slip in their models [59,60], introducing a pronounced tension/compression
asymmetry [33] (due to the unidirectionality of twinning) that was not observed in experiment [61],
while others scaled the strength of super slip systems by a factor Qso ≥ 1 with respect to the strength of
ordinary slip systems [33,37]. Since there is no agreement on the actual strength of super slip systems,
we choose a different approach here. To keep the benefit of Lebensohns morphological classification [6],
the critical resolved shear stresses of all deformation mechanisms of a morphological class are assumed
to be the same, neglecting the potentially higher stresses necessary to activate super slip.

Taylor Hardening

Lattice restoring super slip requires full 〈011] translations and may, e.g., be achieved by two
identical 1

2 〈011] super partial dislocations separated by an antiphase boundary [5]. Thus, Taylor
hardening of super slip systems can be described using the Burgers vector of either the two individual
super partial dislocations 1

2 〈011] or the perfect super dislocation 〈011] in corresponding Equation (24).
In order to account for the collective movement of the two super partial dislocations, bonded by
the antiphase boundary, we use the Burgers vector of the perfect super dislocation. This results in a
stronger hardening of super slip systems and, thus, reflects the fact that both super partial dislocations
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have to pass the forest of dislocations together. In consequence, ordinary slip is preferably activated in
most crystallographic orientations as observed in experiments.

3.1.4. Recovery

Since, for the moment, we are only interested in (temperature independent) work hardening
behavior of polysynthetically twinned crystals, the recovery related terms in Equations (15) and (17)
are neglected in the following.

3.2. Model Parameters

Some parameters of the presented crystal plasticity model can be determined directly from
experiments or have well-established standard values from literature. The Hall–Petch coefficients kD
and kL as well as the parameters for the viscoplatic flow rules (Equations (13) and (14)) are taken from
our previous work [18]. Respective parameters are gathered in Table 2. The α2 content is not reported
in [9], but, since the composition of the tested specimens is Al rich (Ti-49.3at %Al), we assume the α2

content to be as low as 2 Vol. % for the calibration process.

Table 2. Material and model parameters from literature.

Phase Symbol Value Annotation Ref.

material
parameters

γ

E 173.59 [GPa]− 0.0342[T − T0]
[

GPa
◦C

]
T0 = 25 < T < 935 [62]

ν 0.234 + 6.7× 10−6[T − T0] [
1
◦C ] T0 = 25 < T < 847 [62]

c
a 1.00356 + 7.2× 10−6[T − T0] [

1
◦C ] T0 = 20 < T < 1450 [63]

γT
1√
2
[−] [5]

α2

E 147.05 [GPa]− 0.0525[T − T0] [
GPa
◦C ] T0 = 25 < T < 954 [62]

ν 0.295− 5.9× 10−5[T − T0] [
1
◦C ] T0 = 25 < T < 954 [62]

c
a 0.804 ≈ const. T0 = 20 < T < 1450 [63]

γ/α2

ρ0 4.219 [ g
cm3 ]− 1.579× 10−4[T − T0] [

g
cm3 ◦C ] T0 = 25 < T < 1150 [64]

cp 0.6207 [ J
g ◦C ] + 1.5897× 10−4[T − T0] [

J
g[◦C]2

] T0 = 20 < T < 900 [65]

κ 15.35 [ W
m ◦C ] + 1.364× 10−2[T − T0] [

W
m[◦C]2

] T0 = 100 < T < 900 [65]

αt 8.936× 10−6 [ 1
◦C ] + 3.4× 10−9[T − T0] [

1
[◦C]2

] T0 = 100 < T < 900 [65]

model
parameters

γ

kD kD(0 ◦C) + kD(T) [18]
kD(0 ◦C) 0.125 [MPa

√
m] [18]

kD(T) sin(0.00395[ 1
◦C ]T)

[
2.41× 10−6 [Pa

√
m]

[◦C]3.61 T3.61
]

[18]
kL kL(0 ◦C) + kL(T) [18]
kL(0 ◦C) 0.125 [MPa

√
m] [18]

kL(T) sin(0.00462[ 1
◦C ]T)

[
2.64 [Pa

√
m]

[◦C]1.54 T1.54
]

[18]

γ/α2
ν0 0.001 [ 1

s ] [18]
n 50 [−] [18]

3.2.1. Onset of Yield

With the Hall–Petch coefficients from Table 2, solely lattice resistance τR, domain size λD and
lamella thickness λL remain to be identified for determining the initial critical resolved shear stresses
τY

α,0 and τT
β,0 defined in Equations (21) and (22). Unfortunately, neither λD nor λL are reported in [9].

Furthermore, τR depends on multiple factors like e.g., composition and impurity of a given alloy
and can thus not be identified universally. To calibrate the hardening model against the given data,
we thus set τR = 25 MPa (based on experimental findings from [11]), λD = 50µm and λL = 1µm,
which reproduces the initial yield of the experimental results from [9] reasonably well (see Figure 8).
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Figure 8. Orientation dependent yield and hardening behavior of polysynthetically twinned crystals.
Experimental results taken from [9].

3.2.2. Dislocation Accumulation and Hardening Interaction

With above introduced constitutive assumptions and the fixed initial critical resolved shear
stresses, the remaining parameters for dislocation accumulation (Equation (16)) and hardening
(Equations (25), (27) and (28)) are found by successively adjusting them in trial simulations until
the post yield behavior of the polysynthetically twinned crystals tested in [9] is reproduced well.
Respective model parameters are gathered in Table 3.

Table 3. Identified model parameters; ls: longitudinal slip, ms: mixed slip, ts: transversal slip,
lt: longitudinal twinning, tt: transversal twinning.

Phase Symb Value Unit System Index (cf. Table 1) Annotation

dislocation
accumulation

γ

Aα,0 1× 109 [ 1
mm2 ] α = 1–3 ls

Aα,0 2× 109 [ 1
mm2 ] α = 4–6 ms

Aα,0 2× 109 [ 1
mm2 ] α = 7–12 ts

ρdis
α,sat 1× 108 [ 1

mm2 ] α = 1–12 all slip systems
pα 0.05 [–] for α = 1–12 all slip systems

α2

Aα,0 2× 109 [ 1
mm2 ] α = 4–6 ms

Aα,0 2× 109 [ 1
mm2 ] α = 7–12 ts

ρdis
α,sat 1× 108 [ 1

mm2 ] α = 4–12 ms and ts
pα 0.05 [–] α = 4–12 ms and ts

hardening
parameters γ

hαβ 0 [MPa] α = 1–3 and β = 1 ls by lt
hαβ 100 [MPa] α = 4–12 and β = 1 ms and ts by lt
hαβ 1500 [MPa] α = 1–6 and β = 2–4 ls and ms by tt
hαβ 300 [MPa] α = 7–12 and β = 2–4 ts by tt
hββ′ 0 [MPa] β = 1 and β

′
= 1 lt by lt

hββ′ 1500 [MPa] β = 1 and β
′
= 2–4 lt by tt

hββ′ 300 [MPa] β = 2–4 and β
′
= 2–4; β 6= β

′
tt by tt

hββ′ 100 [MPa] β = 2–4 and β
′
= 1 tt by lt

Cβα 900 [–] β = 1 and α = 1–12 lt by all slip systems
Cβα 150 [–] β = 2–4 and α = 1–12 tt by all slip systems

3.3. Results

Comparison of the simulation results with experimentally determined stress strain curves from [9]
is shown in Figure 8.
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Given the high number of deformation systems involved in the plasticity of polysynthetically
twinned crystals—namely six γ orientation variants with 12 slip systems and four twinning systems
each as well as 12 slip systems for the α2 phase—the agreement between simulation and experimental
results is very good. The qualitative features of the experimental curves are well reproduced, which is
not possible with simple linear hardening relations as in [35,57]. We refrain from a quantitative
improvement of the agreement between simulation and experiment by, e.g., numerical optimization
methods, given the fact that in [9] only one specimen was tested per orientation.

4. Determining the Hall–Petch Coefficient for Colony Boundary Strengthening

With the calibrated defect density based model of a polysynthetically twinned crystal, the actual
aim of the present paper is tackled: isolating the Hall–Petch coefficient for colony boundary
strengthening KC and proving its dependence on lamella thickness λL and domain size λD.

4.1. Calculation Scheme

The Hall–Petch relation in its original form σY = σ0 + KD−0.5 requires knowledge of σ0 and
Hall–Petch slope K to predict the yield stress σY of a polycrystalline material from its grain size D.
In this, σ0 represents the (theoretical) yield stress of a polycrystalline alloy with infinitely large grains,
i.e., grain size D→ ∞ and thus D−0.5 → 0. Transferring this idea to colony boundary strengthening, σ0

represents the (theoretical) yield stress of a fully lamellar alloy with infinitely large colonies, i.e., without
the influence of colony boundaries. Although such a microstructure can obviously not exist in reality,
a model representation of it can still be created by directly applying the presented constitutive model of
a polysynthetically twinned crystal—which exactly represents colonies without the influence of colony
boundaries—to the polycolony RVE shown in Figure 6. Simulation results from such a model yield σsim

0
as function of λL and λD and quasi represent a homogenization of a polysynthetically twinned crystals
anisotropic yield stress. Being able to calculate σ0(λL, λD), we may rearrange the Hall–Petch relation
as follows:

KC(λL, λD) =
σ

exp
Y (λL, λD, λC)− σsim

0 (λL, λD)

λ−0.5
C

, (34)

in order to determine the Hall–Petch slope KC(λ
i
L, λi

D) individually for any combination of λi
D

and λi
L from simulated σsim

0 (λi
L, λi

D) and corresponding experimentally determined yield stress
σ

exp
Y (λi

L, λi
D, λi

C). This is illustrated in Figure 9.
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Figure 9. Interpolation scheme for determining KC(λ
i
L, λi

D) by combination of simulation and
experimental results. Applying the constitutive model of a polysynthetically twinned crystal to
a polycolony RVE, yields σsim

0 (λi
L, λi

D, λC = ∞) for a given combination of λi
L and λi

D. With

corresponding experimental results, the relation KC(λ
i
L, λi

D) =
σ

exp
Y (λi

L ,λi
D ,λi

C)−σsim
0 (λi

L ,λi
D)

λi−0.5
C

is evaluated.

Repeating this for different combinations of λL and λD reveals KC = f (λL, λD).
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This interpolation scheme allows for determining KC(λ
i
L, λi

D) for a certain combination of λi
D and

λi
L by only one simulation and one experiment (although more experiments would obviously help

to reveal the scatter of mechanical behavior) and if repeated for different combinations of λD and λL
reveals the relation KC = f (λL, λD).

4.2. Simulation Results

For determining σ0(λL, λD) as described above, we assume τR to be 30 MPa in the γ phase.
Since the domain size is reported in neither of the references gathered in Table 4 but is suspected to be
correlated to the lamellar thickness [12,25], we further assume λD = 50λL. This assumption seems
reasonable evaluating lamella/domain size ratios reported for polysynthetically twinned crystals [8,19].

Figure 10a shows KC values determined via the above introduced scheme using the experimental
results from [10,13,14] (cf. Table 4) plotted over λL.

Table 4. Microstructural data from literature experiments with fully lamellar alloys. *: not reported.
If no α2 was reported in corresponding reference, it was set to 10 Vol. %; the domain sizes λD are
assumed to be 50 λL

Composition α2 Content [Vol. %] λC [µm] λD [µm] λL [µm] Ref.

Ti-45.3Al-2.1Cr-2Nb 20 75 4.4 * 0.088 [13]
Ti-45.3Al-2.1Cr-2Nb 29 78 2.9 * 0.058 [13]
Ti-45.3Al-2.1Cr-2Nb 32 56 1.75 * 0.035 [13]

Ti-45.5Al-2Cr-1.5Nb-1V 10 * 260 8 * 0.16 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 390 8 * 0.16 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 690 8 * 0.16 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 920 8.5 * 0.17 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 370 0.75 * 0.015 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 360 4.75 * 0.095 [14]
Ti-45.5Al-2Cr-1.5Nb-1V 10 * 380 25 * 0.5 [14]

Ti-47Al-2Cr-2Nb 10 * 65 5 * 0.1 [10]
Ti-47Al-2Cr-2Nb 10 * 62 19.5 * 0.39 [10]

Ti-47Al-2Cr-2Nb-0.15B 10 * 33 22 * 0.44 [10]
Ti-47Al-2Cr-1.8Nb-0.2W-0.15B 10 * 31 15 * 0.3 [10]
Ti-47Al-2Cr-1.8Nb-0.2W-0.15B 10 * 25 7.05 * 0.141 [10]
Ti-46Al-2Cr-1.8Nb-0.2W-0.15B 10 * 26 5.25 * 0.105 [10]

Ti-47Al-2Cr-1Nb-1Ta 10 * 60 4.3 * 0.086 [10]
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Figure 10. Cont.
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Figure 10. (a): Colony boundary Hall–Petch coefficient KC plotted over λL. Full symbols:
determined via the scheme illustrated in Figure 9; solid line: interpolation of calculated values
via KC(λL) = KC,0 + KC,λL

1√
λL

; open symbols: experimentally determined in [12–14,16]. KC value
from [13] was determined from experiments with the indicated range of lamella thicknesses λL.
(b,c): comparison of experimentally determined σ

exp
Y (λL, λD, λC) [10,13,14] and simulated yield stresses

σsim
Y (λL, λD, λC). In simulations, colony boundary strengthening was incorporated by introducing

the interpolation from Figure 10a to Equations (21) and (22). Despite the scattering of KC values, the
simulated yield stresses reproduce the experimental results very well.

The improvable correlation of the determined KC values in Figure 10a most likely results from the
fact that neither domain sizes λD nor α2 volume contents were completely reported for the underlying
experiments [10,13,14]. Still, the simulations successfully demonstrate that the colony boundary
strengthening coefficient KC must be a function of lamella thickness λL and domain size λD as it was
suspected in [12]. In order to finally incorporate colony boundary strengthening in the model via
Equations (21) and (22), a functional relation for KC has to be established. Since usually λD � λL and,
thus, 1√

λD
� 1√

λL
, we expect that KC is considerably more sensitive to changes in λL than in λD. Thus,

we assume in the following that KC is a function of λL only. With this simplification, we choose the
following interpolation of the calculated KC values in Figure 10a:

KC(λL) = KC,0 + KC,λL

1√
λL

. (35)

In this, KC,0 corresponds to colony boundary strengthening in globular γ TiAl alloys (i.e., λL = ∞)
and is, thus, assumed to be KC,0 = 1 MPa

√
m [12]. The linear coefficient KC,λL is determined to

KC,λL = 4.5× 10−4 MPa[
√

m]2. The chosen functional relation KC(λL) has to be resolved to the slip
and twinning systems in order to be used in Equations (21) and (22). Since no common Schmid factor
can be determined for slip/twinning systems of arbitrarily oriented colonies, we use a factor of 0.3 to
map KC(λL) to kC(λL). This yields:

kC(λL) = kC,0 + kC,λL

1√
λL

= 0.3MPa
√

m + 1.35× 10−4MPa[
√

m]2
1√
λL

. (36)

Including definition (36) into Equations (21) and (22) and rerunning the simulations with the
reported colony sizes λC from Table 4 yields a good qualitative and reasonable quantitative agreement



Materials 2017, 10, 896 19 of 22

with experimentally determined yield stresses as depicted in Figure 10b,c. These results indicate that
the predicted yield stress σsim

Y (λL, λD, λC) is not too sensitive to the deviations between calculated KC
values and used interpolation function (35) (cf. Figure 10a), which is evident since the inverse square
root λ−0.5

C of colony size takes comparatively small values of 25 m−0.5 to 200 m−0.5.

5. Conclusions

Most reported micromechanical models of polysynthetically twinned crystals were designed to
capture their yield point and, thus, do not reproduce their hardening behavior for higher plastic strains.
As opposed to previously reported models, the here presented hardening relations and interactions
are able to reproduce all distinct features experimentally observed in [9]. This is associated with the
incorporated strengthening effect through non-coplanar twins, which triggers transition between
dominant deformation systems, causing changes in slope of the apparently linear hardening behavior.
The presented hardening model is therefore helpful for further investigation of defect density evolution
in polysynthetically twinned crystals and polycolony microstructures.

With the presented modeling approach, one can determine the Hall–Petch-coefficient KC to a good
degree from very few experiments. Of course, the more data available, the better the computational
determined value for KC. Although the accuracy of the here determined KC values suffers from missing
domain sizes and unknown α2 volume contents in used literature experimental data (cf. Table 4),
we showed that KC depends on the lamellar microstructure and needs to be modeled at least as a
function of the lamella thickness λL. Depending on the desired degree of detail, the domain size λD
may be added as well, but can also be disregarded as its influence is much smaller.

In summary, for the introduced approach, only a very small number of lamellar microstructures
with arbitrary combinations of λL, λD and λC needs to be tested experimentally. This significantly
simplifies the determination of the Hall–Petch coefficient KC = f (λL, λD).
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