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Abstract: Amorphous LaxAlyO films were grown on n-type Ge substrate by atomic layer deposition
using O3 and H2O as oxidant, respectively. A comparison of the XPS results indicated that a thicker
interfacial layer with the component of LaGeOx and GeOx was formed at O3-based LaxAlyO/Ge
interface, causing lower band gap value as well as the conduction band offset (CBO) value relative to
Ge substrate for O3-based LaxAlyO film, with a concomitant degeneration in the interfacial properties.
In contrast, for the H2O-based film, the leakage current of more than one order of magnitude less than
that of O3-based LaxAlyO film was obtained. All the results indicated that H2O is a more appropriate
oxidant for improving the interfacial properties in the atomic-layer-deposited LaxAlyO dielectric
on Ge.
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1. Introduction

With Si-based complementary-metal-oxide-semiconductor (CMOS) devices approaching their
fundamental limits, high dielectric constant (high-k) materials grown on germanium and other high
mobility semiconductors have been investigated to increase the drain current in the channel region [1,2].
Unfortunately, one primary challenge for Ge used in MOSFET devices is generally the poor electrical
performance of native Ge oxide, resulting in poor interfacial properties at the insulator/Ge interface
for most high-k dielectrics deposited on Ge substrate without any surface passivation process [3,4].
In order to improve the interface quality, appropriate passivation should be carried out. Attentions
had been focused on the formation of thermally grown GeO2 prior to the high-k dielectrics deposition
process [5,6]. However, GeO2 becomes unstable at high temperature when deposited on Ge because it
would react with Ge atoms to form substoichiometric oxide or volatile GeO [7,8], deteriorating the
electrical performance of Ge-based MOS devices. Recently, rare earth oxides have been considered
as a promising passivation interlayer for high-k dielectric grown on Ge [9]. Furthermore, La-based
dielectric materials have been shown to form a good passivation layer due to the formation of a stable
La germanate compound on Ge substrate which could prevent the formation of volatile GeO [10,11].
Among various deposition methods for growing high-k dielectric films, atomic layer deposition (ALD)
has been considered as one of the most promising technique to produce high-k dielectric films in high
quality due to the outstanding characteristics for precise thickness and composition control, excellent
uniformity and process compatibility to conventional CMOS process [12,13]. O3 and H2O are two
kinds of oxygen source precursors commonly used in the ALD process. It has been reported that the
difference of oxidants would have an impact on the ALD reaction mechanism and surface chemistry
of the deposited film [14], with a further influence on the relative electrical properties.
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In this paper, the effect of H2O and O3 on the interfacial properties of LaxAlyO films grown by
atomic layer deposition on Ge was systematically investigated. X-ray photoelectron spectroscopy (XPS)
analysis of the LaAlO3 films was used to provide direct observation on the band alignments of LaxAlyO
films relative to Ge substrate. Attentions were focused on the electrical performance of LaxAlyO/Ge
structures to analyze the influence of different oxygen precursors on the interfacial properties.

2. Experiment

LaxAlyO gate dielectric films were deposited on n-type Ge (100) wafers with resistivity of
0.1–1 Ω·cm by ALD technique using La(i−PrCp)3 and TMA as La and Al precursor, while two kinds of
oxygen source precursors (O3 and H2O) were used as oxidant, respectively. Prior to the deposition,
Ge substrates were treated with acetone and hydrous alcohol, and then dipped into 2%-HF solution
for 30 s to remove the native GeOx layer, followed by a 60 s rinse in de-ionized water. The precursors
were alternately introduced to the reactor chamber using high purity N2 (>99.999%) as the carrier gas.
A typical ALD growth cycle for La2O3 with O3 used as the oxygen precursor was 0.1 s La(i−PrCp)3

pulse/4 s N2 purge/0.3 s O3 pulse/10 s N2 purge, whereas for Al2O3 with O3 used as the oxygen
precursor, it was 0.1 s TMA pulse/3 s N2 purge/0.5 s O3 pulse/4 s N2 purge. Moreover, when H2O
was used as the oxygen precursor, a typical ALD growth cycle for La2O3 was set as 0.3 s La(i−PrCp)3

pulse/4 s N2 purge/ 0.3 s H2O pulse/9 s N2 purge, while for Al2O3, it was 0.1 s TMA pulse/3 s N2

purge/0.1 s H2O pulse/4 s N2 purge. Using these process parameters, for La2O3, a linear relation with
a growth rate of approximately 0.85 Å/cycle was obtained, and the steady-state growth rate of Al2O3

films was approximately 0.93 Å/cycle with O3 as the oxygen precursor. Besides, when H2O was used
as the oxidant, the growth thickness per ALD cycle for La2O3 was ~0.75 Å, while the growth rate of
Al2O3 was approximately 0.92 Å/cycle. At the deposition temperature of 300 ◦C, the film thickness
was tuned to fix at ~10 nm and ~5 nm by varying the number of ALD cycles while setting the La/Al
pulse ratio as 1:1.

Post-deposition rapid thermal annealing was carried out at 600 ◦C for 90 s in N2 ambient.
The crystallization characteristics of the LaxAlyO films were checked by grazing incidence X-ray
Diffraction (GIXRD) at the angle of incidenceω = 0.5◦. None of the films reveal any diffraction peaks,
indicating in the thermal stability of the films. The physical thickness of the deposited films was
optically measured using Woollam M2000U (Woollam Co. Inc., Lincoln, NE, USA) spectroscopic
ellipsometry (SE) by fitting the ellipsometry data using a Gen-Osc mode consisting of Gaussian and
Tauc-Lorentz oscillators and considering the native GeOx. The composition and band structure of the
deposited LaxAlyO films was examined by XPS measurements. All the wafers were etched by Ar+ ion
beam bombardment for 10 s (~0.26 nm/s) to remove the influence of the impurities on the surface.
C 1s peak from adventitious carbon at 284.6 eV was used as an internal energy reference during the
XPS analysis. In this experiment, the ~10 nm LaxAlyO film was used to obtain the XPS spectra for thick
amorphous LaxAlyO, and the ~5 nm LaxAlyO/Ge structure was thin enough to obtain XPS spectra from
both the LaxAlyO film and the underlying germanium substrate. The electrical properties of the 5 nm
films were measured using a metal-insulator-semiconductor (MIS) capacitor structure. A metal gate
with a diameter of 300 µm was fabricated by depositing 150 nm Al using the electron-beam evaporation
through a shadow mask, followed by annealing in forming gas ambient (97% N2/3% H2) at 400 ◦C for
20 min. The capacitance-voltage (C-V) and leakage current density-voltage (J-V) measurements were
carried out using Agilent B1500A analyzer.

3. Results and Discussion

As shown in Figure 1, the variations in O 1s XPS spectra for the 5 nm O3-based and H2O-based
LaxAlyO films annealed at 600 ◦C were analyzed to investigate the chemical bonding states near the
LaxAlyO film and Ge substrate interfaces. The O 1s spectra were fitted with five Gaussian–Lorentzian
line-shaped peaks, which are at 529.0, 529.7, 530.4, 531.3 and 531.9 eV. These peaks correspond
to the chemical bonds of La-O-La, La-O-Ge, La-O-Al, Al-O-Al and Ge-O-Ge, respectively [15–17].
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For La-O-La, La-O-Al and Al-O-Al chemical bonds; the intensity of the peaks varies slightly, indicating
the difference of oxidant has negligible influence on the chemical bond structures of the upper
deposited LaxAlyO layers. However, compared with the LaxAlyO film using H2O as oxidant, an
obvious increment in the intensity of La-O-Ge and Ge-O-Ge peaks could be observed for the O3-based
LaxAlyO film, which illustrates that more interfacial oxide layer (mainly consisting of LaGeOx and
GeOx) was formed at the O3-based LaxAlyO/Ge interface during the deposition and post-deposition
annealing process [18], which may be caused by the higher oxidability of O3 [19].
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In order to study the chemical bonding states near the LaxAlyO film and Ge substrate interfaces 
more clearly, further investigation was applied to the variations in Ge 3d XPS spectra for the 5 nm 
O3-based and H2O-based LaxAlyO films, as shown in Figure 2. The Ge oxide (GeOx) spectra, which 
are located at a higher binding energy with respect to the Ge0 peak originating from the Ge substrate, 
can be deconvoluted into four GeOx peaks (Ge1+, Ge2+, Ge3+, Ge4+) with energy shift of 0.8, 1.8, 2.6, and 
3.4 eV, respectively. These GeOx species were likely present due to the formation of an interfacial 
layer between the LaxAlyO film and Ge substrate. Here, the Ge4+ peak originates from GeO2, and 
other Ge1+, Ge2+ and Ge3+ peaks originate from Ge sub-oxides [20]. A comparison of Figure 2a,b 
revealed the same variation trend of the formation of interfacial oxide layer as analysed in the O 1s 
XPS spectra; that is, larger amounts of LaGeOx and GeOx, including GeO2 and Ge sub-oxides, were 
formed at LaxAlyO/Ge interface in the O3-based case. The variation of these interfacial oxides would 
have an influence on the interfacial characteristics of LaxAlyO film/Ge structure and then affect its 
electrical properties, and this aspect will be discussed in detail later in this paper. 
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Figure 2. Shallow core-level spectra of Ge 3d for the 5 nm (a) O3-based and (b) H2O-based LaxAlyO films. 

The band offsets of LaxAlyO films relative to the Ge substrate were determined by a core level 
photoemission-based method similar to that of Kraut et al. [21,22], as illustrated in Figure 3a. 
Accordingly, the valence band offset (VBO, ΔEv) is given by Equation (1): 

Figure 1. Shallow core-level spectra of O 1s for the 5 nm (a) O3-based and (b) H2O-based LaxAlyO films.

In order to study the chemical bonding states near the LaxAlyO film and Ge substrate interfaces
more clearly, further investigation was applied to the variations in Ge 3d XPS spectra for the 5 nm
O3-based and H2O-based LaxAlyO films, as shown in Figure 2. The Ge oxide (GeOx) spectra, which
are located at a higher binding energy with respect to the Ge0 peak originating from the Ge substrate,
can be deconvoluted into four GeOx peaks (Ge1+, Ge2+, Ge3+, Ge4+) with energy shift of 0.8, 1.8, 2.6,
and 3.4 eV, respectively. These GeOx species were likely present due to the formation of an interfacial
layer between the LaxAlyO film and Ge substrate. Here, the Ge4+ peak originates from GeO2, and
other Ge1+, Ge2+ and Ge3+ peaks originate from Ge sub-oxides [20]. A comparison of Figure 2a,b
revealed the same variation trend of the formation of interfacial oxide layer as analysed in the O 1s
XPS spectra; that is, larger amounts of LaGeOx and GeOx, including GeO2 and Ge sub-oxides, were
formed at LaxAlyO/Ge interface in the O3-based case. The variation of these interfacial oxides would
have an influence on the interfacial characteristics of LaxAlyO film/Ge structure and then affect its
electrical properties, and this aspect will be discussed in detail later in this paper.
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The band offsets of LaxAlyO films relative to the Ge substrate were determined by a core
level photoemission-based method similar to that of Kraut et al. [21,22], as illustrated in Figure 3a.
Accordingly, the valence band offset (VBO, ∆Ev) is given by Equation (1):

∆Ev = (EGe 3d − EV)Ge −
(
EAl 2p − EV

)
Thick LaxAlyO −

(
EGe 3d − EAl 2p

)
LaxAlyO/Ge (1)

where (EGe 3d − EV)Ge is the energy difference between Ge 3d and valence band maximum (VBM)
in the bulk clean Ge substrate, as shown in Figure 3b;

(
EAl 2p − EV

)
Thick LaxAlyO is the energy

difference between Al 2p and VBM in the 10 nm LaxAlyO film, as shown in Figure 3c; and(
EGe 3d − EAl 2p

)
LaxAlyO/Ge is the energy difference between Ge 3d and Al 2p core levels in the 5 nm

LaxAlyO on n-Ge(100), as shown in Figure 3d. Then, according to Equation (1), the VBOs for the films
with O3 and H2O as oxidant can be figured out as 3.34 and 3.11 eV, respectively.
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LaxAlyO films; and (d) Al 2p and Ge 3d for 5 nm LaxAlyO films on n-Ge(100).

The corresponding conduction band offset (CBO, ∆Ec) between LaxAlyO and Ge can be obtained
by Equation (2):

∆Ec = Eg(LaxAlyO) − ∆Ev − Eg(Ge) (2)

It is generally known that the band gap of germanium is 0.67 eV at room temperature. In order to
obtain the CBOs of LaxAlyO films relative to germanium, the band gap of amorphous LaxAlyO on Ge
substrate needs to be determined.

The band gaps of LaxAlyO films were measured by examining the energy loss of the O 1s core
levels for the 10 nm samples by XPS measurements. After being etched for ~2 nm, the XPS spectra
signals can be considered as coming from the pure deposited films. In principle, the photoexcited
electrons passing through dielectric films can suffer inelastic losses due to plasmon (collective
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oscillation) and single particle excitation (band-to-band transition excitation) [23]. It is proved that
the band gap equals the energy distance between the photoemission peak centroid and the onset
of the features due to single particle excitations, and it is usually obtained from the inelastic energy
loss features observed on the high binding energy side of the core level photoemission peaks [24].
Besides, the onset of the O 1s loss spectrum can be determined by linearly extrapolating the segment
of maximum negative slope to the background level [25,26]. Using this method, as shown in Figure 4,
the band gaps of the O3-based and H2O-based LaxAlyO films were determined to be 5.98 and 6.06 eV,
respectively. Accordingly, the CBOs of O3-based and H2O-based LaxAlyO films relative to Ge were
figured out as 1.97 and 2.28 eV, respectively.
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Results of the calculated band gaps and band offsets are shown in the schematic diagram in
Figure 5. It is worth noting that the band gap values of the deposited LaxAlyO films are smaller than
those of pure amorphous LaxAlyO film of ~6.2 eV [27], which implies that the composition of the
deposited film is not pure LaxAlyO. As is known; to some extent, the influence of the XPS signals
from the possible interfacial oxide layer (GeO2, Eg ~5.8 eV) would diminish the band gap values of
the deposited LaxAlyO films [28]. Thus, the variation of the band gaps would reflect the degree of the
formation of interfacial oxide layer between the deposited LaxAlyO film and Ge substrate. That is, a
thicker interfacial oxide layer should exist at the O3-based LaxAlyO/Ge interface, as the band gap of
O3-based LaxAlyO film is slightly smaller than that of the H2O-based sample. This result is in good
agreement with the interfacial chemical bonds information extracted from the O 1s and Ge 3d spectra
as mentioned above. In addition, the CBO of GeO2 relative to Ge (~0.54 eV) is much smaller than that
of LaxAlyO on Ge (~2.2 eV) [28,29]. Consequently, due to the existence of a thinner interfacial layer, a
bigger value of CBO is obtained when H2O was used as oxidant.
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as oxidant.

Figure 6 shows the C-V characteristics of the fabricated MIS capacitors using 5 nm O3-based and
H2O-based LaxAlyO films as insulators. For simplicity, the MIS capacitor structures using O3-based
and H2O-based LaxAlyO films as insulators were assigned as MIS capacitor S1 and MIS capacitor S2,
respectively. The C-V curves were obtained by sweeping forward (bias from negative to positive) and
backward (bias from positive to negative) at a frequency of 100 kHz. The flat band voltages (VFB)
of the C-V curves were extracted from the simulation software Hauser NCSU CVC program, taking
into account quantum mechanical effects [30]. Compared with MIS capacitor S2, a positive VFB shift
could be observed in the C-V curves for MIS capacitor S1, which is an indication of the presence
of more effective negative oxide charges in the bulk of the O3-based gate dielectric. Ruling out the
influence of generally positive charged fixed oxide charges (Qf) and mobile ionic charges (Qm), the
oxide trapped charges (Qot) negative charged were suspected to be responsible for the positive shift of
VFB [31]. The charge trapping behavior of the fabricated capacitors was investigated through the C-V
hysteresis characteristics. The hysteresis width (∆VFB) extracted from the dual-swept C-V curves for
MIS capacitors S1 and S2 are 154 and 95 mV, respectively. For the O3-based sample, a larger ∆VFB of
the dual-swept C-V curves illustrates the existence of more oxide trapped charges in the O3-based gate
dielectric, which is in consistent with the shift tendency of VFB. Additionally, it is worth noting that,
compared with what is shown in Figure 6b, the C-V curves for MIS capacitor S1 (Figure 6a) slope gently
and exhibit a more obvious anomalous hump phenomenon in the weak inversion region, indicating
the formation of more interface traps at the O3-based LaxAlyO film/Ge interface.
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From the XPS results as mentioned above, we can conclude that a thicker interfacial layer
consisting of LaGeOx and GeOx exists between O3-based LaxAlyO film and Ge substrate. Such
an interfacial layer, as reported, has a much lower dielectric constant (5~6) than that of LaxAlyO [32,33],
resulting in a smaller accumulation capacitance value for MIS capacitor S1. Being a thermally stable
germanate compound on the surface of Ge substrate, LaGeOx was reported to be of help in suppressing
Ge out-diffusion and improving interface quality. However, among the germanium oxides, GeO is
volatile and sublimes leaving behind a defective interface contained lots of defects and dangling bonds,
which makes it known to have an adverse influence on the interfacial properties [11]. Additionally,
it has been reported that at temperatures of up to 430 ◦C, GeO2 becomes unstable, and will react
with substrate Ge atoms generating volatile GeO, following the reaction of GeO2 + Ge→ 2GeO [7].
Therefore, compared with the H2O-based LaxAlyO, the increase in oxide-trapped charges and
interface traps in O3-based LaxAlyO film/Ge structures should be attributed to the extra formation of
volatile GeO.

Figure 7 shows the leakage current density as a function of the applied electrical field for the
fabricated Al/5 nm LaxAlyO/n-type Ge capacitor structure. As we know, the polarity of gate leakage
current through gate dielectrics depends on the gate bias polarity and substrate doping type. For the
n-type Ge substrate used in this work, electron injection from the conduction band is the dominant
tunneling current component under positive gate bias [34]. At the applied electrical field of 3 MV/cm,
the leakage current density of the O3-based and H2O-based film was measured to be 2.29 × 10−5 and
1.68 × 10−4 A/cm2, separately. Compared with the O3-based LaxAlyO film, a decrease of more than
one order of magnitude in the leakage current density was found for the H2O-based film. Such a
decrease is suspected of benefiting from the larger conduction band offset mentioned above. The larger
conduction band offset means the existence of higher potential barriers between the LaxAlyO film
and n-Ge substrate, which would weaken the tunneling effect of electrons in the MIS capacitors,
resulting in lower gate leakage current. In addition, less structural defects and dangling bonds in
the H2O-based LaxAlyO film/Ge structure mean a smaller possibility to create a conduction path by
forming a continuous chain connecting the gate to the semiconductor, which may also provide an
explanation for the significant decrease of gate leakage current in MIS capacitors S2.
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4. Conclusions

In this paper, amorphous LaxAlyO films were deposited on Ge substrate by ALD using O3 and
H2O as oxygen precursor, respectively. Due to the higher oxidability of O3, the formation of interfacial
layer (mainly consisting of LaGeOx and GeOx) was enhanced at O3-based LaxAlyO/Ge interface,
leading to a slight decrease of the band gap for O3-based LaxAlyO film, as well as the CBO value
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relative to Ge substrate compared with that of the H2O-based sample. Additionally, the extra formation
of volatile GeO causes the increase of oxide trapped charges and interface traps in O3-based LaxAlyO
film/Ge structure. As a result, a much lower gate leakage current was obtained when the H2O-based
LaxAlyO film was used as MIS gate insulator, indicating that H2O is a more appropriate oxidant
applied for the deposition of LaxAlyO dielectric on Ge substrate to achieve suitable band alignments
and favorable interfacial properties.
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