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Abstract: With the expanding application of light-emitting diodes (LEDs), the color quality of white 
LEDs has attracted much attention in several color-sensitive application fields, such as museum 
lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from 
the luminous efficiency to color quality. However, most of the current available research on the 
reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure.  
The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light 
source at a range of visible wavelength, contains the most fundamental luminescence mechanisms 
of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, 
including color coordinates that are widely used to represent the color shift process. Thus, to model 
the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, 
representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and 
modeling them with statistical functions. Then, because the shift processes of extracted features in 
aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the 
color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the 
failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with 
statistical curve-fitting and (2) the developed method can dynamically and accurately predict the 
color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of 
phosphor-converted (pc)-white LEDs, and also can estimate the residual color life. 

Keywords: LEDs; color shift failure; spectral power distribution; nonlinear filter; reliability and 
failure analysis 

 

1. Introduction 

Artificial lighting consumes around 19% of the world’s total energy, which produces 
approximately 10% of all carbon emitted in the world [1,2]. Light-emitting diode (LED), as one of 
solid-state lighting (SSL) sources, produces visible light via electroluminescence, which converts 
electricity to light without relying on heat for radiation. Therefore, LEDs are much more efficient than 
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traditional lighting sources and have become a comparatively low-energy-consuming, long-lasting, 
and environmentally friendly alternative. In the last few decades, people have been making efforts 
to improve the quantum efficiency of LED. Tremendous progress has been made for the SSL 
technology due to the breakthroughs in the development of high-performance LEDs via 
improvement in extraction efficiency of both LED and organic LED (OLED) [3–6], and novel photon 
down converters [7]. This ensures wide adoption of SSL and will cut down the energy usage. 
However, the mass application of LEDs still faces many barriers, such as high cost, time- and cost-
consuming qualification tests, and unreliable lifetime predicted by current methods [8,9]. 

By using a blue light source converted by phosphors to obtain white light emission, phosphor-
converted white LEDs (pc-WLEDs) are becoming one of the alternatives to traditional general 
lighting sources due to their advantages in energy saving, environment-friendliness, color 
controllability, and long lifetime. The three failure modes that usually happen in LEDs are 
catastrophic failure (lighting suddenly turns off), luminous flux degradation, and color shift [8,9]. 
However, most of the previous studies only used the luminous flux data to calculate the lifetime of 
LEDs, but it is not the sole characteristic of LEDs. Owing to the expansion of LED applications, the 
color quality and color consistency of LED light sources has attracted much attention in some color-
sensitive application fields, such as museum lighting, healthcare lighting and displays [10]. For this 
reason, the reliability concern for LEDs is changing from the high luminous efficiency to color quality 
and color consistence. Meanwhile, the chromaticity (or color) has already been recognized as another 
indicator of a LED’s “end of life” recommended by the Next Generation Lighting Industry Alliance 
(NGLIA) of the U.S. Department of Energy (DoE) [11]. However, most current research on the 
reliability of LED light sources is still focused on luminous flux depreciation [12] rather than on color 
shift. Moreover, most of the current color shift models are empirical [13] and lack physical meaning, 
which will definitely impact the accuracy of lifetime prediction. 

As the spectral power distribution (SPD), defined as the radiant power distribution emitted by 
a light source at a range of visible wavelength, contains the most fundamental luminescence 
mechanisms of an LED, it is usually used as the quantitative inference of an LED’s optical 
characteristics, including both photometric and colorimetric performances. For example, B. M. Song 
and B. T. Han used the SPD deconvolution method to evaluate the yellow-to-blue ratio and phosphor 
power conversion efficiency for pc-WLEDs [14] and analyzed the degradation failure mechanisms on 
the lumen, correlated color temperature (CCT) and color rendering index (CRI) parameters [15]. 
Moreover, H. T. Chen and S. Y. Hui developed a tricolor spectral modeling method to dynamically 
predict the CCTs and CRIs for pc-WLEDs with the photoelectrothermal theory [16]. In addition, M. 
H. Chang et al., applied the similarity-based metric test to extract the features from SPDs of pc-
WLEDs and detect the anomalies for LEDs aged under a degradation test with a k-nearest neighbor-
kernel density-based clustering technique [17]. Recently, C. Qian et al. proposed a method to 
decompose the SPD of LED lamp with the asymmetric Gaussian model and predict the lumen 
maintenance and color coordinates by estimating the features of the proposed statistical model [18] 
and also used two asymmetric double sigmoidal (Asym2sig) models, representing the blue light and 
phosphor converted light peaks respectively, to predict the photometric and colorimetric 
characteristics of a pc-WLED [19]. The color coordinate shift of LED lamps aged under accelerated 
ageing tests was investigated by M. Cai et al., [20] and a power model was proposed to predict the 
color shift process of LED products. However, as reviewed, few of the current studies on SPDs can 
combine the failure mechanism analysis and residual color lifetime prediction together to assess the 
reliability of pc-WLEDs during degradation testing. 

To investigate the color shift failure mechanisms and predict the residual color lifetime for a pc-
WLED aged under a degradation test, this paper proposes a model-based prognostic method by 
extracting the features of an SPD with the statistical functions with both Gaussian and Lorentzian 
model firstly, and then modeling the shift trajectories of features of SPDs with a nonlinear filtering 
approach that delivers a recursive and stochastic parameter estimation by dynamically updating 
measurements. Finally, with the predicted SPDs, the color coordinates in the color space of 
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Commission Internationale de L’Eclairage (CIE) (CIE 1976), (u′,v′), the CCT and the CRI will be 
estimated to qualify the color shift failure of pc-WLED. 

The remainder of this paper is organized as follows: In Section 1, the test sample used in this 
study and its SPDs collected during an accelerated degradation test are given to validate the proposed 
methods. Section 2 introduces the theory and methodology used in this paper, that includes the 
luminous mechanisms of pc-WLEDs with an SPD, the feature extraction method for SPDs, and the 
nonlinear filtering model used for the feature estimation. Section 3 provides validation results and 
discussions. Finally, the concluding remarks and possible directions for future research are presented 
in Section 4. 

2. LED Test Sample and Accelerated Degradation Test 

In this section, a high-power pc-WLED package test sample is introduced as the research object 
of this paper and the accelerated degradation test designed for the selected test sample was 
implemented for SPD data collection. 

The LED package used in this study is one type of high-brightness pc-WLEDs from Avago 
(Type: 3-W high-power WLED light source with the part number as ASMT-JN31-NTV01 [21]), which 
is manufactured with a GaN blue chip and a monochromatic (yellow) phosphor. The LED package 
layout and its packaging materials and construction are shown in Figure 1, which indicates that the 
mechanism for generating white light from the test vehicle is a combination of blue light emitted by 
a GaN chip and the excited yellow light emission from a phosphor layer. 

 
(a) (b)

Figure 1. (a) The 3D model of selected light-emitting diodes (LED) package; (b) its packaging 
materials and construction shown in the scanning electron microscope image of cross-section. 

In this study, an accelerated degradation test was designed for the selected pc-WLED package, 
which was electrically driven by the DC current (Ic = 200 mA) provided by a DC power supply 
(Model: Agilent E3611A). The thermal chamber provided a constant aging temperature (Ta = 90 °C) 
for this test. After finishing a 23-h cycle aging, the test sample was removed from the thermal chamber 
to be cooled to the ambient temperature for SPD data measurement by a Gigahertz-Optik BTS256-
LED tester (Türkenfeld, Germany) When the measurement was finished, the test sample was then 
returned to the thermal chamber to undergo the next round of aging until its color shift failure 
happened. 

Normally, the Euclidean distance between the original color coordinates and shifted coordinates 
in the CIE 1976 color space, du′v′, is used to represent the color shift of LEDs [22]. The International 
Electrotechnical Commission (IEC) developed a criterion to characterize the color shift failure based 
on specific color coordinates, which can be defined in terms of the numbers of standard deviations of 
color matching (SDCM). For general lighting applications, the color shift failure threshold of seven-
step SDCM (approximately du′v′ = 0.007), which is recommended by both the Energy Star Programs 
of the U.S. Department of Energy [23] and ANSI/NEMA [24], is used in this paper. Figure 2 shows 
the collected SPD data until the color shift failure happened at the time Tf = 529 h. 
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Figure 2. (a) Spectral power distribution (SPD) data collected under the accelerated degradation test; 
(b) color shift failure time Tf = 529 h defined as when du′v′ = 0.007. 

3. Theory and Methodology 

The three methodologies used in this paper are provided in this section, which include the 
introduction of luminous mechanisms and calculation of color coordinates for pc-WLEDs with an 
SPD, the extraction of SPD features with a proposed statistical method, and the estimation of time 
dependence of the SPD features using a nonlinear filtering based state-space model. 

3.1. Luminous Mechanisms of pc-WLEDs 

As reviewed in the introduction, because an SPD contains the basic physical information about 
a light source, it is usually used as the quantitative inferences of optical characteristics (such as 
luminous flux, color coordinates, correlated color temperature, and color rendering index). The SPD 
of the selected pc-WLED package and its luminous mechanism are shown in Figure 3. The white light 
is produced by a combination of the blue light from the GaN chip and the excited yellow light emitted 
by the yellow phosphor. Therefore, there are two dominant relative power intensity distributions in 
the SPD spectrum of an LED, which represent the performances of the GaN chip (380~500 nm for 
blue light) and phosphor (500~780 nm for yellow light), respectively. 
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Figure 3. SPD and luminous mechanism of the selected phosphor-converted white LED (pc-WLED) 
package. 
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In this paper, color coordinates were chosen as the indicator of color shift failure of a pc-WLED 
and the CCTs and CRIs are also predicted to qualify its color quality. The color coordinates in CIE 
color space are the basic concepts of colorimetry that quantify and physically describe human color 
perception [22]. The color coordinates in CIE 1976 color space, (u′,v′), calculated by Equations (1) and (2), 
are widely used to represent the chromaticity state of WLEDs, because the color difference is 
proportional to the geometric difference in this color space. For this reason, they were chosen as the 
indicator of color shift failure of pc-WLEDs in this paper. 
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where X, Y, and Z are the tristimulus values, which can be obtained by integrating the SPD function, 
SPD(λ), with the standard color-matching functions ( )x  , ( )y  , and ( )z   [15]. 

3.2. SPD Feature Extraction with Statistical Method 

As the two emission distributions representing the characteristics of blue LED chips and 
phosphors of a pc-WLED are similar to the bell-shaped curves, this paper extracted the features of an 
SPD by multi-peak curve-fitting with statistical functions. In this study, two widely used statistical 
functions, Gaussian (Equation (6)) and Lorentzian (Equation (7)) models, were used and the curve-
fitting results are compared in Figure 4. 
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Lorentzian model: 
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where y0 is the baseline offset, A is the total area under the curve from baseline, λ is the center of the 
peak, Δλ is the full width of the peak at half height, and w equals two standard deviations, that is 
approximately 0.849 the width of the peak at half height. B and Y represent LED chip and phosphor, 
respectively. 
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Figure 4. Feature extraction from the initial SPD of pc-WLED package with both Gaussian and 
Lorentzian models (the red (a) and blue (b) dash lines with shadow areas represent the Gaussian and 
Lorentzian models respectively). 

As shown in Figure 4, the red and blue solid lines are the fitting results for the entire SPD of the 
pc-WLEDs measured at initial time. And the features of the GaN LED chip and phosphors can be 
modeled by the Gaussian and Lorentzian expressions with red and blue dash lines with shadow areas, 
respectively. The feature extraction results are given in Table 1, in which seven parameters of each 
statistical model are extracted. As shown, the R2 values of two models, which are closer to 1, indicate 
that both statistical functions have well goodness-of-fitting results for the SPD of this type of  
pc-WLED package. According to the quantum point of view, the recombination in p-n junction is 
governed by the electron transition probability to a fundamental state that depends on the coordinated 
configuration for the electronic/vibrational levels in the blue LED chip. The recombination probability 
function usually follows a discrete Poisson distribution and it can be assumed as a continuous 
Gaussian function to describe the SPD of blue LED chip [25]. Otherwise, as compared to the fitting 
results in the phosphor part, the Lorentzian model is more suitable. Thus, in this paper, both two 
statistical models were used to extract the features of SPDs collected from the aged test sample. 

Table 1. Results of feature extraction and model selection. 

Models y0 λB wB AB λY wY AY R2

Gaussian model 2.26 × 10−5 459.684 25.144 0.0249 573.775 82.259 0.0849 0.99175 
Lorentzian model –8.97 × 10−5 458.656 23.221 0.03089 574.349 96.326 0.1467 0.98638 

3.3. Color Shift Failure Prediction with Nonlinear Modeling 

According to the previous work [13], the color shift of pc-WLEDs is always the nonlinear process 
during aging. As shown in Equations (1)–(5), in order to predict the color shift failure of a pc-WLED 
package, it is necessary to track the shift trajectories of features extracted from the collected SPDs 
during the long-term aging test. Therefore, this paper developed the color shift failure prediction 
method by modeling the extracted features from two statistical distributions as a function of time 
with nonlinear approaches. 

The particle filter (PF) method has been considered as one of the solutions for state-space 
estimation in nonlinear and non-Gaussian systems [26]. Previously, the least-squares regression (LSR) 
method was widely used to conduct a batch-processing estimation by minimizing the sum of the 
residuals between the actual measurements and the calculated values. The PF method, on the other 
hand, delivers a recursive and stochastic parameter estimation by dynamically updating measurements 
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and possesses higher prediction accuracy for the nonlinear degraded states [27]. Thus, this paper 
used the PF method to estimate the extracted features from SPDs by updating the measurement 
model with the Bayesian dynamic approach. PF always uses a set of particles to approximate the 
predicted state as a posterior probability density distribution, xk ~ p(xk|z1:k), with sequential Monte 
Carlo (SMC) simulation [28]. The state-space model of this study can be expressed as follows [29]: 

State model: 

1( , )k k kx f x   (8) 

Measurement model: 

( + )k k kz hx   υk ~ N(0, δ2) (9) 

where k is the time (or cycle) step index, xk is the degradation (or shift) state, αk is the model parameter, 
zk is the measurement data, υk is the measurement noise, and ʘk(xk, αk, δk) is the vector of parameters 
in PF. 

As illustrated in Figure 5, the recursive state estimation within the PF approach can be separated 
into five steps: 

Step 1: Parameter initialization 

The parameter vectors for both the state and measurement models can be expressed as ʘ(x, α, δ), 
and each parameter will be initialized by assuming a distribution drawn by the Monte Carlo 
simulation, with N particles. 

Step 2: Parameter sampling and prediction 

The prior probability density function (PDF) of the parameter vector at the kth cycle, p(θk|z1:k−1), 
can be calculated based on the state model with the Chapman-Kolmogorov equation. 

Step 3: Dynamic updating 

With the new measurement, the posterior PDF at the kth cycle, p(θk|z1:k), can be updated by using 
the Bayesian algorithm and the Markov assumption. The likelihood function of the ith particle at 
cycle k, p(zk|θik), can be expressed as a Gaussian distribution: 
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Step 4: Particle weighting and resampling 

As calculated with Equation (11), the ith particle can be weighted with the particle weight as 
proportional to the PDF value of the likelihood function. To avoid the degeneracy problem in the 
iteration process, resampling based on the inverse cumulative density function method [29], was used 
to eliminate low-weight particles and condense high-weight particles. 
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Step 5: Prediction of extracted features 

When the measurement is terminated at the kth step, the state finishes updating as xk ~ p(xk|z1:k) 
and the future states of the extracted features are predicted by extrapolating the estimated kth step 
state based on the state model. 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

 

 

Figure 5. Particle filter (PF) prediction approach. 

4. Results and Discussion 

In this section, the failure mechanism of the selected pc-WLED package under a predesigned 
accelerated degradation test was first identified by analyzing the extracted features from SPDs in 
Figure 2a. Next, the developed theory and methodology were validated with the collected SPDs to 
predict the color shift failure of the test sample. 

4.1. Failure Mechanism Analysis 

As introduced previously, SPD can be used to characterize the optical performances of pc-
WLEDs. As a result, its deformation may indicate the specific failure mechanisms in an LED package, 
such as LED chip degradation, phosphor degradation, or polymer-based packaging materials (e.g., 
silicone lens and encapsulant) degradation. Furthermore, the failure mechanisms of a pc-WLED 
package were supposed to be related to the areas under the curve as shown in SPDs, AB and AY, which 
are dependent on the luminous energy emitted by the LED chip and phosphors, respectively. 

As shown in Figure 6, three possible degradation scenarios of SPDs in a pc-WLED package are 
summarized as follows [30]: (1) If only the LED chip degrades, as the emission efficiency of phosphors 
depends on the energy of blue light emitted by LED chip, the areas of both the LED chip and 
phosphors are decreased proportionally (Figure 6a); (2) If only the phosphors degrade, the area under 
the long wavelength range is reduced more seriously (Figure 6b); (3) If only the polymer packaging 
materials degrades, the area of the LED chip in the SPD is decreased much more, because the polymer 
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materials, such as silicone and epoxy, are always sensitive to short-wavelength light (Figure 6c). As 
shown in Figure 7, through the feature extraction by using two statistical models, the ratio of the 
areas under the curves of two ranges, AB/AY, increases exponentially, which can support the 
conclusion that the phosphor degradation may be the dominant failure mechanism of the test sample 
under the designed accelerated degradation test. 

 
Figure 6. Failure mechanism classification in a pc-WLED package (the blue and red curves represent 
the initial and aged SPDs, respectively). 
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Figure 7. Ratio of extracted areas under the SPD curve. 

Finally, to identify the degradation mechanisms of phosphors used in the selected test samples 
deeply, the chemical elements of the phosphor powders, those that were mixed in the silicone matrix, 
were analyzed with the SEM-EDX analyzer. From the results of the SEM-EDX image shown in Figure 8, 
it can be qualitatively determined that the used phosphors may be the europium ion doped strontium 
and barium silicate [31]. Considering the designed accelerated degradation test with the condition of 
the LED sample operated with Ic = 200 mA and Ta = 90 °C, its thermal distribution was simulated with 
the finite element analysis (FEA) method in the ANSYS FLUENT software and the material 
parameters used in FEA modeling are listed in Table 2. As shown in Figure 9, the highest temperature 
of the phosphor layer is more than 100 °C even without considering the self-heating effect from 
phosphors. According to the other studies on the thermal quenching effects of phosphors [32,33], the 
accelerated oxidization of europium ion caused by both the high-temperature heat treatment and 
blue light irradiation may result in the irreversible decrease in emission intensity of phosphors. That 
could be the main cause of the faster degradation of phosphors than that of other materials in the 
selected pc-WLED aged under this condition. 
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Figure 8. Chemical element analysis result of phosphors in the selected LED with the SEM-EDX. 

Table 2. Material parameters used in fine element analysis (FEA) modeling. 

Material Parameters Air LED Chip Silicone Lead and Thermal Pad Substrate
Density (kg/m3) 1.225 6150 1200 8920 2700 

Thermal conductivity (W/m·K) 0.0257 130 5 398 100 
Specific heat (J/kg·K) - 490 1700 390 880 

 

(a) (b)

Figure 9. (a) The 3D model of test sample soldered on a substrate used for FEA simulation; (b) its 
simulated Kelvin temperature distribution. 

4.2. Color Shift Failure Prediction 

To validate the feasibility of the proposed color shift failure prediction method, this section used 
the extract features from collected SPDs until 345 h to predict the time to failure with the PF prediction 
method. As shown in Figure 10, three of the seven normalized features extracted by both statistical 
models, such as λB, 1/wB, and λY, kept almost constant during the designed degradation test until 345 
h. Thus, it is assumed that these three features are not degraded in this case, however, the remaining 
four features, including y0, AB, 1/wY, and AY, are supposed to exponentially degrade. Therefore, the 
state model described in Equation (8) can be rewritten as given in Equation (12), in which the shift 
trajectories of four normalized features are exponential modeled. 

State model: 

 1 1exp (t t )k k k k kx x     ; 
 0; ;1/ ;k B B Yx y A w A

 (12) 
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Figure 10. Shift trajectories of normalized features extracted from SPDs by (a) Gaussian model and 
(b) Lorentzian model until 345 h. 

Table 3 shows the exponential curve-fitting results of the four normalized features collected until 
345 h, which are used to estimate the initial distribution of state model parameters. BG and BL is the 
pre-parameters of state models from the Gaussian and Lorentzian model-fittings respectively. The 
initial distributions of the parameters defined in the vector of ʘk(xk, αk, δk) are assumed as uniform 
distributions, which can be represented in Equation (13). As there is an over-fitting for AB with the 
Lorentzian model, it is assumed as the same uniform distribution from Gaussian model. 

Table 3. State model parameter estimation. 

Models  y0 AB 1/wY AY 

Gaussian Model 
BG 0.96267 1.00464 0.99632 0.97489 
αG 4.09 × 10−4 7.23 × 10−5 3.62 × 10−5 3.33 × 10−4 

Lorentzian Model 
BL 0.98579 0.07459 0.99607 0.97595 
αL 2.4 × 10−4 0.84435 4.0 × 10−5 3.21 × 10−4 
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Figures 11 and 12 show the prediction results of four normalized features extracted from both 
Gaussian and Lorentzian models until 529 h, which indicate that the median values of the four 
normalized features predicted by the PF approach are relatively close to the actual measurement data 
marked with black dots. Meanwhile, as it estimates and updates the parameter vector dynamically 
by absorbing new measurements with considering the measurement noise, the PF approach takes the 
measurement dynamics and uncertainties into account in predicting the state model parameters. 
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Figure 11. PF prediction results of four normalized features extracted from the Gaussian model until 
529 h (a) Normalized y0; (b) Normalized AB; (c) Normalized 1/wY; (d) Normalized AY. 
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529 h (a) Normalized y0; (b) Normalized AB; (c) Normalized 1/wY; (d) Normalized AY. 

Next, based on the predicted features, the future SPDs of the test sample after 345 h can be 
predicted by reconstructing the Gaussian and Lorentzian models as shown in Equations (6) and (7). 
Then, the color coordinates (u′,v′) in the CIE1976 color space, the CCTs and CRIs can be inferred 
according to the predicted SPDs. The error percentages (Equation (14)) between predicted values and 
real measurements are calculated and the results are shown in Figure 13, which reveals that: (1) the 
absolute prediction errors of u′ and v′ based on the two statistical models can be controlled under 1% 
with the proposed PF approach, in which the approach with the Gaussian model has the better 
prediction accuracy in u′ and that with the Lorentzian model has less prediction error in v′; (2) the 
prediction errors of both the CCTs and CRIs can be controlled under 5%. 
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Figure 13. Prediction errors of (a) u′; (b) v′, (c) correlated color temperature (CCT) and (d) color 
rendering index (CRI) based on the Gaussian and Lorentzian models. 

Finally, the Euclidean distance between the original color coordinates and shifted coordinates in 
the CIE 1976 color space, du′v′, was calculated as shown in Equation (15) to represent the color shift 
of LEDs. Furthermore, the time when the predicted color coordinates shift to the failure thresholds 
defined as du′v′ = 0.007, can be estimated as the time to failure. The prediction result of du′v′ is shown 
in Figure 14, and it can be concluded that the predicted times to color shift failure from both statistical 
models are similar and they are earlier than the actual failure time. It could be a positive alarm to the 
test sample under the reliability testing. 

2 2
0 0' ' ( ' ' ) ( ' ' )du v u u v v   

 
(15) 
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Figure 14. Prediction results of du′v′ based on the Gaussian and Lorentzian models. 
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5. Conclusions 

Traditionally, most of the concerns for the reliability of LEDs have been focused on luminous 
flux depreciation rather than on color shift failure. However, with the expansion of LED applications, 
much attention has been paid to the color quality and color consistency. Because the SPD of a light 
source can be used as the quantitative inference of both its photometry and colorimetry 
performances, this paper predicted the color shift failure for a pc-WLED package under a degradation 
test by modeling the shift processes of features extracted from SPDs with a nonlinear filtering 
method. The results show that: (1) By analyzing the feature extracted from the SPDs with the 
Gaussian model, the phosphor degradation was identified as the dominant failure mechanism of test 
sample under the designed accelerated degradation test; (2) The proposed PF method, taking the 
measurement dynamics and uncertainties into state prediction, can achieve a dynamic and accurate 
prediction for the color coordinates (u′,v′) in the CIE1976 color space with prediction errors under 1% 
and the prediction errors of both the CCTs and CRIs can be controlled under 5%; (3) Meanwhile, the 
residual color lifetime of the selected LED can also be estimated by considering the predicted color 
coordinates shift to the defined failure thresholds. To continue this work, the proposed feature 
extraction method with statistical models and the color shift prediction method can be improved by 
considering their fundamental physical senses to solve the color qualification problems for high-color 
rendering LEDs with multiple phosphors, and the new LED packages with different packaging 
materials and structures. 
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