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Abstract: The influence of martensitic microstructure and prior austenite grain (PAG) size on the 
mechanical properties of novel maraging steel was studied. This was achieved by looking at two 
different martensitic structures with PAG sizes of approximately 40 µm and 80 µm, produced by 
hot rolling to different reductions. Two ageing heat-treatments were considered: both heat-treatments 
consisted of austenisation at 960 °C, then aging at 560 °C for 5 h, but while one was rapidly cooled 
the other was slow cooled and then extended aged at 480 °C for 64 h. It is shown that for the shorter 
ageing treatment the smaller PAG size resulted in significant improvements in strength (increase of 
more than 150 MPa), ductility (four times increase), creep life (almost four times increase in creep 
life) and fatigue life (almost doubled). Whereas, the extended aged sample showed similar changes 
in the fatigue life, elongation and hardness it displayed yet showed no difference in tensile strength 
and creep. These results display the complexity of microstructural contributions to mechanical 
properties in maraging steels. 

Keywords: creep; strength; ductility; fatigue; martensite; electron back-scatter diffraction (EBSD); 
maraging steel 

 

1. Introduction 

Maraging steels are a class of ultrahigh strength steels that consist of a martensitic microstructure 
hardened by intermetallic precipitates. They have found use in a number of industries most notably 
in aerospace due to their combination of high strength and damage tolerance. In a separate paper on 
maraging steels [1] the importance of the choice of ageing heat-treatments in producing different 
precipitate populations was described. It was shown that significant mechanical property 
improvements could be made by the choice of austenisation temperature: a creep life increase of over 
three times, strength increase of 150 MPa and ductility increases of over three times. However, it was 
found that there was a trade-off between ductility and the other properties. Grain size refinement by 
thermomechanical processing has a potential advantage over ageing treatments in that it has been 
found that it can improve a range of mechanical properties at the same time, including ductility, 
strength, creep and fatigue. The work of Petch [2] based on the experiments of Hall [3] established 
the importance of the grain size on the strength of an alloy. The relationship between grain size and 
a range of mechanical properties have been modelled and measured, including strength [2,4], ductile 
to brittle transition [5,6], creep [7,8] and fatigue [9,10]. The majority of this work has been based on 
alloys with an equiaxed grain size, but with maraging steels there is an added complication of 
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multiple definitions of what constitutes size since a martensitic microstructure consists of a number 
of prior austenite grains (PAG) each of which consist of packets, blocks and laths. A packet is a region 
that consists of a number of parallel laths with the same habit planes. These laths can either be slightly 
misorientated or have very different orientations from each other, whereas a block is a series of laths 
with similar orientation. The use of orientation mapping by EBSD has allowed a greater 
understanding of the martensitic microstructure and allowed the determination of block sizes that is 
not possible to determine by standard microscopy [11,12]. This understanding of block sizes has led 
some researchers [13] to conclude that the block size, and not the packet or PAG size (as previously 
thought), is the controlling size element in the yield strength of a martensitic alloy. Ageing  
heat-treatments will change the strength of the alloy and can embrittle it, however they are not 
expected to influence the relationship between strengthening and grain size [14]. In this paper, we 
consider how the microstructure influences the mechanical properties of a maraging steel by 
considering two different PAG sizes and two different heat-treatments. One is aged for 5 h and the 
other has an extended age at a lower temperature. 

2. Material and Methods 

The composition of the alloy is shown in Table 1. The alloy was vacuum induction melted by 
Tata RD&T Swindon technology centre as 60 kg ingots (~150 mm × 150 mm × 410 mm). They were 
hot forged to produce two different PAG sizes which will be named based on the size of the final bar: 
50 mm and 19 mm. The 50 mm bars were hot forged to 50 mm × 50 mm square bar and homogenised 
in a vacuum at 1200 °C for 48 h followed by gas quenching using high purity Argon. The 19 mm bars 
were produced by hot forging these 50 mm bars. The two bars were then aged to two different  
heat-treatments, HT3 and HT5. HT3 consists of an austenisation at 960 °C for 1 h and ageing at  
560 °C for 5 h followed by an air cool. HT5 is the same but with an extended slow cool to 480 °C over 
40 h, then aged at 480 °C for 24 h and then air-cooled (Figure 1). Following heat treatment, tensile, 
creep and fatigue specimens were machined. 

Table 1. The chemical composition of the maraging steel. 

Element Fe Ni Cr Co Mo W Al
Weight % 68.11 6.99 9.90 8.02 2.75 2.43 1.80 

 
Figure 1. Schematic of the two ageing heat-treatments. 

Mechanical testing was carried out at SMaRT (Swansea University, Singleton Campus, Swansea, 
UK). Tensile tests were conducted with a dual strain-rate of 0.00025 s−1 up to 2% proof stress and  
0.068 s−1 thereafter, using the standard BS EN ISO 6892-1:2016. Creep testing was carried out by 
applying a constant load to the sample, at a temperature of 500 °C following the standard BS EN 
10291:2000. Both creep and tensile test pieces were the same size with a gauge length of 20 mm and 
a diameter of 4 mm. Load control fatigue tests were conducted using the standard ASTM E466-07 
with a trapezoidal waveform with a frequency of 0.25 Hz and R = 0. The test pieces used had a gauge 
length of 12 mm and a diameter of 4.5 mm. 

EBSD maps were obtained using a Phillips XL30 SEM (Swansea University, Swansea, UK, 
operating at 20 kV with Oxford Instruments HKL camera and Channel 5 software). Maps had an 
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average indexing rate of more than 80%, and were subsequently cleaned to remove non-indexed 
points. A step size of 0.5 µm and 1 µm was used for PAG and block determination and a step size of 
0.1 µm for laths. For the determination of PAG and block sizes several maps were obtained with an 
area of approximately 0.5 mm2 for the 19 mm bar size and 1.5 mm2 for the 50 mm bar size. For the 
determination of lath sizes an average of 11 maps of 30 × 30 µm was used for each sample. 

3. Results 

3.1. The Martensitic Microstructure 

3.1.1. Methodology 

In maraging and low carbon steels the orientations of blocks within a PAG have distinct 
orientations, called variants, due to orientation relationships (ORs) between the austenite and the 
transformed martensite. The three main ORs in steels are Nishiyama-Wassermann (N-W) [15], 
Kurdjumov-Sach (K-S) [16] and Greninger-Troiano (G-T) [17]; with different researchers suggesting 
that different ORs are more suited for different low carbon steels [11,18] or that all are an 
approximation because the analytical solution is irrational and different to these [19,20]. Laths and 
packets can be determined from etchants that reveal the lath boundaries. But blocks cannot be 
determined in this manner and instead they can be determined by EBSD scans. PAGs can in most 
cases be determined by etching, such as when precipitates or elements segregate to them, but this 
was found to be problematic for this alloy and so the use of EBSD offers an alternative method. PAGs 
cannot be revealed by standard misorientation boundary maps, i.e., by plotting boundaries above a 
certain angle, as misorientations between blocks are expected at a range of distinct angles. Instead, 
the misorientation angle and axis needs to be considered to reconstruct the PAGs based on a 
particular OR using the EBSD data [21–23]. There are different approaches, but they are all based on 
constructing probable PAGs based on the orientation of blocks, or individual orientations, and their 
position in relation to a chosen OR. In this work we use the program ARPGE [21] to reconstruct the 
PAGs. The G-T OR is used because it best matches the misorientation profiles. 

The choice of what constitutes a block is non-trivial but can have important implications when 
compared with the mechanical test results. From Table 2 it can be seen that if a block is defined as 
misorientations greater than 5°, the ratio of block-sizes of the two bars is less than if the higher 15° 
misorientation is chosen. From the G-T OR, block boundaries can have misorientations at 3.5°, 7° and 
11° in addition to ones at higher angles. However, we will define the block size here from 
misorientations above 15°, which would be larger than some of the possible variants. The value is 
chosen because boundaries with small misorientation are easier for dislocations to cross [24]. 
Boundaries of above 2° are attributed to lath boundaries, to reflect a slight misorientation across 
boundaries of laths of the same variant and to limit errors involved in determining the orientations. 
Both the block and PAG sizes are determined from the linear intercept method. 

Table 2. Linear intercept sizes from EBSD measurements. Sizes from boundaries with misorientations 
of more than 1°, 5° and 15°. PAG sizes are determined using ARPGE reconstructions. The 15° values 
are used as block size and the 2° values as lath sizes. All size values are in µm. 

Heat-treatment Bar Size 1° Laths: 2° 5° 10° Blocks: 15° PAGs 
HT3 19 1.15 2.2 4.9 7 7.5 29.1 
HT5 19 1.11 2.4 4.7 6.4 6.9 35.2 
HT3 50 1.38 2.9 5.7 9.8 10.6 75.8 
HT5 50 1.51 2.9 5.4 8.6 9.4 79.6 
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3.1.2. Microstructure 

After thermomechanical processing and heat-treatment the alloy displays typical martensitic 
microstructures found in maraging steels (or steel with low C) [11,12] as shown in Figures 2 and 3. 
The microstructure is fully martensitic and consists of PAGs, packets, blocks and laths. The blocks 
are mostly elongated and in some cases extend across the width of a PAG. 

The microstructure of the 50 mm bars is coarser than the 19 mm bars, with larger blocks, PAGs 
and laths as shown in Table 2. The PAG size is approximately twice larger, the block size 40% larger 
and the lath size 26% larger for the 50 mm bar size than the 19 mm bar. Whereas, the two heat-
treatments have similar sizes for the two bar sizes. Based on work from other researchers on steels 
[6,12,25] a relationship between the size (d) of PAG and blocks can be expressed as: ݀௕௟௢௖௞ = ௉஺ீଵ/ଶ݀ߟ  (1) 

For the alloy studied we find this same relationship exists but with a value of η of 1.2, whereas 
for a combination of HSLA, maraging and low carbons alloys accumulated by [26] 0.3 were found. 
This means our alloy has fewer blocks per PAG (or bigger blocks for a given PAG size), which may 
be partly due to there being significant numbers of block boundaries less than the 15° chosen here to 
define a block boundary. Based on the results in Table 2, a similar relationship appears to exist with 
the lath size, but with an exponent between (1/3) to (1/4) for the PAG size to reflect the smaller change 
seen in the lath structure between the 19 mm and 50 mm bars, as seen in Figures 2 and 3. The 
misorientation angle profiles for the different samples are shown in Figure 4 and the number of 
boundaries between different angles is shown in Table 3. These profiles are consistent with the size 
values of the different samples shown in Table 2; they show the 19 mm samples have more 
boundaries per µm2 than the 50 mm samples at most angles, and hence smaller block and PAG sizes. 
The figure also display that the two heat-treatments have similar misorientation profiles and hence 
lath structures, albeit as shown in Figure 4b the fraction of different boundary type differs. For those 
boundaries between 20° and 50°, representing mainly PAG boundaries, there are approximately four 
times more boundaries for the 19 mm bars. At other misorientation angles the difference in the 
number of boundaries in the two bar sizes is reduced; there are approximately 40% more boundaries 
in the 19 mm samples at angles around 15° and 52° and the difference is negligible at misorientation 
angles less than 10° and above 58°. These differences may suggest that certain boundaries between 
adjoining variants become more favourable with increasing PAG size. For the lower angle boundaries 
the difference may instead be a consequence of some of the boundaries being lath boundaries, rather 
than different variants; this is because lath size have a smaller dependence on PAG size than block 
boundaries. 

The martensitic microstructure is similar to cold worked metal being heavily distorted with a 
high dislocation density [27]. When deformed metals are subjected to elevated temperatures the 
microstructure can transform by grain growth, recrystallisation or recovery; the last of these 
consisting of an annihilation of dislocations, formation of low angle boundaries and subgrain growth. 
There is some difference between the response of cold worked and martensitic microstructure at 
elevated temperatures [28], and a martensitic microstructure found to be more stable. The similarity 
between the microstructure of HT3 and HT5 shows that the lath microstructure is fairly stable at  
500 °C, which is consistent with the work of others [28,29].  

As with other maraging steels, considerable strength is gained by ageing this alloy to produce a 
dispersion of precipitates. More details of the precipitates and their impact on the properties of this 
alloy can be found in a separate paper [1]. The alloy is strengthened during heat-treatment by small 
NiAl precipitates (~5 nm) and larger laves phase (rich in W and Mo) precipitates (~20 nm). During 
the extended age of HT5 additional Cr rich precipitates are produced along with the growth and 
formation of new NiAl and laves precipitates. 
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Table 3. The length of boundaries per unit area (µm−1 × 102) for the different samples between certain 
misorientation angles, taken from the data in Figure 4. 

Heat-Treatment Bar Size 5–10° 10–20° 20–50° 50°+ 
HT3 19 4.3 3.8 6.5 23.2 
HT5 19 4.3 3.8 5.9 26.3 
HT3 50 4.4 2.3 1.7 17.5 
HT5 50 4.2 2.8 1.6 20.9 

 
Figure 2. EBSD maps of the different starting microstructures. (a) HT3 19 mm bar; (b) HT5 19 mm 
bar; (c) HT3 50 mm bar. The maps display boundaries of different types the thick black lines are used 
to represent probable PAG boundaries (calculated by ARPGE), thinner grey lines represent block 
boundaries, and are boundaries with misorientations greater than 5°. The colours represent the  
IPFz orientation of the austenite as calculated by ARPGE. All figures have the same scale, shown on 
the left. 

 
Figure 3. EBSD maps with IPFz colouring of the different microstructures. (a) HT3 19 mm bar;  
(b) HT5 19 mm bar; (c) HT3 50 mm bar; (d) HT5 50 mm bar. The single pixel black lines represent 
boundaries with misorientation between 2° and 15°, 2-pixel black line between 15° and 21° or more 
than 48°, and 3-pixel black linesbetween 21° and 48° to represent probable PAG boundaries. The maps 
are used to determine the lath sizes in Table 2. 
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Figure 4. Misorientation angle profiles calculated by MTex for grains with misorientation angles 
above 5°, for the different samples studied. (a) Are the length of boundaries (in µm) per unit area 
(µm2) (normalised for different map sizes); and (b) the fraction of different boundary types. 

3.2. Mechanical Properties 

3.2.1. Strength Results 

The stress-strain curves of the different bar sizes and heat-treatment conditions are shown in 
Figure 5, the change in yield strength with temperature in Figure 6a, and the micro-hardness in  
Table 4. For the stress values the extra strengthening by precipitation of HT3 (σP) is subtracted from 
the values. 

The micro-hardness results show an increase in the hardness of HT5 compared to HT3. This 
difference though is much smaller than the difference in hardness between the two melt sizes. With 
an increase of ~200 HV between the 19 mm melt and the 50 mm melt (higher for HT5 than HT3), this 
would correspond to a strength increase of ~600 MPa using the expected conversion rates. 

As with the hardness results HT5 has a higher tensile strength than HT3 at all temperatures.  
The stress-strain curves show a similar shape for the 19 mm and 50 mm melts, but there are 
differences in the yield and ultimate tensile strengths, and the elongations to failure. In contrast to 
the hardness results, the difference between the two melt sizes is much smaller. Whereas, HT3 shows 
a significant increase in the strength of the 19 mm bar compared to the 50 mm bar at room 
temperature of 167 MPa, for HT5 and HT3 at other temperatures the difference is much smaller and 
in many cases within the error of the measurements. The differences in strength of the bar sizes are 
much lower than found from the hardness results. The brittle fracture of some samples at room-
temperature adds an uncertainty as to the relative difference in strength of the bar sizes. 

BCC alloys are known to follow a Hall-Petch relationship whereby the yield strength σ is 
proportional to the reciprocal of the square-root of the grain size (d). This is given in Equation 2, 
where σ0 is the friction stress and ky a proportionality constant [2,3]. ߪ = ଴ߪ + ݇௬݀ିଵ/ଶ (2) 

The value of ky is important as it quantifies how the strength increases for a given grain size 
reduction. Dingley and McLean [4] made a theoretical prediction for the relationship between grain 
size and strength to give a ky value of 2190 MPa µm−1/2, which has been found to show good agreement 
with the experimental work of a number of different research on steels [4,14,30–33]. For maraging 
steels the choice of what size to use is important. Some researchers [6,25] suggest that the main 
controlling factor in strengthening is the block size and not the PAG size, and find a value of ky of 
~450 MPa µm−1/2 using the block sizes. They argue that the PAG size often shows a Hall-Petch relation 
due to the scaling of block and PAG sizes. Others still [34] have suggested that the controlling size 
element are dislocation networks with no or small misorientation across them, such as the lath size. 
In this case the strength from a lath martensite (σL in MPa) increases with the reciprocal of the lath 
size (dL in units µm): 
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௅ߪ = 115 ܽܲܯ ௅݀݉ߤ  (3) 

Table 4. The Vickers hardness in HV-20 of the different conditions. 

Sample 19 mm 50 mm
HT3 641.3 ± 5.9 480.4 ± 4.5 
HT5 705.7 ± 6.9 489.9 ± 13.2 

 
Figure 5. Tensile test stress-strain curves for HT3 and HT5 for the 19 mm and 50 mm bar sizes. σP is 
the strengthening by precipitation of HT3. (a) at room-temperature; (b) at 200 °C; and (c) at 450 °C. 

 
Figure 6. The change in yield stress (a); and elongation to failure (b) with temperature for the different 
conditions. σP is the strengthening by precipitation of HT3. 

For the Hall-Petch relationship using the block sizes the calculated strength differences  
between 19 mm and 50 mm samples are approximately 130 MPa and 28 MPa using values of ky of 
2190 MPa µm−1/2 and 450 MPa µm−1/2 respectively. The higher value of ky best describes the difference 
of tensile strength of HT3 at room-temperature (167 MPa), whereas the lower ky value better describes 
the differences for HT5 and HT3 at other temperatures. If Equation (3) is used with the lath sizes a 
lower strength difference is predicted, 10 MPa, than observed. 

It is possible to make an estimation of the absolute contribution of strengthening of the lath 
microstructure by accounting for strengthening from the different elements. For HT3 the intrinsic 
strength of Fe is taken as 200 MPa [35], solid solution strengthening is taken as 300 MPa [36], and 
precipitate strengthening is taken as 1020 MPa (from the differences in hardness before after heat-
treatment and assuming hardness is directly proportional to the yield strength [37]). This calculation 
gives a strength of the lath martensite of 610 MPa for HT3 50 mm; this value is close to the 
strengthening using Equation (2), the block size and a constant of 2150 MPa µm−1/2 of 660 MPa, but 
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significantly different to the calculations using the other constant in Equation (2) (~140 MPa) or using 
Equation (3) (~40 MPa). 

Hence, the use of Equation (2) with a constant of 2150 MPa µm−1/2 best explains the 
microstructural contribution to the tensile strength of HT3 for this alloy. Both the block and lath sizes 
fall with decreasing PAG size; hence it can be difficult to determine which may be causing the 
strengthening. It is possible that Equation (3) better describes the strengthening, but with a larger 
constant of proportionality. 

At elevated temperatures the value of ky has been found to fall: between 20 °C and 350 °C the 
value was said to fall by up to one fifth [30]. This may explain the fall of over one third between the 
strength of the two bar sizes of HT3 at 450 °C from 20 °C, but not the values at 200 °C. 

3.2.2. Elongation to Failure 

In contrast to the tensile results both heat-treatments show a marked increase in ductility for the 
smaller PAG size across all temperatures. At room temperature this difference is much larger for 
HT3, the 19 mm bar has a ductility 3.7 times that of the 50 mm bar, than for HT5, where the 19 mm 
bar has 1.3 times the ductility of the 50 mm bar. With increases in temperature the ductility of all 
conditions increases. Furthermore, at 450 °C both HT3 and HT5 have the same elongation to failure. 
Fracture surfaces of the samples after room-temperature and elevated temperature testing are shown 
in Appendix A. 

A feature of maraging steels, and BCC metals in general, is a marked transition from ductile to 
brittle behaviour with falling temperature [27]. The ductile to brittle transition temperature (DBTT) 
is due to the high dependence of the stress required to move a dislocation with temperature in BCC 
metals; if the temperature is low enough this stress can exceed the stress needed to propagate a crack 
and result in a brittle failure. Although, this would suggest the DBTT to occur at a distinct 
temperature, in reality it is spread over a range of temperatures. The DBTT can shift to higher 
temperatures with larger grain sizes or when the movement of dislocations is inhibited, such as in 
the presence of precipitates [5,38,39]. Both the yield and fracture stresses are expected to increases 
with the reciprocal of the square-root of the grain size, but the fracture stress is expected to have a 
greater grain size dependence [2], which is why a smaller grain size results in a lower DBTT even if 
it increases the yield stress. The elongation values (ε) at different temperatures (T) are fitted to a 
sigmoid function to determine the DBTT (TDBTT): ߝ = ௠௜௡ߝ + ௠௔௫1ߝ + ݁ିఉሺ்ି்ವಳ೅೅ሻ (4) 

where, εmin and εmax are taken as 1% and 12% to represent the minimum and maximum strains and β 
is a fitting constant used to represent the range of the DBTT region. For the conditions studied the 
DBTT is spread over several hundred degrees Celsius. From this method, we then get HT3 19 mm = 
−14 °C, HT3 50 mm = 243 °C, HT5 19 mm = 141 °C and HT5 50 mm =360 °C. The smaller PAG size 
reduces the DBTT by approximately 200 °C, with a bigger difference for HT3 than HT5. The difference 
between the two heat-treatments is smaller with the two 50 mm bars having DBTTs separated by less 
than 100 °C. A linear dependence on the DBTT (TDBTT) with the log of the reciprocal of the square-root 
of the grain size (d) has been predicted and found experimentally [5]; as shown in Equation (5), where 
C and α are constants. Mild steel α has been found to have a value of 110 K µm−1/2 [5], 190 K µm−1/2 for 
HSLA steel, and 90 K µm−1/2 for a 17CrNiMo6 steel [6]. 

஽ܶ஻்் = ܥ +  ൫݀ିଵ/ଶ൯ (5)݈݊ߙ

Using the value of α of 190 K µm−1/2, we find a difference of DBTT between the 19 mm and  
50 mm bar sizes of 32 °C and 94 °C for the PAG and block sizes respectively. These DBTT values are 
less than half of the changes measured and are significantly closer if the PAG size is used. To obtain 
the DBTT changes observed the value of α would need to be over double this at 400 K µm−1/2.  
The discrepancy could be a feature of this alloy, but could also be due to the use of tensile tests rather 
than impact toughness tests; since differences in strain rates and stress states can change the DBTT [40]. 
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3.2.3. Creep Testing 

In Figure 7 are constant load creep curves and creep rate curves for the different conditions, 
tested at 500 °C and at a starting stress of 0.82 (the yield stress of HT3 at 500 °C). In a similar manner 
to the tensile results, the figures show that there is a large difference in properties for the smaller PAG 
size (19 mm bar) for HT3, but for HT5 the influence of PAG size is much smaller. The two  
heat-treatments also show the opposite influence of PAG size on the minimum creep rate and final 
creep strain; for HT3 the smaller PAG size has considerably improved creep properties (four times 
creep life), whereas for HT5 the larger PAG size has slightly improved properties. For both  
heat-treatments the difference in creep of the two PAGs occurs at approximately the start of 
secondary creep; this is shown in Figure 7 where it can be seen that below ~20 h the creep rate appears 
to be independent of the PAG size. 

Although it may be expected that a larger grain size is beneficial for creep, it has often been 
found that at low to intermediate temperatures, or less than half the melting point of an alloy (Tm) or 
lower than the lowest temperature for recrystallisation, that a smaller grain size can result in a lower 
creep rate and a longer time to rupture [7,8,41,42]. In the case of the alloy studied no recrystallisation 
is expected at 500 °C which is also approximately 0.45 Tm, but it is 0.8 TAe1 (Tm is the melting point of 
the alloy and TAe1 being the equilibrium transformation from martensite to austenite). Although, some 
differences are expected in the instantaneous strain and primary creep regions [7,8], it is the 
secondary and tertiary regions where the differences in grain size are expected to be most evident, 
which is consistent with the findings here. Garofalo et al. [8] derived an expression to describe the 
change in the steady state creep rate (ϵ̇s) as: ߳௦ሶ = ߢ ቈ2݀௠ଷ + ݀ଷ݀ ቉ሶ

 (6) 

where, d is the grain diameter, and κ a constant. It has been found that at certain temperatures there 
is an optimum grain size at which the creep rate is minimised, this grain diameter, dm, falls with 
increasing temperature. At low enough temperatures dm can be ignored and the steady state creep 
rate becomes proportional to the square of the grain size. If it is assumed that the steady state creep 
dominates, and the strain to failure is independent of time, then from Equation 6 we find that the 
time to failure is proportional to the reciprocal of the square of the grain size. Both of these 
relationships have been observed experimentally [7,41,43], which gives the following relations 
between the steady state creep rate (̇) and time to failure (t) for two different grain sizes (d) 1 and 2 
(given by subscripts): 
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For each of the equations the term on the right is ~2 when using the block sizes of HT3, or ~4.8 if 
using the PAG sizes. Whereas, the corresponding terms for the left-hand side of the equations are  
2.7 for the strain rate and 4.1 for the time to failure (the drop in strain rate at ~20 h for HT3 19 mm is 
expected to be due to instrumental effects rather than a material effect and is therefore not taken as 
the minimum strain rate). The minimum strain rate shows a reasonable correlation with the block 
size, albeit slightly a higher one than would be predicted from the block sizes. The time to failure 
values may show more difference due to the additional assumptions on the nature of the creep curve 
being dominated by steady state creep, which is not exactly the case here. Previous research using 
this equation has been conducted on FCC alloys with equiaxed grains and the results presented here 
show there is some justification for the use of Equation (6) for martensitic alloys by using the block 
size. The results also suggest that at this temperature there is some justification for dm to be ignored, 
which would further suggest that additional grain refinement would result in improvements in creep 
performance. 

There is some disagreement in the literature on whether there is a relationship between the grain 
size and the strain to failure. Wilshire [7] found an increase in the strain to failure with smaller grain 
sizes. This was attributed to the ability to form a crack of critical length to cause failure becomes more 
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difficult as the grain size falls because the crack has to pass through multiple grains. However, 
although Shahinian and Lane [41] observed the same relationship at higher temperatures, at lower 
ones they found a mixed relationship with the total elongation more likely to fall with grain size. 
With the samples measured here, both behaviours were observed; HT5 showed an increase in 
elongation for the smaller PAG size and HT3 showed a slight decrease. It is perhaps the case that 
Wilshire was correct that smaller grains offer a greater resistance to crack propagation and failure but 
that a longer creep life allows creep damage to accumulate such as to sometimes obscure any 
relationship between elongation and grain size. 

 
Figure 7. Constant load creep tests at 500 °C at stresses of 0.82 of the yield stress of HT3 at the elevated 
temperature, and for the different conditions. In (a) are the creep curves (plastic strain against time) 
and in (b) the creep rate curves. 

3.2.4. Fatigue Testing 

The results of room temperature load control fatigue tests are shown in Table 5. All samples fail 
by cleavage fracture, with larger cleavage facets for the 50 mm samples reflecting the coarser 
microstructure (see Appendix A). It is common for the number of cycles to failure of a fatigue test at 
a particular condition to show a large statistical variation. This can be observed in the data: for HT5 
repeats at stress ratios of 0.75 and 0.77 showed significant variations in cycles to failure. This factor 
along with the limited number of tests performed limits the quantification of the differences between 
the different conditions. However, even with these considerations there is a clear difference in 
properties caused by the different PAG sizes. In this case both heat-treatments have better fatigue 
properties for the smaller PAG size, with both showing improvements in fatigue life of around 80%.  

A number of researchers have found that smaller grain sizes are better for fatigue properties 
[9,10]. The behaviour has been attributed to either a reduction in dislocation pile-ups and internal 
stresses from the presence of smaller grains, or to an increase in the difficulty of cracks to propagate 
through the material. There is a similarity in the fracture surfaces of the fatigue and room temperature 
tensile samples; this and the fact that the elongation and fatigue life are the only two properties which 
improve for both HTs suggest the mechanisms controlling the failure of both tests are similar. 
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Table 5. The results of load control fatigue tests of the different conditions tested at room temperature 
and different stresses. 

Heat 
Treatment Bar Size Ratio of Applied Stress to Yield 

Stress of HT3 19 mm 
Cycles to 
Failure 

Comparison of Bar Size 
(% Change) 

HT3 50 mm 0.77 13,088  
HT3 50 mm 0.75 21,454  
HT3 19 mm 0.77 19,446 49% 
HT3 19 mm 0.75 45,097 110% 

   Average 80% 
HT5 50 mm 0.77 22,241  
HT5 50 mm 0.75 50,312  
HT5 50 mm 0.77 37,287  
HT5 19 mm 0.77 27,659 24% 
HT5 19 mm 0.75 74,636 48% 
HT5 19 mm 0.77 100,000 1 168% 

   Average 80% 
1.Test was stopped before failure. 

4. Discussion 

The martensitic microstructure can have two separate mechanisms by which it influences the 
mechanical properties: (1) the yield strength and (2) the cleavage strength. The first of these, often 
called Hall-Petch strengthening, causes an increase in the force needed to move a dislocation because 
of the ability of a grain boundary to act as a barrier to its motion. It is this mechanism which causes 
the hardness and strength increase, and creep performance improvements for the smaller PAG sizes. 
The second mechanism is the stress needed to form a crack large enough to cause failure. And it is 
this mechanism that is likely to be responsible for the improvements in the elongation to failure, and 
the lowering of the DBTT, along with the improvements in fatigue properties that are observed for 
the smaller PAG sized samples. It can be difficult to separate these mechanisms, as in many cases 
both will change together and some of their original mathematical descriptions were based on the 
same concept: the stress at the end of a dislocation pile-up [44]. These two mechanisms will also have 
different contributions depending on the test type. This can be seen by the larger differences in 
hardness, between the two bar sizes, compared to the tensile strengths.  

An interesting feature of the results is that if we perform an extended age, HT5, there is a change 
in the fracture stress (elongation to failure and fatigue life) with PAG size but not an increase in the 
yield strength in the creep and room-temperature tensile tests. Whereas, for HT3 both mechanisms 
contribute to improved properties. There is not an obvious reason to explain these results.  
To understand the possible causes, we consider the three main differences in HT3 relative to HT5;  
(1) precipitate population; (2) solute content and (3) martensite microstructure. 

During the extended age of HT5 new precipitates form and existing ones grow in size. This 
causes a considerable increase in the strength of HT5 relative to HT3 of ~300 MPa. The strength of the 
matrix is increased relative to the grain boundaries which could in turn reduce the build-up of 
dislocation pile-ups, or of long-range internal stresses, by grain boundaries. Hence, any change in 
grain boundary strengthening is reduced. Alternatively, since laves precipitates preferentially form 
on dislocation boundaries then if the laths and blocks are closer the laves precipitates will be too, 
which will cause a strength increase. After the extended age of HT5 new precipitates are formed 
which could be situated within the laths reducing the influence of initial precipitates. However,  
if precipitation effects were the cause of the difference then the lower creep performance of HT5 
compared to HT3 is unusual. 

One theory on the cause of yield strength changes with grain size is based on the ability of a 
grain boundary to generate dislocations [8]. If existing dislocations are locked by a cloud of solute 
atoms, as is thought to often occur in steels, then new dislocations can be created near the boundary 
at a greater stress than that needed to move free dislocations. This stress is caused by a dislocation 
pile-up in the neighbouring grain that gives the grain size dependence of the yield strength. There 
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are experimental observations to back this theory as it has been found that when free dislocations are 
present or are less tightly bound [45,46], or when dislocations are generated at sources other than 
grain boundaries [47] the grain size yield strength contribution, or ky, is significantly reduced. HT5 
has a reduced content of solute atoms due to the extended age and so it is possible that it is less locked 
than in HT3 reducing the value of ky. Alternatively, dislocations could be more easily generated in 
HT5 than HT3 because of differences in the precipitates. However, this type of behaviour would 
imply a lower, or more gradual, yield point for HT5 which is not observed.  

There are three main equations that can be used to express the strengthening from the 
martensitic microstructure: (1) The Hall-Petch equation (Equation (2)); (2) Langford and Cohens 
dislocation cell equation (Equation (3)), and the Taylor equation [48,49]. The first two have been 
examined earlier in this report and the last relates the dislocation density to the strength. When a 
martensitic steel is held at elevated temperatures for an extended time the microstructure can change 
and coarsen as boundaries move and dislocations reorganise. Since HT5 is held for an extended time 
at elevated temperatures such a change may be expected that would then help explain why the lack 
of Hall-Petch strengthening in HT5 by mechanisms (1) and (2). But because EBSD measurements 
show the martensitic microstructure is unchanged between the two heat-treatments this explanation 
appears to be not valid. Instead there may be changes in the microstructure at scales smaller than 
measured by EBSD or changes that do not result in orientation differences. Laths may exist with no 
misorientation across them, and hence not determined by EBSD, that reorganise during the extended 
age; this could then explain the behaviour using the strengthening mechanism (2). Alternatively, 
other dislocations that are not part of a boundary (i.e., forest dislocations) may be present in a greater 
quantity with smaller PAGs but could be reduced by the extended age; this could then explain the 
behaviour by mechanism (3). 

Unlike the strength and creep properties, the fatigue, elongation and DBTT properties are 
improved for both heat-treatments. PAG and block boundaries are potential weak points as they can 
allow cracks to propagate relatively easy because of their length and orientation and the presence of 
brittle laves phase on them (Sun et al., 2016). This weakness is observed in the fracture surfaces of the 
tensile, fatigue and creep tests that show fracture preferentially along block and PAG boundaries. 
Hence, the larger the PAG size, and hence the longer the block size, the easier it is for cracks to 
propagate and for failure to occur. Therefore, because the PAG and block size is the same for both 
heat-treatments they both show improvements in fatigue and elongation to failure. 

5. Conclusions 

Two different PAG sizes and two heat-treatments were studied for a novel maraging steel. The 
mechanical properties of tensile strength, elongation to failure, creep rate and life, and fatigue life 
were measured for the different conditions in order to understand the influence of PAG, block and 
lath size on mechanical properties. The changes were quantified and it was shown that the alloy 
behaved in a similar manner to other alloys with an equiaxed grain structure if the block size of the 
martensite was used instead of the grain size. 

All mechanical properties were improved with a smaller PAG size in one heat-treatment: (a) 170 MPa 
increase in tensile strength by; (b) four times increase in creep life; (c) four times increase in elongation 
to failure and (d) 80% increase in fatigue life. 

However, the tensile strength increase was not observed at elevated temperatures, and for a 
heat-treatment with an extended age, only the fatigue and elongation to failure improved. This shows 
the complexity of the influence of the microstructure on the mechanical properties. 

The possible causes of the difference between the alloys were discussed and it was suggested 
that it is due to different strengthening mechanisms being operative for the yield strength and 
cleavage strength. The cleavage strength is given by the PAG size and block length controls the 
elongation to failure, ductile to brittle transition and fatigue life. Whereas, the yield strength given 
by the block size, which determines the creep and tensile properties. It is proposed that some 
combination of changes, in (a) the precipitate population, (b) the presence of solid solution elements 
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and (c) the recovery of the lath structure, during the extended age acts to reduce the yield strength 
difference between the different PAG sizes but not the cleavage strength.  
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Appendix A 

Selected regions from fractured tensile and fatigue samples are shown in Figures A1–A3. The 
fracture surfaces after room-temperature tensile testing (Figure A1) indicate a relatively brittle failure 
mode, with only a small amount of micro-voids on the 19 mm sample surfaces. The surfaces indicate 
cleavage fracture, with facets that are larger for the 50 mm samples. After elevated temperature 
tensile testing (Figure A2), all sample’s fracture surfaces consist of microvoid coalescence and are 
indicative of a ductile failure. Similar to the room-temperature tests the microvoids are larger for the 
50 mm samples. The 50 mm samples also display some quasi-cleavage features. The fatigue fracture 
surfaces (Figure A3) are like the room-temperature tensile surfaces, and display a cleavage fracture. 
They also show an increase in facet size with bar sizes. 

There are some differences in the fracture surfaces of HT3 and HT5 samples, which are mainly 
the result of their more brittle failure modes, but the differences are smaller than seen between the 
different bar sizes. 

 
Figure A1. Fracture surfaces of samples after room-temperature tensile tests. (a) HT3 19; (b) HT5 19; 
(c) HT3 50; (d) HT5 50. 
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Figure A2. Fracture surfaces of samples after elevated tensile tests at 450 °C. (a) HT3 19; (b) HT5 19; 
(c) HT3 50; (d) HT5 50. 

 
Figure A3. Fracture surfaces of samples after room-temperature fatigue tests, all samples were tested 
at the same stress. (a) HT3 19; (b) HT5 19; (c) HT3 50; (d) HT5 50. 
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