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Abstract: Magnesium alloys have great potential for developing orthopedic implants due to their
biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available
alloys limits their clinical applications. To increase the corrosion resistance of the substrate,
a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60
magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and
magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth
and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the
MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid
and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts
to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast
growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with
gallic acid offered a novel strategy for increasing osteocompatibility.
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1. Introduction

Magnesium and its alloys are considered as the next-generation biomaterials for tissue repair and
reconstruction [1–3]. Magnesium alloys have comparable mechanical properties with natural bone,
such as density, strength, and elastic modulus. Moreover, magnesium is also one of the main ions
of bone tissue. Moreover, recent research shows that magnesium ions can induce cellular adhesion
and bone formation, which are important functions for building strong bone-implant interfaces [4,5].
In this respect, magnesium alloys are suitable candidates for bone grafting, due to their osteoinductive
and osteoconductive effects [6].

In order to successfully apply magnesium alloys as biodegradable metal implants, controlling the
degradation rate in the physiological environment is the main aim of surface modification. Suitable
corrosion behavior leads to good biocompatibility, sufficient mechanical properties, and a supportive
structure for healing tissue. However, the high corrosion rate of magnesium in the presence of
a physiological environment containing chloride ions limits its clinical application. The rapid corrosion
behavior of acute surges in the pH value and concentrations of metallic ions may lead to the failure
of surgery [7]. In addition, the corrosion reaction that occurs on the surface will produce hydrogen
bubbles that obstruct the initial cell adhesion [8]. These adverse effects highlight the need to reduce
the initial degradation rate and enhance its biocompatibility. Surface modification of magnesium is
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one of the effective ways to improve the corrosion behavior. To date, numerous surface modifications
have been employed on biodegradable magnesium alloys, such as alkaline heat treatment [9], chemical
conversion [10], electrochemical deposition [11], and micro-arc oxidation (MAO) [12,13]. All those
methods provide better corrosion resistance with a lower degradation rate. However, the fragile
binding force of these coatings undermine their clinical application, while MAO promises good
performance with regard to practical use.

MAO can create an oxidized ceramic coating as a barrier on the metallic substrate to enhance
corrosion resistance. Several previous papers indicate that the coating can increase cell and tissue
compatibility [13,14]. The composition of the coating, such as forsterite, can stimulate the adhesion
and proliferation of osteoblasts on the implants [14]. Introducing functional compounds on the
interface can exert and induce some specific biological responses. However, in most cases, studies
that aim at the immobilization of further molecules onto the MAO ceramic coating mainly focus on
forming a hydrophobic layer or sealing pores to increase corrosion resistance [15,16]. Gallic acid
(3,4,5-triphydroxyl-benzoic acid, GA), a phenolic acid, is abundant in green tea and red wine [17],
and in recent years has drawn much attention due to its anti-tumoral, anti-bacterial, antioxidant, and
anti-inflammatory properties [18,19]. In addition, it also shows selective regulation toward several cell
lines, such as vascular endothelia and vascular smooth muscle cells [20]. Moreover, some reports imply
that oxidative stress will hinder bone healing and osteogenesis, so that GA may have the potential to
improve osteoblast’s function by reducing ROS (reactive oxygen species) [21].

In this study, Mg-6Zn-0.5Zr alloy in the form of ZK60 (Zn 5.3 wt %, Zr 0.3 wt %, and balance
Mg) was used as the metallic substrate, as it is a good candidate for medical applications with
good biocompatibility [22,23]. The main alloying elements in ZK60 are zinc, participating the bone
formation process, and zirconium, a trace element in our bodies. However, the rapid corrosion
rate of bare ZK60 still limits its clinical applications. Therefore, MAO coating was introduced to
enhance the corrosion resistance and treated as an intermediate layer for further surface modification.
The purpose of MAO treatment is not only in building a protective layer, but also forming a large
amount of hydroxyl groups on the magnesium surface for GA grafting. The aim of this study is to
examine the influence of immobilizing GA onto the MAO coating with regard to corrosion resistance
and osteocompatibility. The surface properties and corrosion behavior were, thus, characterized by
scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests.
Furthermore, to investigate the selective cell regulation of GA toward fibroblast and osteoblast-like
cells, both viability and cell attachment tests were performed.

2. Results and Discussion

2.1. Effects of MAO and Phenolic Monolayer on Coating Morphology

Figure 1 shows SEM images of the MAO- and MAO+GA-modified magnesium alloys’
morphologies. After MAO, the alloy surface became rough and coarse with numerous pores on it.
The average diameter of the pores formed by the discharge channels of the MAO process was estimated
at 1.1 µm. Since those pores were generated by the molten oxide and gas bubbles evaporating through
the plasma, the pore size and thickness of the coating became bigger with the increase in oxidation
time. Therefore, the random sparks of the MAO process caused the contours of the surface to have
the shape of scattered volcanoes, with the resulting roughness of this ceramic coating, thus, having
a larger surface area for grafting GA onto it. Most of the surface modification needed to be carried out
in aqueous solution and, thus, the compactness of the protective coating might be destroyed. However,
in this experiment, since GA could only be dissolved in absolute ethanol, the oxide layer would not
react with water, break MAO coating’s structure, or generate cracks due to hydration and inflation.
After the conjugation of GA, the morphology maintained its original structure because the GA layer
was merely tens of nanometers thick.
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Figure 1. SEM images and EDX composition analysis of (a) MAO and (b) MAO+GA coating.

2.2. The Coating Composition Analysis

The EDX results (Figure 1) show that the composition of the MAO coating mainly consisted
of O, Mg, F, Si, and C. The high oxygen content originated from the oxidized surface, with the
high temperature plasma turning the magnesium into magnesium oxide on the sample’s surface.
The fluorine ions in the electrolyte could react with the dissolved magnesium ions to form magnesium
fluoride and so increase the compactness of the MAO layer and corrosion resistance [24]. However,
the only difference between the MAO and MAO+GA groups was that the amount of carbon increased
slightly from 4.22% to 6.66% due to the deposition of GA. The XRD patterns of the MAO indicated that
the coating was composed of MgO (JCPDS 89-7746) and Mg2SiO4 (JCPDS 19-0768), which matched the
EDX data and showed that the electrolyte participated in the MAO processing. (Figure 2) In addition,
Mg2SiO4 could be decomposed into silicon, which is a trace element in human bone and can stimulate
MG63 cell growth and support proliferation of osteoblast-like cells [14]. The peaks of Mg and Mg2SiO4

were partially overlapped at 32.2◦ and 36.8◦, but the peak at 34.5◦ only belonged to Mg [25]. Therefore,
the relative intensity of the peaks of Mg, MgO, and Mg2SiO4 indicated that the coating was successfully
formed onto the substrate.
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2.3. The Surface Chemical Bonding Characteristics

The GA complex layer merely occupied the outermost part of the coating, which can be detected
by XPS. The atomic ratio agreed well with the EDS data, and showed that the content of all elements
decreased except for that of carbon (Table 1). Due to the deposition of GA, the carbon content doubled
from 26.6% to 55.3% and the rest of the elements in the MAO coating, especially Mg, Si, and F,
were masked by the outer GA layer (Figure 3). To further investigate the bonding types of GA,
high-resolution XPS spectra of C, O, and Mg elements were collected (Figure 4). According to the
published data of XPS spectra for C 1s of MAO and MAO-GA, 284.7 eV and 285.9 eV were attributed to
aliphatic C and C–O, respectively (Figure 4a) [26]. In addition, 288.6 eV was ascribed to COOH, COOR,
COO− and C=O (quinonyl) [27]. The area ratio of the carboxyl related group for the MAO-GA group,
which is the characteristic of GA, was around 22%, proving that GA immobilizes on the MAO coating
after the sample is immersed for 24 h. For O 1s, 530.9 eV belongs to aromatic C=O and magnesium
oxide, while 531.7 eV is ascribed to O=C–OH and magnesium hydroxide (Figure 4b). Moreover,
the peaks of magnesium silicate and O=C–O− (magnesium carboxylate) are very close, which are
532.8 eV and 532.4 eV, respectively; 533.5 eV is assigned to the hydroxyl group and carboxyl group,
and the targeted oxygen is different from the 531.7 eV peak of GA [27]. In the oxygen spectra of the
MAO group, the data showed that the coating consisted mostly of magnesium oxide and magnesium
silicate, which was agrees well with the EDX and XRD data. Furthermore, in the presence of water
the outermost magnesium oxide might turn into magnesium hydroxide, with abundant sites for
GA grafting. Therefore, the dehydration and condensation of GA and magnesium hydroxide led
to formation of magnesium carboxylate [9]. A study showed that the carboxylic head group tends
to dissociate hydrogen atoms, while the two oxygen atoms attach simultaneously to magnesium in
the bidentate configuration with a stable binding mode [28]. For Mg 2p, the peak of magnesium
hydroxide is at 49.7 eV. The peak at 50.5 eV can be attributed to chelated magnesium and magnesium
oxide (Figure 4c); 51.6 eV is the magnesium ions, which belongs to magnesium carboxylate [27,28].
In the magnesium spectra, after the modification of GA, the magnesium hydroxide was replaced by
chelated magnesium ions as the primary peak, which meant that magnesium hydroxide underwent the
condensation process and the GA complex layer preserved the source of magnesium ions [29]. These
ions chelated with either the quinonyl or carboxyl groups of GA to create coordination compounds.
Since the stability of the gallic complex was usually high, those coordination compounds aggregated
together into a steady multilayer structure [30,31]. Moreover, the electrostatic property of the gallic
complex may reduce the penetration of the corrosive ions, especially chloride ions. In conclusion, these
results confirm that GA firmly attached to the MAO ceramic coating through a stable binding mode.

Table 1. XPS results of elemental concentration.

Group
Element concentration (at.%)

O C Mg Si F

MAO 42.6 26.6 19 6.2 5.6
MAO+GA 33.3 55.3 8.2 1.9 1.3
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2.4. The Electrochemical Tests

The corrosion parameter can be obtained from the potential dynamic curves by carrying out
electrochemical tests in simulated body fluid, and the Tafel method then used to calculate the corrosion
current. Among the ZK60, MAO, and MAO+GA groups, the ZK60 unmodified group showed the
lowest corrosion potential at −1.564 V and the highest corrosion current density (9.6025 µA/cm2),
which indicates it might suffer severe corrosion in physiological conditions (Figure 5). After MAO
processing, the protective film can inhibit the corrosion fluid from contacting and reacting with the
metal surface, and suppress the release of the hydrogen bubbles and alkali ions. The MAO group
had higher corrosion potential at −1.485 V and its corrosion current density reduced dramatically
to 0.583 µA/cm2 in comparison to ZK60 (Table 2). Furthermore, in the MAO-GA group, the
corrosion potential increased slightly to −1.453 V and the corrosion current density further reduced
to 0.372 µA/cm2 (Table 2). The results, thus, showed that the oxidation coating passivated the metal
surface and increased its corrosion resistance, which is ascribed to the formation of an oxidized
magnesium barrier. However, the unstable current density at a potential above −1.0 V indicated the
occurrence of repassivation and pitting corrosion, due to the MAO coating having many pores [32].
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In contrast, for the MAO+GA sample, not only was its corrosion resistance enhanced, but also the
phenomenon of pitting corrosion disappeared. This implies that GA built a barrier to prevent the
chloride ions from invading, and captured the magnesium ions to form magnesium carboxylates
to buffer against pitting corrosion [27]. Moreover, it was difficult to immobilize molecules onto the
magnesium or the protective coating surface in aqueous solution because of the concurrent corrosion.
However, in the absolute ethanol solution, the oxidized coating was intact after immobilization of GA
and, thus, this method can prevent deterioration of the function of the original coating.
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Table 2. Fitting results of potentiodynamic polarization curves related to Figure 5.

Group Ecorr (V) Icorr (µA)

ZK60 −1.564 96.025
MAO −1.485 0.583

MAO+GA −1.453 0.372

2.5. Effects of Phenolic Monolayer on Cell Viability

Many studies have focused on using GA to enhance endothelialization through the selective
cell regulation between vascular endothelia (VEC) and vascular smooth muscle cells (VSMC) [33].
The function of selective cell regulation could also be applied to the bone-implant interface to inhibit
fibrous capsule overgrowth and decrease inflammatory symptoms. Therefore, the response of the
cell viability of MG63 and NIH-3T3 toward GA showed the selective response between bone-like
cells and fibroblasts. The viability of MG63 was affected when the concentration of GA was above
0.0025 g/L (Figure 6). In contrast, NIH-3T3 was more vulnerable and the viability was only 73% for GA
at 0.0025 g/L, and all the various concentrations of GA had little negative effects on the fibroblast cells.
Moreover, it is worth noting that with a GA concentration ranging from 6.25 × 10−4 to 2.5 × 10−3 g/L,
the viability was even better than seen with the lower concentration groups, which may imply that
GA can stimulate MG63 growth in these particular conditions. At 1.25 × 10−3 g/L, it had the highest
viability about 107% after 24 h co-culturing. Although GA did not show significant selective inhibition
toward the two cell lines, it did suppress fibroblast growth and help bone-like cells proliferate.
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2.6. The Cytocompatibility Evaluation

Cytocompatibility is the key parameter to evaluate whether implants have adverse effects on cells
or accelerate the recovery of the surrounding tissue. Due to rapid corrosion, magnesium alloys may
cause local alkalization, a high concentration of ions, and hydrogen evolution, which can generate
an inflammatory situation. Moreover, the varying levels of inflammatory response and the thickness
of the fibrous capsule imply the biocompatibility of the interface of the implants [34,35]. This study,
thus, carried out an experiment to test the influence due to the release of the organic molecules of the
GA-loaded interface on fibroblasts and osteoblast-like cells, respectively.

In the MG63 test, all three groups, including ZK60, MAO, and MAO+GA, did not show any
significant difference in cytocompatibility in days 1 and 3 (Figure 7b). An earlier study showed
the corrosion rate of ZK60 was mild and that MG63 cells can tolerate the slightly increase in ion
concentration [36]. Moreover, the magnesium ion was considered to be a beneficial factor which could
stimulate the proliferation of osteoblasts in a mild environment. As such, the absorbance of all groups
exceeded that of the negative groups on day 6. Due to the trace concentration of the released GA in
the extracted medium, the selective stimulation seemed to be obvious, and more time was needed
to accumulate the effects. Therefore, MAO+GA had greater cell viability than the other two groups
until day 6, and the difference between the MAO+GA and negative group was significant, proving
that the integrated effects of the magnesium ions and GA enhanced the proliferation of bone-like cells.
In the NIH-3T3 test, the concentration of the released ion may exceed the tolerance of fibroblasts,
and so the viabilities of all groups were lower than that of the negative group (Figure 7a). In addition,
on day 6 MAO had the best performance in terms of viability, as the MAO coating controlled the
corrosion behavior, so that the magnesium or alkaline ions did not burst out into the extracted medium.
Furthermore, in contrast to MG63, GA showed inhibition of NIH-3T3 fibroblast cells, so MAO modified
with GA had the lowest viability among all groups on days 3 and 6. The results indicated that although
the concentration of GA was lower than the effective dose, the influence was preserved when the
culturing was prolonged to day 6, similar to the results seen in the MG63 tests. The viability tests
showed that the protective coating did not have a large difference for NIH-3T3 and MG63, as its
concentration was in the tolerated limits of these two cell lines. Second, although the function of
the selective cell inhibition of GA was not apparent on day 1, the effects could be accumulated with
a longer culturing time. In conclusion, GA retained its influence after being immobilized on the
oxidized compounds and, thus, stimulated bone-like cell proliferation and restrained the growth
of fibroblasts.
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Figure 7. The cytocompatibility evaluation of ZK60, MAO, and MAO+GA with regard to (a) NIH-3T3
and (b) MG63. The data are presented as the mean ± SEM (n = 5). * p < 0.05, ** p < 0.01, *** p < 0.001.

2.7. The Cell Attachment Tests

The ability of the osteoblasts to attach on the implants is crucial for osseointegration, which
can increase the strength of the bone-implant interface and its biocompatibility [37]. Since the
micro-environment at the magnesium surface was different from the extracted medium in the viability
tests, the higher concentration of the alkaline and magnesium ions, which were diluted by the
extraction, may suppress cell attachment, while the hydrogen bubbles may reduce the space available
for cell adhesion. According to numerous reports, the morphology and roughness of a surface could
alter the biological response of osteoblasts and fibroblasts [38,39]. For example, with a smooth surface
the fibroblasts tend to appear in a flattened and well-spread morphology, with decreased proliferation.
Moreover, certain chemical groups, such as the carboxyl and hydroxyl groups of GA, could lead to
better cell adhesion behavior through non-receptor routes, like hydrogen binding, and electrostatic
and ionic-polar interaction [9]. Therefore, introducing GA onto a porous ceramic coating could affect
cell adhesion by both physical and chemical interactions.

In the NIH-3T3 test, the unmodified ZK60 showed the lowest cell number, due to the adverse
growing environment (Figure 8a). However, the NIH-3T3 adhered to the smooth surface seemed to
have better attachment compared with that on MAO and MAO+GA, whereas on the rough surface
the fibroblasts tended to only spread with occasional thin actin filaments, and remained in a round
shape. Moreover, the attachment strength of fibroblasts on the MAO modified with a GA surface
seemed to be fragile, in that some of the fibroblasts did not fully contact the surface and extended their
pseudopodia. One study found that titanium modified with pyrogallol showed no obvious cytotoxicity
to mammalian cells, but the surface resisted the attachment of NIH-3T3 fibroblasts and bacteria [17].
This result was in good agreement with other studies which found that fibroblast cells displayed less
adhesive behavior on MAO+GA coating due to the rough and porous morphology, and the biological
immobilization of GA.
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Figure 8. SEM images of (a) NIH-3T3 and (b) MG63 cells attachment on ZK60, MAO, and MAO+GA.

On the other hand, in the MG63 tests, the cell morphology of the adhered MG63 was completely
different from that of the fibroblasts, due to the special characteristic of the osteoblast and osteosarcoma
cells (Figure 8b). With regard to comparing the MAO and ZK60 groups, the morphology of the MG63
cells on the naked magnesium was in a spherical shape, without the extended pseudopodia, which
indicated the cells did not adhere well. Second, the porous and coarse surface could increase the surface
area for cell attachment, and was also suitable for osteoblast-like cell contact and proliferation [40].
Therefore, the morphology of cell attachment was notably improved for the MAO and MAO+GA
groups. Third, in agreement with the results for NIH-3T3, the adverse effects of the severe corrosion
were eliminated by the MAO coating, and MG63 cells more easily adhered on the MAO+GA than on
ZK60. Due to the opposite response of fibroblast cells toward GA, for which the MG63 cells did not
suffer from any suppression in the viability tests, the cell morphology showed good attachment for
MAO+GA. In addition to the selective cell regulation, this result implied that the GA combined with
the MAO coating on ZK60 also had a selective attachment toward the two different cell lines (Figure 9).
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Figure 9. Schematic diagram of the MAO coating modified by gallic acid.

Previous studies indicated that the oxidative stress induced by reactive oxygen species
(ROS) overproduction decreased the activity of osteoblasts [21]. In addition, ROS may indirectly
control the cell adhesive and anti-apoptotic related proteins. Chen et al. [41] conjugated
3,4-dihydroxyhydrocinnamic acid onto chitosan to enhance antioxidant activity, and the results showed
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that the catechol-modified titanium surface could promote osteoblast adhesion and proliferation.
GA also showed its radical scavenging ability as a basic phenolic compound after being grafted
on bioactive ceramic [17,42]. GA might stimulate cell attachment through the elimination of ROS
around the implant’s surface [43,44]. Moreover, the drilling procedure of bone grafting could generate
numerous radicals around the interface between the bone and implant. Utilizing phenolic compounds
to modify a bone graft has been shown to be an indirect, alternative method to accelerate bone healing
in recent years. The surface properties of the implants have a significant influence on the biological
response, and the absence of bioactive or stimulating factors (i.e., being inert) may lead to a variable
thickness of fibrous tissue ,which is mainly composed of fibroblast cells [45]. Although forming fibrous
capsules is unavoidable in order to reduce the inflammatory reaction, it also hinders osseointegration
and nutrient supply. GA has been confirmed to be an anti-inflammatory compound, and the viability
tests carried out in this study also showed that it preferentially suppressed fibroblast growth and
attachment, which may reduce the thickness of fibrous capsules in vivo. Moreover, GA and MAO
coating might promote the direct bone apposition ability of the orthopedic implants by stimulating
proliferation and adhesion behavior, which provide long-term stability for the host and implant
interaction. Additionally, GA can be a molecule for anchoring more diverse biomolecules, such as
VEGF by co-immobilization, in future research [46].

3. Materials and Methods

3.1. Specimen Preparation

A commercial ZK60 alloy for use as a substrate was cut from alloy bars into cylindrical specimens
with a diameter of 12.8 mm and height of 4 mm. The specimens were put into a preheated 400 ◦C
furnace for 4 h to homogenize the composition and grain size. Those specimens were then ground
with from #150 to #5000 SiC paper, ultrasonically cleaned in ethanol and de-ionized water for 5 min,
and dried in a stream of air, and were then named the ZK60 group.

The MAO electrolytes were composed of 12 g/L Na2SiO3, 5 g/L NaOH, and 6 g/L NaF prepared
with deionized water. The device for the MAO process consisted of a DC power supply, electrolytic
bath, and cooling system. The ZK60 was processed at static current mode with 0.02 A/cm2 and
the duration was 5 min, and this was name the MAO group. After rinsing the MAO-treated ZK60,
the samples were immersed in 5 g/L gallic acid ethanol solution for 24 h, and then rinsed with distilled
water and ethanol, and these were named the MAO+GA group.

3.2. Characterization of the Surface Properties

The surface morphologies and elemental composition of the MAO coating were studied by
scanning electron microscopy and energy dispersed spectrometry (SEM/EDS). The crystallinity of the
MAO coating was analyzed by thin film X-ray diffraction with Cu-Kα radiation (TF-XRD). Diffraction
patterns were obtained between 2θ values of 20◦–80◦. The surface element configurations were
determined by X-ray photoelectron spectroscopy (XPS).

3.3. Electrochemical Test

The tests were performed in revised simulated body fluid (r-SBF) solution (per liter, dissolved
5.403 g of NaCl, 0.736 g of NaHCO3, 2.036 g of Na2CO3, 0.225 g of KCl, 0.182 g of K2HPO4, 0.310 g
of MgCl2·6H2O, 11.928 g of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.293 g of
CaCl2, and 0.072 g of Na2SO4 in deionized water) [3]. A conventional three-electrode electrochemical
cell was used for the polarization test with a platinum counter electrode and a saturated calomel
electrode (SCE, +0.242 V vs. SHE) as the reference electrode. The r-SBF solution was then buffered to
pH 7.4 at 37 ◦C by adding HEPES and NaOH at 37 ◦C by using a water bath. The polarization test
used a PARSTAT 2273 electrochemistry workstation with a scanning rate of 1 mV·s−1 from −1.8 V to
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−0.8 V. The exposed area of the working electrode to the electrolyte was controlled by a Teflon holder
to remain within 1 cm2.

3.4. Cell Culture and the Cell Viability Test

Human osteoblast-like cells (MG63, ATCC CRL-1427, Union Biomed Inc., Taipei, Taiwan) and
mouse embryonic fibroblast cell line (NIH-3T3, ATCC CRL-1658, Union Biomed Inc., Taipei, Taiwan)
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) with high glucose, supplemented with 10% fetal bovine serum (FBS), and 1%
antibiotics. These materials can stimulate the growth of osteoblasts and inhibit the proliferation
of fibroblasts and, thus, provide good osteointegration between materials and bone. The selective
cytotoxic properties of GA were evaluated by using a CellTiter-96 assay. The two kinds of cells were
seeded onto 96-well plates with 2000 cells per well respectively, and cultured for 24 h for cell adhesion
prior to the addition of the extractant from all groups. GA was diluted into various concentrations in
DMEM, and then 100 µL in solution was added to each well. After the cells were incubated for 24 h,
the medium was replaced with 100 µL medium with 10 µL of CellTiter-96 solution, and moved into
an incubator for 4 h. The negative control group used culture medium, while the positive control group
used culture medium with 5% dimethyl sulfoxide (DMSO). The absorbance of the CellTiter-96-treated
solution was measured using an enzyme-linked immunosorbent assay (ELISA) reader at a wavelength
of 490 nm. The viability was calculated according to the following formula:

Viability = [(ODtest − ODblank)/(ODnegative − ODblank)] × 100%

The cytotoxicity tests of the samples were also evaluated by using a CellTiter-96 assay and
an indirect method. The samples, ZK60, MAO, and MAO+GA, were immersed into DMEM medium
for 24 h to obtain extracts. MG63 and NIH-3T3 cells were separately cultured in 96-well plates at
5 × 103 cells/100 µL for 24 h to allow for initial cell adhesion with normal medium. The medium
was then replaced with 100 µL extract. After the cells were incubated for one, three, and six days,
CellTiter-96 assay was applied to obtain the absorbance using the same method as above.

3.5. Cell Adhesion Tests

NIH-3T3 and MG63 were also used to investigate the earlier cell adhesion behavior on the
ZK60, MAO, MAO+GA surfaces. The specimens were sterilized using ethanol before cell seeding.
Cells (about 5 × 103) were seeded on the surface in each well and cultured at 37 ◦C with 5% CO2 for
24 h. For cell observation, cells on samples were fixed with 4% paraformaldehyde solution and rinsed
three times with phosphate-buffered solution (PBS, pH 7.4). The specimens were then dehydrated
in 30 vol %, 50 vol %, 70 vol%, 90 vol %, 95 vol %, 100% alcohol, and hexamethyldisilazane (HMDS)
solutions. Finally, the samples were sputter-coated with gold for SEM observations.

4. Conclusions

This research successfully conjugated GA onto MAO ceramic coating through reactions between
the hydroxyl group of magnesium hydroxide and carboxyl group of GA. The MAO coating also
enhanced the corrosion resistance and the biocompatibility of the magnesium substrate. The GA thin
film was mainly composed of magnesium ions and GA, which chelated together to form a relatively
stable structure. In vitro tests showed that GA has selective regulation toward fibroblasts and
osteoblast-like cells, which implies that it can suppress fibroblast growth and stimulate bone-like cells
proliferation, simultaneously. Further, since the MAO+GA coating was porous and osteocompatible,
MG63 finds it facile to attach on the magnesium substrate. Therefore, through the use of an appropriate
post-treatment, magnesium alloys have the potential to be an applicable biomaterial with suitable
degradation duration and osteointegration.
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