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Abstract: Chitosan (CHS) is a very versatile natural biomaterial that has been explored for a range 
of bio-dental applications. CHS has numerous favourable properties such as biocompatibility, 
hydrophilicity, biodegradability, and a broad antibacterial spectrum (covering gram-negative and 
gram-positive bacteria as well as fungi). In addition, the molecular structure boasts reactive 
functional groups that provide numerous reaction sites and opportunities for forging electrochemical 
relationships at the cellular and molecular levels. The unique properties of CHS have attracted 
materials scientists around the globe to explore it for bio-dental applications. This review aims to 
highlight and discuss the hype around the development of novel chitosan biomaterials. Utilizing 
chitosan as a critical additive for the modification and improvement of existing dental materials has 
also been discussed. 

Keywords: natural biomaterials; biopolymers; chitin; dental materials; dental restorations;  
tissue regeneration 
 

1. Introduction 

Natural biomaterials are known for a range of biological properties such as biocompatibility and 
biodegradation [1] required for biomedical applications. A few examples of natural biomaterials 
include collagen [2–4] fibrin [5–7], natural silk [8–11], and chitosan [11–14]. Chitosan is a natural 
biomaterial that is purified mainly from chitin. The major source of chitin remains the crustacean’s 
(such as crab and shrimp) exoskeleton [15,16]. Other sources include insects [17–19], fungi [18,20] and 
certain plants such as mushrooms [21–23]. During the process of deacetylation (Figure 1), the water-
insoluble chitin (Mw > 1000 kDa) changes to chitosan (Mw > 100 kDa) that is poorly soluble in water 
[24,25]. Further enzymatic hydrolyzation transforms chitosan to chitosan oligosaccharide that has a 
lower molecular weight (Mw < 2 kDa) and is highly soluble in water [26]. 
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Figure 1. Schematic presentation of deacetylation of chitin derived from crustacean exoskeletons.  

Chemically, chitosan (CHS) is a polymeric material comprised of N-acetylglucosamine and 
glucosamine copolymer units (Figure 2) [16]. CHS has a range of favourable properties (it is anti-
bacterial and biocompatible) and can be combined with various bioactive materials for 
osteoconductivity [27–29]. These unique properties have led to a number of ample opportunities for 
exploitation in the areas of bioengineering research in general and regenerative medicine in particular 
[30,31]. For instance, the primary uses of chitosan as a substrate include drug and growth factor 
delivery [32–34], and as a scaffold material for particular types of tissue (bone) engineering [35–37].  

The ability to harness and tailor properties based on particular application gives CHS a 
significant edge. For example, regarding the material’s properties, the characteristics of chitosan are 
dependent on structural parameters such as molecular weight and its degree of deacetylation. 
Moreover, the source of extraction and procedures adapted to conduct deacetylation may affect the 
final properties. The extent of deacetylation strongly influences physical, chemical and biological 
properties. It is usually available in low medium and high molecular weights and can be used 
according to the intended application alone or in composite formulations. Its pH-dependent 
versatility at a low pH can cause amine groups to be protonated, exhibiting a polycationic nature [38]. 
At higher pH, chitosan amines are deprotonated and reactive, hence promoting intermolecular 
interactions advances the formation of fibres, films, porous scaffolds or even gels [12]. Properties such 
as mechanical strength, biodegradability, and cell affinity can be tailored using various chemical 
modifications including cross-linking [12,39,40]. 

Chitosan has been recognised as an antimicrobial agent, however its ability to act in this way is 
not completely elucidated as several different mechanisms have been attributed to this nature of 
chitosan [41,42]. One theory suggests that when exposed to bacterial cell wall, chitosan promotes 
displacement of Ca++ of anionic sites of the membrane, resulting in cellular destruction [43]. It is also 
known to exhibit a potent antiplaque activity against several oral pathogens such as Porphyronomas 
gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans [38]. Chitosan has a high 
degree of biocompatibility in animal models and can be conveniently adapted for the development 
of implantable biomaterials [44,45]. In addition, chitosan can be chemically functionalized using 
various compounds (Figure 3). 
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Figure 2. The comparison of chemical structural units: (A) chitin; and (B) chitosan formed following 
the process of deacetylation [16].  

 
Figure 3. Various structures of modified chitosan in combination with other compounds. (A) 
quaternized chitosan (N, N, N trimethyl chitosan); (B) water-soluble polyethylene-glycol conjugated 
chitosan; (C) glycol chitosan containing short ethylene glycol groups [46]; (D) water-soluble and 
cross-linkable chitosan derivative obtained by grafting methacrylic acid and lactic acid onto the 
pendant amine groups of chitosan [47]; (E) quaternized chitosan modified using glycidyl trimethyl 
ammonium chloride (GTMAC) for protein delivery [48]. 

The design of a suitable dental material is quite a challenging task which hence remains an active 
area of research as there is still room for improvement in the current commercially available materials 
[49]. Although there have been some studies documenting the potential or current uses of chitosan 
in dentistry. To date, no comprehensive reviews have been published reporting applications of 
chitosan in dentistry. Therefore, the aim of this review is to evaluate the current status of chitosan at 
the forefront of innovative bio-dental materials development. The potential applications of chitosan 
are discussed in detail, including the advantages and further prospects. 
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2. Applications of Chitosan Materials in Dentistry 

Chitosan has emerged as a potential material for biodental applications corresponding to its 
unique properties such as bioactivity [50,51], antimicrobial [41,42,52], biocompatibility [14,53,54] and 
compatibility to blend with other materials [1,55,56]. The chitosan-based materials have been 
explored extensively for a wide range of dental applications (Figure 4.) 

 
Figure 4. Current and potential applications of chitosan materials in dentistry. 

2.1. Oral Drug Delivery 

Several studies have been conducted to ascertain the potential of chitosan as oral drug carriers 
[13,57]. Using such drug carriers limits the adverse effects of systemic administration. Chitosan-based 
composites (CBCs) can be used to design a robust local drug delivery system with the required 
mechanical properties, contact time, a sustained release profile, while maintaining an intimate contact 
with the oral mucosa. CBC leads to enhance the bioavailability for treating various oral pathologies. 
CHS microspheres have been developed for the active release of drugs at sites of pathologies [58–60]. 
Oral administration of CHS is non-toxic. The Food and Drug Administration (FDA) has approved 
CHS as a food additive. Also, CHS has been explored for drug delivery for a range of biomolecules 
including DNA, siRNA, growth factors and various drugs [57,61–64]. The Medical Devices Directive 
(MDD) has classified all medical devices containing chitin and its derivatives as class III [65]. 

Chitosan in the form of nano-particles and resorbable films can be used to deliver antibiotics 
(such as metronidazole, chlorhexidine and nystatin) to periodontal tissues in situ [12,40,66], against 
fungal infections [33,67] and oral mucositis [33]. The nanoparticles have higher surface area and 
reactivity to facilitate the drug release [68,69]. Similarly, thiolated chitosan-based formulations have 
also been used in mucoadhesive patches to prevent dental caries. The sustained release of 
antibacterial medicament inhibits the growth of cariogenic Streptococcus mutans [28,70]. Although 
electrospun mats display useful properties such as surface smoothness and non-toxicity coupled with 
a rapid release of the incorporated substances [14,71,72], further studies are required to validate the 
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exact nature of the release profile and whether the sustained release of drugs can be maintained 
[12,42,70,73].  

The adhesion of oral bacteria to the tooth surfaces (e.g., hydroxyapatite (HA)) can be considered 
for the synthesis of antibacterial medicaments, and dentifrices for the oral environment. Chitin and 
chitosan have long been implicated with respect to their bacteriostatic and bactericidal actions against 
a variety of oral microorganisms. The roles of S. mutans [74–76] and Porphyromonas gingivalis [77,78] 
have been recognised in dental caries and periodontal disease, respectively. On the whole, chitosan 
materials have low toxicity and antimicrobial activity levels ranging from 100 to 100,000 mg L−1 and 
100 to 1250 mg L−1 against gram-negative and gram-positive bacteria, respectively [41]. It has been 
established that low molecular weight chitosan varieties have a profound role towards impeding 
colonization of pathogenic strains (such as S. mutans) on tooth surfaces without disrupting normal 
oral flora [79]. Chitosan ranging from low molecular weight (50–190 kDa), medium molecular weight 
(190–300 kDa) and high molecular weight (310–375 kDa) may be implicated at some level in terms of 
imparting antimicrobial activity [80]. For instance, low molecular weight chitosan has superior 
penetrating capabilities, hence impairing the bacterial physiological activities at the cellular level. In 
contrast, high weight molecular chitosan is credited for an indirect approach involving the formation 
of a film around the bacterial cells and choking the entry of nutrients to the central metabolic 
machinery [81,82].  

A comprehensive understanding of the antibacterial activity of CHS-based materials remains 
elusive to date. Plausible theories have been represented with respect to the protonation of the amino 
groups of CHS upon coming in contact with physiological fluids such as saliva. The cationic species 
thus generated interact with the anionic groups on the bacterial cell wall, imparting a makeshift 
bacteriostatic effect by bacterial agglutination and/or alterations in permeability—an impediment to 
uncontrolled growth [83]. Other investigators have implicated the Ca++ displacement from the 
membranes upon interaction with chitosan as a plausible alternative [43]. Camacho et al. 2010 [84] 
described antimicrobial properties stemming from the positive charge possessed by the CHS 
polymeric chain amino groups counteracting with negatively charged macromolecular remnants e.g., 
proteins and lipopolysaccharides in the cell membrane. This eventually leads to obstruction of 
nutrient exchange between the cell interior and the extracellular matrix. The electrostatic charges are 
responsible for competing for calcium for electronegative sites in the membrane, hence 
compromising the integrity. This process leads to the subsequent release of intracellular material and 
cellular death. In dentistry, CHS has displayed effective plaque control in vitro by inhibiting specific 
dental plaque pathogens (Actinobacillus actinomycetemcomitans, P. gingivalis and S. mutans) [27,28]. 

2.2. Guided Tissue Regeneration (GTR) 

Periodontal disease is considered a major affliction worldwide [85]. The growing world 
population indicates a predictable increment in periodontal diseases. This can be correlated with an 
increase in the average age and centurions globally [86,87]. Periodontitis is a chronic inflammatory 
process that culminates irreversible loss of periodontal tissues and ultimately tooth loss [85]. The 
inhospitable mouth environment becomes worse in the presence of periodontitis [49]. A variety of 
periodontal treatment approaches rely mostly on oral hygiene maintenance, plaque control [88,89] 
and direct localised clinical/surgical intervention for promoting healing of the periodontal tissues 
[90,91]. There is an increasing level of interest in developing regenerative periodontal therapeutic 
strategies vis-à-vis the concept of guided tissue regeneration (GTR) or guided bone regeneration 
(GBR) [92–94]. The technique of GBR has been shown schematically in Figure 5. This relatively novel 
therapeutic modality has been at the centre of numerous successful clinical trials [95,96]. The 
underlying strategy in GTR involves isolating the periodontal defect with a suitable membrane 
(resorbable or non-resorbable) that acts as a physical impediment to gingival tissue infiltration into 
the osseous defects, thereby encouraging bone regeneration and preventing spaces for fibrous tissue 
proliferation simultaneously [97].  
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(B) 

 
Figure 5. The schematic presentation of bone regeneration using the guided bone regeneration (GBR) 
approach. (A) shows the barrier preventing the contact of “the dentogingival epithelium and gingival 
connective tissues” with the curetted root surface; (B) shows the Gore-Tex augmentation membrane 
in a closed (primary soft tissue coverage) supporting new connective tissue regeneration and 
attachment on a previously periodontaly involved root surface (adapted from Scantlebury and 
Abmbruster [98] with the permission from publisher). GTR: guided tissue regeneration 

In order to achieve this objectively in an efficient and clinically viable manner, it is imperative 
for the template to possess certain biological, physical, chemical and bioactive characteristics that 
encourage favourable host tissue response in a self-contained temporal system amenable to tissue 
regeneration [99,100]. The spectrum of properties desirable in a comprehensive GTR membrane 
therapy system ranges from robust constructs (smart, bio-integrative and conducive) to drug delivery 
applications. An optimal particle size and biological behaviour of the inclusive elements improves 
the receptiveness to cellular and extracellular matrix (ECM) cues. Due to the compliance with the 
aforementioned properties, chitosan has been pinned as a favourable substrate material for 
periodontal tissue regeneration. Some investigators have worked on producing and subsequently 
analysing chitosan membranes coated with a bioactive material such as a bioceramic-based agent like 
HA and calcium phosphate variants which include tricalcium phosphate (TCP) α and β [101]. Other 
researchers also looked into building on the promising results of the former by the addition of a cross-
linking agent such as sodium tripolyphosphate [102], genipin [103,104] and glutaraldehyde. This was 
done as a pretext to enhancing the mechanical properties (such as modulus of elasticity, hardness 
and toughness) of the chitosan membrane substructures. Composite formulations of chitosan and 
hydroxyapatite have been heavily investigated to fabricate chitosan and HA templates using novel 
methodologies [105–107]. Ang and co-workers [107] deposited layer by layer chitosan–HA composite 
materials using a preprogrammed lay-down pattern and a desktop rapid prototyping system. 
Chavanne and colleagues also worked on similar lines and developed a porous cylindrical template 
[108]. 

A number of studies have proposed the concept of functionally graded membranes [12,61,109]. 
The concept revolves around employing the use of a graded structure at the defect site around the 
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tooth and/or implant interface. This approach fully addresses the local biological, physicochemical 
and functional requirements for the functioning of functionally graded membranes (FGMs) in situ 
[97,110,111]. The syntheses of functionally graded membranes using different material fabrication 
protocols have been reported. These include the use of layered casting protocols comprising PLGA, 
nanohydroxyapatite and collagen [112] with an HA/collagen/PLGA porous side for promoting 
adequate levels of resident cellular recruitment and adhesion. Other uses involve electrospinning 
techniques for fabricating graded nanofiber scaffolds and multilayer electrospinning [113] for 
designing FGMs with a stabilising core constituting poly L lactide co-caprolactone and two 
functionalized surface layers of HA and a polymer–gelatine composite [97]. The grading of structures 
by such a method provides the means to tailor the time stability and further improve the periodontal 
outcome [49]. Recently, Qasim et al. [113] have reported the development and subsequent 
characterisation of porous CHS–HA membranes using ascorbic acid and acetic acid as solvents. The 
freeze gelation technique was used with the aim of developing a suitable core layer boasting desirable 
mechanical and biological properties in an FGM construct for periodontal tissue regeneration. 

Regardless of other components (cross-linking agents and bioactive calcium phosphates), the 
formation of a bio-ceramic layer of variable crystallinity was detected on templates with a chitosan 
backbone. The functionally graded conditions are essential for tissue implant interface. There are 
three possible perspectives; biological, mechanical and anatomical. In terms of biological perspective, 
one layer may comprise cell bearing phenotypes that may differ to other layers within the construct 
hence influencing the quality and distribution of ECM production. Considering mechanical 
properties, the scaffolds should closely match those of the target tissues. This would be synchronous 
with the intention of producing a template that would be devoid of localised stress concentration 
regions along its entire covered area. Moreover, the resident cells would receive similar mechanical 
cues as in a physiological environment [114]. 

2.3. Modifications of Dentifrices 

Toothpastes are known to be an integral component of the daily oral hygiene maintenance 
regimen. Their role is evident in warding off dental erosive demineralisation of the tooth structure 
due to intermittent exposure to acidic drinks. Many toothpaste formulations and their modifications 
have been investigated over the years with different active ingredients (Table 1). These include 
preparations containing nanohydroxyapatite, 5% KNO3 [115–117] and SnF2 [118,119] with the intent 
of complementing the action of NaF towards remineralisation and re-hardening of enamel surfaces. 
Although the literature gives mixed results with respect to the anti-erosive effect of the 
aforementioned additives, Sn-containing dentifrices were deemed the most efficient in terms of 
imparting excellent anti-erosive potential compared to standard NaF-based formulations. 
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Table 1. Studies reporting effects of chitosan-modified dentifrices. 

Study Type of Study Active Ingredients of 
Tested Dentifrice 

Controls Erosive Solution (s) Methodology Results 

Ganss et 
al. [120] 

In vitro 
Chitosan, NaF, KNO3/NaF, 
HA/NaF, ZnCO3-HA, SnF2 

F-free 
mouthwash, F-
containing 
mouthwash 

0.05 M citric acid 

Profilometric analysis of 
extracted teeth; 
immersion only and 
brushing 

Slurry only: SnF2 most effective  
(p ≤ 0.005); Toothbrush simulation: 
KNO3 most effective (p ≤ 0.005). 

Ganss et 
al. [121] 

In vitro 

NaF, NaF/SnCl2, 
AmF/NaF/SnCl2, 
AmF/NaF/SnCl2/chitosan, 
AmF/SnF2, 

SnF2, placebo 
toothpaste 

0.05 wt. % citric acid 
Profilometric analysis of 
extracted teeth; brushing 

AmF/NaF/SnCl2/chitosan was most 
effective in preventing tissue loss  
(p ≤ 0.01). 

Schlueter 
et al. [122] 

Random-ised 
in situ trial 
(double 
blinded) 

F/Sn, F/Sn/chitosan 
Placebo 
toothpaste, SnF2 
gel 

0.5% citric acid 

Profilometric analysis of 
enamel specimens in 
situ; slurry (3 weeks) 
without/with brushing  

No significant difference among Sn-
containing pastes after only 
immersion and immersion and 
brushing. 

Ozalp et 
al. [123] 

In vitro Chitosan, propolis, AmF No treatment  
Demineralization 
solution 

SEM-EDX analysis of 
sound and 
demineralized brushed 
enamel  

No significant differences between 
the tested pastes on sound lesions.  

Ganss et 
al. [124] 

In vitro 
NaF, 
AmF/NaF/SnCl2/chitosan 

Placebo, SnF2 
gel 

Citric acid (1%), 
citric acid (1%) + 
collagenase 

Profilometric analysis of 
dentine sections; slurry 
only, slurry + brushing 

AmF/NaF/SnCl2/chitosan 
significantly reduced erosion with 
organic tissue loss when brushed  
(p ≤ 0.05). No differences with 
slurries only. 

Carvalho 
and Lussi 
[125] 

In vitro 

NaF (with and without 
NaF rinse), F/Sn/chitosan 
(with and without Sn 
rinse) 

Placebo 
toothpaste  

Artificial saliva, 1% 
citric acid 

SEM/EDX of enamel 
specimens brushed with 
tested toothpastes 
Surface micro-hardness, 
tooth structure loss  

F/Sn/chitosan followed by Sn rinse 
showed the least reduction in surface 
hardness (p < 0.001) and the least 
substance loss (p < 0.05). 

Aykut-
Yetkiner et 
al. [126] 

In vitro 

AmF, NaF/Nano-HA, 
ZnCO3-HA, 
NaF/AmF/SnCl2/Chitosan, 
NaF/HA, NaF/KNO3 

No treatment 
Citric acid, 
HCl/pepsin 

Profilometry of bovine 
dentine specimens 
brushed with tested 
toothpastes 

All toothpastes reduced significantly 
but AmF toothpaste had the most 
significant effect.  

Amine fluoride (AmF); hydroxyapatite (HA); potassium nitrate (KNO3); sodium fluoride (NaF); scanning electron microscope elemental analyses (SED-EDX); zinc 
carbonate (ZnCO3), stannous fluoride (SnF2). 
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Ganss et al. [120] reported on the commercially available chitosan-based dentifrice (Chitodent® 
(B&F)), that is a non-fluoride formulation, and highlighted a significant reduction of tissue loss. 
Similar results have been reported while using NaF- and Sn-based dentifrices, i.e. with respect to 
hindering erosion of the dentin organic matrix [124] and enamel. These findings can be attributed to 
the cationic nature of chitosan coupled with a low pH, and high affinity for binding to structures with 
negative zeta potentials such as enamel and salivary pellicles. This would result in the subsequent 
formation of a protective multilayer organic matrix over mineralized surfaces [127,128]. In a similar 
setting, a chitosan additive enhanced the efficacy of Sn2+-based dentifrices towards tackling tissue 
loss in acidic oral environments by imparting dual-pronged anti-erosive and anti-abrasive effects 
[122,129]. 

2.4. Enamel Repair 

Tooth enamel is a non-vascular and the hardest tissue of human body [130,131] hence the repair 
or regeneration of enamel is challenging. A number of chitosan-based restorative formulations have 
been explored and are under consideration for achieving human enamel regeneration through 
successful delivery of organic amelogenin at the site of enamel defects. Recently, Ruan et al. [132] 
employed a chitosan-based hydrogel as a delivery medium for amelogenin with the aim of 
rejuvenating the aligned crystal structure. The use of chitosan imparts a dual effect of offering a 
protective effect against secondary caries corresponding to its antibacterial properties along with not 
influencing enamel crystal orientation [28,70,133]. More research involving disciplines such as tissue 
engineering, biomolecules and materials science is required to explore the further potential of 
chitosan for enamel regeneration applications. 

2.5. Adhesion and Dentine Bonding 

The dentine-restoration interface and durability of bond strength have captured the interest of 
researchers. Currently, the dentine replacement materials have issues such as technique sensitivity 
of acid etching and removal of the smear layer [134]. The incomplete removal of the smear layer often 
gives rise to poor penetration of the resin monomer resulting in an unstable hybrid layer that is prone 
to nano leakage [135]. Hence, the area of bioadhesive polymers in general and chitosan-based dentine 
replacement materials in particular merits special attention. Antioxidant chitosan hydrogels with 
propolis, β carotene and nystatin were investigated and translated significant grounds towards 
delivering robust dentine bonding systems with a concomitant increase in shear bond strength. Some 
formulations tested in the studies reported shear bond strength values of up to 38 MPa after 24 h 
[136] and in excess of 20 MPa after 6 months. These values were deemed to be significantly higher 
than conventional dentine bonding systems with or without phosphoric acid treatment [137]. 

2.6. Modification of Dental Restorative Materials 

There has been a significant level of effort towards paving the way for the entry of novel 
biomimetic dental restorative materials for clinical applications. The extent of damage to the enamel 
and/or components of the pulp/dentin complex are very significant in terms of promoting and 
treatment prognosis [138–140]. However, some of the drawbacks associated with bioactive 
restorative materials currently in development include poor adhesion coupled with less than 
desirable mechanical properties compared to resin and ceramic-based restorative materials. These 
discrepancies result in the interfacial failure owing to a mismatch of physical and chemical properties 
[141–144]. Among restorative materials, glass ionomers (fluoroaluminosilicate glass powder with 
poly(acrylic) acid liquid) form a chemical adhesion with the calcified tooth tissues [145]. Glass 
ionomer cements (GICs) have been presented with various modifications such as with resin or nano-
additives [146–148] and are commonly used for applications such as cementation of prosthesis and 
restorations.  

The favourable physicochemical properties of GICs, such as antibacterial effects and sustained 
fluoride release [149,150], biocompatibility, and superior natural affinity for tooth structure (enamel, 
dentine) reduce instances of microleakage or interfacial failure [146,151–153]. On the other hand, 
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GICs are associated with insufficient fracture toughness, and flexural strength, particularly in the 
case of bulk-filled restorations. Hence conventional GICs are mostly associated with inferior 
mechanical properties, especially when used to replace lost tooth material in high load bearing areas 
[151,154,155]. The role of chitosan as a biocompatible polysaccharide oriented towards enhancing 
mechanical properties of GICs has been the subject of some featured investigations. These include 
the works of Petri et al. [156] who came up with much-improved values of the flexural strength of 
GICs post addition of chitosan with the added benefit of increasing the rate at which fluoride ions 
leached from the set material (Table 2). In addition, small volumes of CHS added to GICs (10% w/v) 
impart no adverse effects towards their performance in terms of microleakage, which paves the way 
for it to be a viable and promising candidate as an additive to GICs [157]. 

Table 2. Summary of the flexural strengths of different formulations of chitosan-modified glass 
ionomer restorations along with estimated fluoride release [156]. GICs: glass ionomer cements  

Chitosan in GICs (wt. %) Flexural Strength (MPa) 
Fluoride Release (µg/cm2) 

After 21 h After 1 Month
0 14.27 ± 2.60 ~100 ~500 

0.004 18.41 ± 3.26 ~1500 ~3700 
0.012 17.00 ± 3.98 ~400 ~1000 
0.025 15.07 ± 4.34 NR NR 
0.045 6.88 ± 1.63 NR NR 

The facilitating role of CHS in the way of enhancing protein release profile when added to GICs 
is attributed to the formation of polymer complex phases as a result of the interaction of the CH with 
poly(acrylic) acid [158,159]. The concept has been taken a step further with respect to dental pulp 
regeneration. CHS has been added to conventional GICs with the aim of evaluating its effect on 
protein and/or growth factor release in the build-up to achieving reliable methods of vital pulp 
therapy [140,160]. Limapornvanich et al. [161] studied the release profile of bovine serum albumin 
(BSA) from CHS-modified GICs. The results indicated no cytotoxic effect on pulp cells coupled with 
a prolonged release effect of BSA, relative to conventional glass ionomer cement, when in contact 
with this formulation. These findings are suggestive of the biocompatible nature of CHS, and the 
interaction of its -NH2+ cationic and the anionic groups of poly(acrylic acid) towards the formation of 
complexes, respectively [158,162]. There have been attempts to catalogue the synergistic effect of CH 
and albumin in resin-modified GICs supplemented with translationally controlled tumour protein 
(TCTP) [163] and transforming growth factor beta-1 (TGF β1) [163,164] with respect to attaining a 
lower cell cytotoxicity value and the simultaneous promotion of anti-apoptotic activity in pulp cells 
as a pretext to promoting remineralization. This could be a significant development in the way of 
developing dental pulp-friendly restorative materials that offer a shielding effect from the toxicity 
stemming from the residual acid and monomer 2-hydroxyethyl methacrylate (HEMA) components 
of GICs and the resin element, respectively. The findings were in line with earlier reports regarding 
the leached HEMA monomer—a necessary component required to improve mechanical properties 
such as elastic modulus, flexural strength and wear resistance to name a few [165], as the primary 
culprit responsible for inducing pulp cell apoptosis [166–168]. Therefore, CHS-modified GICs could 
have applications in the area of bioactive dental restorations and regenerative endodontics in the 
guise of a vital pulp therapy material. Some restrictions to be taken into account with respect to in 
vitro studies assessing protein release from CH modified GICs implicate loss of some chemical 
extracts when filtering the residue prior to an MTT assay evaluation for cell cytotoxicity.  

2.7. Chitosan for Coating Dental Implants 

The clinical success of dental implants is based on degree of osseointegration of implant 
materials and alveolar bone [169–171]. In order to improve the osseointegration, a number of surface 
treatment and implant coatings have been tried, with promising results [172–175]. In addition, 
bioactive coatings of dental implants showed improved clinical longevity in medically compromised 
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patients, affecting their bone health [169,173,176,177]. A number of studies have reported promising 
results for chitosan coating of dental implants [31,178,179]. The chitosan coating may affect the 
surface and bone interface by altering biological, mechanical and morphological surface properties. 
For example, considering mechanical properties, chitosan coating changes the elastic modulus hence 
reducing the mismatch between the implant surface and alveolar bone and reducing the areas of 
stress concentration [114]. Moreover, the chitosan coatings can potentially be used to carry various 
medicaments such as antibiotics for localised delivery around the implant area. However, further 
research is required to validate either such coatings are beneficial to inhibit infection and promote 
the osseointegration [180]. 

2.8. Stem-Based Regenerative Therapeutics 

Stem cell-based transplantation strategies hold a great potential in the field of dentistry and can 
revolutionise the approach to treat diseases and alleviate oral conditions using embryonic stem cell 
(ESCs), and more recently adult dental stem cells, to induce pluripotent stem cells (iPSC) in tooth 
regeneration [93,181]. Moreover, rapid advancements in this field have led to the use of chitosan as a 
carrier for chitosan-mediated stem cell repair. The regeneration of dentine-pulp complex has been 
investigated by exploiting the regenerative potential of mobilised dental pulp stem cells (MDPSc) by 
Nakashima and co-workers in a clinical trial. The demonstrated that human MDPSc is safe and 
efficacious for complete pulp regeneration in the pilot study [182,183]. Yang et al. reported the use of 
dental pulp stem cells cultured on a collagen–chitosan complex and were also able to form a dentine–
pulp complex [184]. The regeneration of entire tooth is also expected to be a goal of current research 
clusters. Tooth engineering to form dental structures in vivo has been established using different 
stem cells. Moreover, stem cell technology for regenerative therapies is already available as 
mesenchymal stem/ stromal cells (MSCs) already have been introduced in the clinic for alveolar bone 
augmentation [185,186]. 

3. Conclusions 

Chitosan is a new biomaterial for dental applications ranging from restorative dentistry to tissue 
engineered scaffolds for the alveolar bone to periodontal complex healing. Although it has gone 
through rigorous investigations for its biocompatible nature, antimicrobial properties, and adjustable 
degradation characteristics according to the application, there still remain certain issues that need 
addressing, such as the fact that extracted chitosan may vary in terms of structure and molecular 
weights from low, medium to high, resulting in inconsistent physiochemical characteristics and 
variability. These variations, especially when looking at dental applications, are an issue as the 
molecular weight range varies, and reproducibility of the correct molecular weight is still a 
challenging task. Nevertheless, this ever-evolving field of dentistry can use this naturally derived 
polymer to its advantage in numerous other prosthetic, orthodontic and implant-related fields as 
well. Therefore, there is excellent potential for expanding its biological applications in future. 
However, very little clinical data is available regarding the clinical dental applications of chitosan-
based materials. In order to translate chitosan-based materials from research to clinical applications, 
there is need for further research, particularly in vivo studies and clinical trials. 
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