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Abstract: Fabrication and characterization of a new amperometric chemosensor for accurate
formaldehyde analysis based on platinized gold electrodes is described. The platinization process
was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis
and cyclic voltamperometry. The produced electrodes were characterized using scanning electron
microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl)
enabled an essential increase in the chemosensor’s selectivity for the target analyte. The sensitivity
of the best chemosensor prototype to formaldehyde is uniquely high (28180 A·M−1·m−2) with
a detection limit of 0.05 mM. The chemosensor remained stable over a one-year storage period.
The formaldehye-selective chemosensor was tested on samples of commercial preparations. A high
correlation was demonstrated between the results obtained by the proposed chemosensor, chemical
and enzymatic methods (R = 0.998). The developed formaldehyde-selective amperometric
chemosensor is very promising for use in industry and research, as well as for environmental control.
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1. Introduction

Formaldehyde (FA) is a typical indoor air pollutant and is highly toxic to all animals and humans,
even at concentrations as low as 0.1 ppm [1–3]. According to data of the International Agency for
Research on Cancer (IARC) [2,3], FA is a toxic compound that reacts with macromolecules in different
biological systems and has mutagenic, immunogenic, allergenic, and carcinogenic effects [4–8]. FA has
recently been described as one of the chemical mediators of apoptosis [9]. FA is an extremely toxic
agent which is, nonetheless, found in over 2000 commercial products. It is used as an industrial
fungicide, germicide, and disinfectant, and as a preservative in mortuaries and medical laboratories.
In 2013, the annual FA production was estimated at over 50 million metric tons [6]. Wastewaters from
many different industries contain FA and phenols which, in combination, are especially hazardous to
living organisms even at low concentrations. Formaldehyde also occurs naturally in the environment.
It is produced in small amounts by most living organisms as part of normal metabolic processes. FA is
currently considered to be the main cause for the sick building syndrome, which is defined as a set of
symptoms associated with irritation of the upper air passages and eyes caused by harmful compounds
(particularly FA) which are found in building materials, tobacco smoke, some medicinal preparations,
etc. [3–7].

Several analytical approaches for the determination of FA were reported in the last two decades
of the 20th century. These methods include spectrophotometry [10–12], gas chromatography [13],
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high-performance liquid chromatography [14], ion chromatography [15], and polarography [16]. These
methods require expensive and bulky instruments that have a high power demand and need well-trained
operators. They are, therefore, clearly unable to provide real-time information on exposure to FA.

A number of attempts to develop biosensors for the detection of FA were reported, including
amperometric sensors [17–20] and potentiometric detection schemes [21]. FA-selective biosensors
are based on cells [18] or enzymes, such as alcohol oxidase (AOX) or formaldehyde dehydrogenase
(FdDH), which are used as biorecognition elements [19–25]. Potentiometric biosensors consisting
of a pH-sensitive field effect transistor as a transducer, and containing either the enzyme AOX or
permeabilized yeast cells, have been described by Korpan et al. [21]. Conductometric biosensors are
based on AOX or FdDH [22,23], and the latter enzyme also serves as a biorecognition element in
amperometric biosensors [24,25].

Chemosensors have several advantages for FA analysis over enzyme-based biosensors: Asimple
preparation procedure that does not entail the use of expensive enzymes, co-factors, electron transfer
mediators and any covering paints or permselective membranes. Moreover, chemosensors are much
more stable and their stability depends on the properties of chemocatalysts. Use of metal nanoparticles
is a perspective approach to improve the sensors’ characteristics due to their high catalytic ability and
low price. In general, the catalytic properties of metals are dependent upon the layer size, composition,
and structure, as well as on the support materials [26].

Due to its unique physical and chemical characteristics, including high durability and specific
activity, platinum (Pt) stands out from other transition metals in its electrocatalytic efficiency [27,28].
However, the high cost and a limited supply of Pt are limiting factors. The use of nano-scale Pt particles
by controlling the morphology and surface structure is, therefore, an effective way for reducing the
amount of required Pt and enhancing the electrochemical activity [28–35].

FA electrooxidation on metal surfaces, such as Pt, Cu, Rh, and Pd, has been widely
reported [27,36–41]. However, some serious drawbacks of FA-selective chemosensor systems, such
as low sensitivity and poor selectivity, remain unsolved. These limitations increase the need for
the development of new chemosensory systems which will be usable for accurate FA analysis in
commercial samples. In the present work, we describe the construction and detailed characterization
of new Pt-based chemolayers obtained electrochemically on the surface of gold planar electrodes by
both electrolysis and cyclic voltamperometry. The Pt-based chemoelectrodes were tested for analysis
of commercial disinfectants and compared to analytical devices reported by us earlier [20,33].

2. Results and Discussion

2.1. Development of Procedures for Chemocatalyst Formation on the Electrode Surface

An additional modification of the electrode surface by Pt layers was used for improving the
electrochemical properties of the FA-sensitive chemoelectrodes. For this aim, commercial 4 mm
gold planar electrodes DRP-C220AT from DropSens (Llanera, Asturias, Spain) were platinized.
Two approaches for this process were applied. The first was based on electrochemical preparation of the
surface by electrolysis/H2PtCl6 in HCl solution according to the method described by Kovalyshyn et al.
and by us [20,33]. Electrodes prepared using this method are designated as Pt-1. The second approach
included electrodeposition of Pt on DRP-C220AT gold planar electrodes from the same solution using
cyclic voltamperometry in the range from −0.6 to 0.6 V vs. Ag/AgCl. Electrodes prepared by the
second method are designated as Pt-2. Figure 1 presents cyclic voltammograms of Pt electrodeposition
after a number of cycles. It can be seen that each cycle caused improvement in redox properties of
the electrode, and the best results were obtained after sixcycles. It should be mentioned that the
change after the fifthcycle was very small and the optimal number of electrodeposition cycles of Pt is
considered to be about six. Using more than six electrodeposition cycles may cause the formation of
a thick Pt-layer which will have a negative effect on the electrode’s electrocatalytic properties.
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Figure 1. Cyclic voltammograms of Ptelectrodeposition on the surface of 4 mm DRP-С220АТ 
“DropSens”gold planar electrodes. Conditions: −0.6 to 0.6 V vs. Ag/AgCl; scan rate 50 mV·s−1. 

2.2. Determination of Structural and Electrical Properties of the Obtained PtLayers 

The formation of Pt layers on the surface of commercial electrodes was confirmed by scanning 
electron microscopy using a REMMA-102-02 SEM microanalyzer (SELMI, Sumy, Ukraine). The SEM 
images demonstrate differences in the surface structure of the non-modified (bare) planar electrode, 
and the planar Pt-1 and Pt-2 modified electrodes (Figure 2). The non-modified electrode has a smooth 
surface with very moderate 0.2–4 μm convexities (Figure 2a). The surface of the Pt-1 modified 
electrode has highly-developed superficies represented by multiple 3–5 μm cone structures (Figure 
2b). The surface of the Pt-2 modified electrode appears smoother than the surface of the Pt-1 electrode 
and has irregular convex 1–5 μm structures (Figure 2c). 
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Figure 1. Cyclic voltammograms of Ptelectrodeposition on the surface of 4 mm DRP-C220AT
“DropSens”gold planar electrodes. Conditions: −0.6 to 0.6 V vs. Ag/AgCl; scan rate 50 mV·s−1.

2.2. Determination of Structural and Electrical Properties of the Obtained PtLayers

The formation of Pt layers on the surface of commercial electrodes was confirmed by scanning
electron microscopy using a REMMA-102-02 SEM microanalyzer (SELMI, Sumy, Ukraine). The SEM
images demonstrate differences in the surface structure of the non-modified (bare) planar electrode,
and the planar Pt-1 and Pt-2 modified electrodes (Figure 2). The non-modified electrode has a smooth
surface with very moderate 0.2–4 µm convexities (Figure 2a). The surface of the Pt-1 modified
electrode has highly-developed superficies represented by multiple 3–5 µm cone structures (Figure 2b).
The surface of the Pt-2 modified electrode appears smoother than the surface of the Pt-1 electrode and
has irregular convex 1–5 µm structures (Figure 2c).
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Figure 2. Scanning electron microscopy of (a) the surface of a non-modified 4 mm DRP-С220AT 
“DropSens” gold planar electrode; (b) the same surface after modification by Pt using electrolysis  
(Pt-1); and (c) the Ptlayer obtained by electrodeposition (Pt-2). Abbreviations: WD: distance from the 
last lens of the microscope to the samples (mm); kV: accelerating voltage; х: fold magnification n; μm: 
scale unit. 

The formation of different types of Ptlayers was further confirmed by X-ray spectral analysis by 
interpretation of Kα peaks at 2.1 keV which are characteristic for noble metals (Figure 3). The X-ray 
spectrogram of the gold electrode before modification represents signals of Au0 only, as expected 
(Figure 3A). However, after modification by the Pt-1 (Figure 3B) and the Pt-2 (Figure 3C) methods, 
the only registered signal on the surface of the electrodes is related to Pt0. 
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Figure 2. Scanning electron microscopy of (a) the surface of a non-modified 4 mm DRP-C220AT
“DropSens” gold planar electrode; (b) the same surface after modification by Pt using electrolysis (Pt-1);
and (c) the Ptlayer obtained by electrodeposition (Pt-2). Abbreviations: WD: distance from the last lens
of the microscope to the samples (mm); kV: accelerating voltage; x: fold magnification n; µm: scale unit.

The formation of different types of Ptlayers was further confirmed by X-ray spectral analysis by
interpretation of Kα peaks at 2.1 keV which are characteristic for noble metals (Figure 3). The X-ray
spectrogram of the gold electrode before modification represents signals of Au0 only, as expected
(Figure 3A). However, after modification by the Pt-1 (Figure 3B) and the Pt-2 (Figure 3C) methods,
the only registered signal on the surface of the electrodes is related to Pt0.
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Figure 3. X-ray spectral analysis of (A) the surface of a non-modified 4 mm DRP-C220AT “DropSens”
gold planar electrode; (B) the same surface after modification by Pt using electrolysis (Pt-1); and (C) the
Ptlayer obtained by electrodeposition (Pt-2).
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The detailed analysis of electrochemical characteristics of the non-modified planar electrode
and the planar electrodes modified by platinum was performed by cyclic voltamperometry in
electrochemical cells with an electrolyte solution of K4Fe(CN)6 in KCl (Figure 4). As can be seen
from Figure 4a, modification of the gold planar electrode by platinum significantly increased the
electroconductivity of the working electrode (curves b and c) when compared with the non-modified
electrode (curve a). Conductivity of the Pt-1-modified electrode increased 2.5-fold and that of the
Pt-2-modified electrode increased more than four-fold compared to the non-modified electrode.
The observed phenomenon of improving the electrochemical parameters of chemoelectrodes is
expected to significantly increase the sensitivity of prototypes of FA-selective chemosensors.
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Figure 4. Cyclic voltammograms of the non-modified DRP-С220AT “DropSens” gold planar electrode 
(a); after modification by Pt-1 (b); andafter modification by Pt-2 (c) layers. Measurement conditions: 
frame scanned from −0.4 V to 0.6 V vs. Ag/AgCl; scan rate of 100 mV·s−1 in the electrolyte solution 
containing 10 mМ K4Fe(CN)6 and 100 mM KCl. 

2.3. Characterization of the FA-Sensitive Chemosensors 

The Pt-modified electrodes were used for construction of FA-selective chemosensors. For this 
purpose, chronoamperometric analysis of the Pt-1 and Pt-2 electrodes was performed upon addition 
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generated a current of 704 μA upon the addition of 2 mM FA, whereas the Pt-1 sensor generated a 
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a more than eight-fold increase in sensitivity compared to the chemosensor produced 
electrochemically [20]. The detection limit for the Pt-2-based electrode determined from a 
chronoamperometric curve is 0.05 mM for FA (Figure 5a). 

Figure 4. Cyclic voltammograms of the non-modified DRP-C220AT “DropSens” gold planar electrode
(a); after modification by Pt-1 (b); andafter modification by Pt-2 (c) layers. Measurement conditions:
frame scanned from −0.4 V to 0.6 V vs. Ag/AgCl; scan rate of 100 mV·s−1 in the electrolyte solution
containing 10 mM K4Fe(CN)6 and 100 mM KCl.

2.3. Characterization of the FA-Sensitive Chemosensors

The Pt-modified electrodes were used for construction of FA-selective chemosensors. For this
purpose, chronoamperometric analysis of the Pt-1 and Pt-2 electrodes was performed upon addition of
increasing concentrations of FA. The sensor output was measured (Figure 5a) and used for building
calibration curves for each of the electrodes (Figure 5b, curves a and b). Both sensors exhibited a linear
response up to 2 mM of FA. However, the chemosensor based on the Pt-2 electrode showed much
higher sensitivity than the Pt-1 electrode. As can be seen from Figure 5, the Pt-2 sensor generated
a current of 704 µA upon the addition of 2 mM FA, whereas the Pt-1 sensor generated a maximal
output of only 84 µA under the same conditions (Figure 5a). The sensitivity of both chemosensors can
be characterized as a specific response calculated from slopes of the calibration curves presented in
Figure 5b. The sensitivity values of the constructed chemosensors were very high: 3400 A·M−1·m−2 for
the Pt-1-based chemosensor and 28180 A·M−1·m−2 for the Pt-2-based electrode. It can be assumed that
preparation of the chemosensor using the cyclic voltammetry technique enabled a more than eight-fold
increase in sensitivity compared to the chemosensor produced electrochemically [20]. The detection
limit for the Pt-2-based electrode determined from a chronoamperometric curve is 0.05 mM for FA
(Figure 5a).
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Figure 6. Analysis of the selectivity of (a) Pt-1 and (b) Pt-2 modified electrodes to various analytes at 
1 mM concentration. Conditions: working potential 0.0 V vs. Ag/AgCl, 20 mM PB, рН 7.0 under 
continuous stirring at room temperature. Abbreviations: FA: formaldehyde; MeOH: methanol; EtOH: 
ethanol; AA: acetaldehyde; РА: propylaldehyde. 

Figure 5. (a) Chronoamperometric response and (b) calibration curves in the linear frame upon
FA addition of the chemosensors based on Pt-1 (a) and Pt-2 electrodes (b). Conditions: working
potential 0.0 V vs. Ag/AgCl, working area 12.56 mm2, 20 mM PB, pH 7.0 under continuous stirring at
room temperature.

The most important characteristic of chemosensors is their selectivity to the target analyte.
The response of both chemoelectrodes to several additional compounds which were applied at the same
molar concentration was therefore tested. These compounds included methanol, ethanol, acetaldehyde,
and propylaldehyde. The results presented in Figure 6 show that both chemosensors exhibited a high
sensitivity only to FA, whereas responses to the otheranalytes were significantly lower. The sensitivity
of the Pt-1 and Pt-2 electrodes for methanol was 20.0% and 16.6% of the response for FA, respectively
(Figure 6a). For ethanol, the respective values were 26% and 8.3%, for acetaldehyde the values were
6% and 3%, and for propylaldehyde they were 2% and 1% (Figure 6b). It should be noted that the
selectivity of the Pt-2 chemosensor towards FA exceeded that of the Pt-1 electrode in all cases.
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Figure 6. Analysis of the selectivity of (a) Pt-1 and (b) Pt-2 modified electrodes to various analytes
at 1 mM concentration. Conditions: working potential 0.0 V vs. Ag/AgCl, 20 mM PB, PH 7.0 under
continuous stirring at room temperature. Abbreviations: FA: formaldehyde; MeOH: methanol; EtOH:
ethanol; AA: acetaldehyde; PA: propylaldehyde.
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The stability of the Pt-based chemosensors over time was examined. Both electrodes were found
to remain absolutely stable over one year of storage in the dark at room temperature and can be reused
over hundred times without any measurable worsening of electrochemical properties.

The developed chemosensors were used for analysis of the FA content in samples of the
commercial preparations “Formalin” and “Sanodez Forte”. According to the manufacturers, the FA
content in “Formalin” is 13.0 M and in “Sadonez Forte” it is 2.6 M. These samples were analyzed using
the Pt-2-based chemosensor compared to several other chemical and enzymatic methods previously
used by us (Table 1).

Table 1. The results of FA analysis of commercial preparations using the Pt-2-modified electrode
chemosensor compared with chemical and enzymatic methods.

Product

FA Concentration Determined by Various Methods, M

Biosensor Chemical (Spectrophotometric) Declared by
Producer Chemosensor

FdDH-Based
[25]

Chromotropic
[10]

MBTH
[10,11] Purpald [12] - Current

Study

“Formalin” 13.5 ± 2.1 14.0 ± 2.4 12.6 ± 2.1 12.9 ± 1.9 13.0 ± 1.5 13.6 ± 1.8
“Sanodez Forte” 3.2 ± 0.6 3.6 ± 0.9 3.6 ± 0.8 3.3 ± 0.5 2.6 ± 0.5 2.7 ± 0.48

A standard multiple additions method for FA analysis by the chemosensor showed that the FA
concentration in “Formalin” and in “Sanodez Forte” is 13.64 and 2.65 M, respectively. The obtained
results correlate well with chemical and enzymatic spectrophotometric approaches (Table 1). A high
(0.7 < R < 1) and significant (p-value < 0.001) correlation was found between the results of the
FA-analysis using the chemosensor and the FA-content declared by the manufacturers.

The Pt-2 chemosensor shows better characteristics in FA monitoring compared to a majority
of sensors constructed by others on the basis of various metals. A number of electrocatalysts
have been developed and found appropriate for FA determination. However, in most cases the
tests were performed in the presence of individually-taken FA concentrations and without any
specification for a range of linear responses to variations in the FA concentration. This relates to
platinum-based catalysts, such as polycrystalline platinum alone and containing electrodeposited
ruthenium [42], platinum nanoparticles prepared on the surface of glassy carbon electrodes [27],
and platinum nanoparticles deposited onto poly(o-methoxyaniline)-multiwalled carbon nanotubes
under galvanostatic conditions [34], which were tested in the presence of 0.1 M, 0.32 M, and 1 M
concentrations of FA, respectively. Since the experiments were performed at high FA concentrations,
nothing can be concluded about the sensitivity of the catalysts and their potential applications as
sensors for FA. A similar situation is observed in the case of electrocatalysts built on the basis of
palladium: a copper-palladium electrode [43] and hollow porous palladium nanoparticles [44] were
found to exhibit catalytic activity for electrochemical oxidation of FA. However, the tests were carried
out only at 30 mM and 1 M FA, respectively, and no indication regarding the sensitivity and linear
concentration range of the electrodes was reported. It should be mentioned that most of these
electrocatalysts showed high stability after multiple uses and maintained an activity close to the initial
activity after 50 [44], and even 1800 [34] cycles.

On the other hand, several authors constructed electrodes based on nanoparticles of noble
and other metals and proved they could gain linear signals in response to variations in the FA
concentration. A carbon paste electrode modified with nanoporous cobalt-nickel phosphate with
dispersed nickel ions gained a linear signal at 3–15 mM of FA and showed good stability, retaining 94%
of its activity after one month and 87% after three months [45]. A palladium-graphene electrochemical
sensor developed by Qiao et al. [46] demonstrated a very low FA detection limit and high sensitivity
(3467 A·M−1·m−2), but was characterized by a linear response in a very narrow range of 7.75 to 62 µM
of FA. An electrode based on highly-dispersed platinum nanoparticles deposited electrochemically
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on graphene [31] showed a linear response up to 2 mM of FA, with a detection limit of 0.04 mM and
a sensitivity of 0.0162 mA·mM−1 with a working electrode area of 7.07 mm2, which corresponds
to 2290 A·M−1·m−2. The electrode retained 90% of its activity after 10 days of daily measurements.
An electrochemical sensor on the basis of iron and platinum core-shell nanoparticles prepared on
a carbon support was found suitable for determination of hydrogen peroxide, glucose and FA [41],
and in the latter case showed a wide linear response range of 12.5 µM to 15.4 mM and a very low
sensitivity of 117.5 A·M−1·m−2. Multipurpose applicability of this sensor seems to be advantageous
over other types of sensors, but this feature actually constitutes a restriction for practical use due to its
low selectivity.

The Pt-2 chemosensor constructed in the present work is characterized by a wide (0.02–2 mM)
linear response range, by uniquely high sensitivity (28180 A·M−1·m−2), by good selectivity, and
outstanding stability, which is very important for commercialization of the sensor. These characteristics,
along with a simple preparation procedure, open prospects for implementation and practical
application of this sensor for monitoring and accurate detection of FA in aqueous systems.

3. Materials and Methods

3.1. Materials

Ethanol absolute, acetaldehyde, potassium chloride, and hexacyanidoferrate(III) were purchased
from Sigma Aldrich Chemie (Steinheim, Germany); hexachloroplatinum(IV)-acid hexahydrate,
methanol, and propionaldehyde were obtained from Merck-Schuchardt (Hohenbrunn, Germany).

All chemicals were of analytical reagent grade and all solutions were prepared using HPLC-grade
water. One molar FA solution was prepared by hydrolysis of 300 mg of paraformaldehyde in 10 mL of
water by heating the suspension in a sealed ampoule at 105 ◦C for 6 h.

Tested real samples included the following preparations: “Formalin” (produced by “SferaSim”,
Lviv, Ukraine) and “Sanodez Forte” (produced by “DezoMark”, Novoyavorivsk, Ukraine).

3.2. Scanning Electron Microscopy and X-ray Microanalysis

A scanning electron microscope (SEM-microanalyser REMMA-102-02, Sumy, Ukraine) was used
for morphological characterization of the electrodes’ planar surfaces. A special cover film was formed
on the samples with a Butvar solution B-98 (Sigma, St. Louis, MO, USA) in 1.5% chloroform using an
ultrasound method. The distance from the last lens of the microscope to the sample (WD) ranged from
17.1 to 21.7 mm. The accelerator voltage was in the range from 20 to 40 kV. Zooms were from 2500×
to 10,000×.

3.3. Preparation and Evaluation of the Chemosensors

The properties of the FA-sensitive amperometric chemosensors were evaluated by means of
constant-potential amperometry in a three-electrode configuration using commercial 4 mm gold planar
electrodes DRP-C220AT for repeated use fromDropSens (Llanera, Asturias, Spain). Amperometric
measurements were carried out using a potentiostat CHI 1200A (IJ Cambria Scientific, Burry Port,
UK) connected to a personal computer and performed in a batch mode under continuous stirring in
a standard 20 mL electrochemical cell at room temperature. After 2 min of stabilizing the background
current, the experiments were started by the addition of sample aliquots. During the course of the
experiments, the modified electrodes were stored in air at room temperature.

All real samples were diluted using 0.05 mM sodium phosphate buffer, pH 8.0. The dilution
factors for “Sanodez Forte” and “Formalin” were 2500 and 4000, and 6000 and 8000, respectively.

All experiments were carried out independently in triplicate and the reported results are the
average of three replicate experiments. Statistical data evaluations were calculated using Origin 7.5
(OriginLab Corp., Northampton, MA, USA) and Microsoft Excel.
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4. Conclusions

A new amperometric chemosensor based on a platinized gold electrode for accurate formaldehyde
(FA) analysis was described. The platinization of the surface of 4 mm gold planar electrodes was
performed electrochemically by electrolysis (Pt-1) and by cyclic voltamperometry (Pt-2). The structural
modification of working electrodes by the two types of Pt layers was characterized using scanning
electron microscopy and X-ray spectral analysis. A significant increase in electrochemical conductivity
of the Pt-modified working electrodes was demonstrated compared with a non-modified electrode.
The sensitivity of the Pt-2-based chemosensor for FA is uniquely high (28180 A·M−1·m−2), and is
79-fold higher than the sensitivity of an earlier FA-selective biosensor which we developed based on
using formaldehyde dehydrogenase [25], and 8.1-fold higher compared to the chemosensor described
by Qiao et al. [46]. Exploiting a low working potential (0.0 V vs. Ag/AgCl) enabled an increase in
the selectivity of the chemosensor to the target analyte. The storage and operational stability of the
Pt-based chemosensors was a very high, as proven after over one year of storage in the dark at room
temperature and reusing them more than one hundred times.

The FA-selective chemosensor was tested on real samples of commercial preparations
manufactured in Ukraine: “Formalin” and “Sanodez Forte”. A very high correlation was shown
between the results obtained with the chemosensor and by chemical methods and enzymatic
approaches (R=0.998–0.999). The developed prototype of a FA-selective amperometric chemosensor
can be widely used in industry and research, as well as for environmental control.
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