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Abstract: In this paper, an energy-equivalent orthotropic d+/d− damage model for cohesive-frictional 
materials is formulated. Two essential mechanical features are addressed, the damage-induced 
anisotropy and the microcrack closure-reopening (MCR) effects, in order to provide an enhancement 
of the original d+/d− model proposed by Faria et al. 1998, while keeping its high algorithmic efficiency 
unaltered. First, in order to ensure the symmetry and positive definiteness of the secant operator, 
the new formulation is developed in an energy-equivalence framework. This proves thermodynamic 
consistency and allows one to describe a fundamental feature of the orthotropic damage models, 
i.e., the reduction of the Poisson’s ratio throughout the damage process. Secondly, a “multidirectional” 
damage procedure is presented to extend the MCR capabilities of the original model. The 
fundamental aspects of this approach, devised for generic cyclic conditions, lie in maintaining only 
two scalar damage variables in the constitutive law, while preserving memory of the degradation 
directionality. The enhanced unilateral capabilities are explored with reference to the problem of a 
panel subjected to in-plane cyclic shear, with or without vertical pre-compression; depending on 
the ratio between shear and pre-compression, an absent, a partial or a complete stiffness recovery is 
simulated with the new multidirectional procedure. 

Keywords: cohesive-frictional materials; damage-induced orthotropy; microcrack closure-reopening 
effects; cyclic loading; energy equivalence; spectral decomposition 

 

1. Introduction 

The design of constitutive models adequate for predicting the structural response of  
cohesive-frictional materials continues to be a challenging topic in the civil engineering field because 
cementitious materials, such as concrete, rocks and masonry, can be classified within this category.  

The non-linear behavior of cohesive-frictional materials is mainly related to damage and 
plasticity phenomena. Relatively simple damage formulations, as the one proposed in this paper, are 
able to provide a reliable mechanical response for a great variety of loading conditions (as observed 
in [1]) requiring a small number of constitutive parameters. Some relevant contributions in the field 
of continuum damage mechanics applied to cohesive-frictional materials are, among others, the ones 
presented in [1–6]. Furthermore, several formulations have been developed within the framework of 
damage combined with plasticity (see [7–14]). 

Continuum damage mechanics is based on the introduction of suitable internal variables in the 
constitutive law with the aim of simulating the elastic stiffness degradation and the strength decrease 
associated with the growth of microvoids and microcracks in the material, taking into account the 
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irreversibility of the thermodynamic processes. Common key ingredients of the several damage 
formulations are the concepts of effective (undamaged) configuration and nominal (damaged) one, 
as well as the hypotheses of strain equivalence [8,15], stress equivalence [8] or energy equivalence [16,17], 
by means of which the relations between effective and nominal configurations are established.  

Despite the abundant research work delving into the topic of continuum damage mechanics, 
some specific aspects related to its application to cohesive-frictional materials require further 
investigation. The objective of the present paper is an enhancement of the d+/d− formulation first 
introduced in [5,18,19], deeply developed in [1] and then extended to plasticity in [12], hereafter 
termed “the original d+/d− model”. The interest for this model derives from the fact that it combines 
an adequate non-linear structural response and algorithmic efficiency, its implementation and use in 
standard FE codes being relatively easy. Confirmation of its effectiveness can be found in the several 
structural applications in which it has been satisfactorily adopted: for the seismic analysis of concrete 
dams [1], in the assessment of reinforced concrete walls subjected to seismic shear loadings [20], for 
the characterization of the in-plane [21] and out-of-plane [22] behavior of masonry panels, in the 
evaluation of historical masonry structures [23] and in the macro-modelling of masonry, combined 
with a tensor mapping procedure [24,25]. 

The essential mechanical features for the description of cohesive-frictional materials are  
the following: 

1. degradation of the elastic stiffness and softening response in the post-peak regime, with 
reduction of the peak strength for increasing deformation levels; 

2. non-symmetrical material behavior between tension and compression due to different strengths 
and different fracture energies; 

3. anisotropy induced in the material by the damage process, due to nucleation and evolution of 
planar microvoids “in the planar direction perpendicular to the maximum tensile strain” [26]. 
Hence, except for the case of hydrostatic stress or strain conditions, isotropic models are 
incomplete in the description of damage, which is intrinsically an anisotropic phenomenon [27] 
and drastically neglects the possibility of strut action in the assessment of the structural  
capacity [28]; 

4. microcrack closure-reopening (MCR) effects, i.e., partial or total stiffness recovery in the 
transition from tension to compression, crucial in cyclic conditions, experimentally documented 
for concrete in [29]. 

Both Properties (1) and (2) are successfully satisfied by the original d+/d− damage model; 
specifically, the asymmetrical performance of the material under tensile and compressive regimes is 
modelled by means of only two scalar variables, d+ and d−, in combination with the spectral 
decomposition of a suitable second order tensor (the effective stress one). The high algorithmic 
efficiency of the model lies in this adoption of two scalar quantities for the representation of damage 
and in the recourse to a strain-driven formalism (strictly related to the choice of splitting the effective 
stress in a strain-equivalence framework). 

Although Features (3) and (4) are taken into account by the original d+/d− damage model, in the 
present work, these capabilities are enhanced by proposing a new d+/d− formulation, which 
represents the damage-induced anisotropy in an energy-equivalent framework and not in a 
strain-equivalent one. Moreover, a “multidirectional” damage approach is developed to extend the 
microcrack closure-reopening capabilities of the original model to generic cyclic conditions, 
particularly improving the material response under shear cyclic loading. 

Regarding Point (3), on the one hand, the basic idea of the original model to simulate the 
directional degradation through the use of a spectral decomposition is maintained, with the consequent 
acceptance of a perfect coincidence between the axes of anisotropy (in particular orthotropy) of the 
damaged material and the strain and stress principal directions. On the other hand, an explicit 
secant stiffness matrix representing the damage-induce anisotropy is here provided. The explicit 
definition of the secant matrix is useful for the implementation of Picard’s method, which is more 
robust than the Newton–Raphson one, even though it does not show quadratic convergence. 
Thermodynamic and practical reasons require the secant stiffness operator to be positive definite 
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and endowed with both major and minor symmetries. The fulfilment of these features leads to the 
formulation of a new d+/d− damage model based on the energy equivalence assumption. Such a 
choice ensures full thermodynamic consistency and reflects in the formulation of a stable orthotropic 
damaged material. Moreover, it translates in an adequate consideration of the Poisson’s effect and, 
specifically, in the simulation of a nominal Poisson’s ratio, which does not remain constant 
throughout the damage process. 

Regarding Point (4), a shortcoming of the original model is identified in its incapability of 
maintaining permanent memory of the damage orientation. Although the original model succeeds 
in modelling the regain of stiffness from tension to compression in a uniaxial cyclic loading history, 
in generic cyclic loading conditions, as shear, involving the coexistence of compressive and tensile 
regimes, the just underlined limitation affects the structural response unrealistically. In this regard, 
in the present work, the microcrack closure-reopening capabilities of the original model are 
extended to generic cyclic conditions by the formulation of a “multidirectional” damage model. This 
concept consists of saving during the analyses two damage values for tension and two damage 
values for compression, differing for the principal strain directions that have generated them and in 
choosing the active d+ (d−) depending on the current maximum (minimum) principal strain direction. 
Inactive values are however maintained with the possibility of being-reactivated in the occurrence of 
a principal directions’ rotation. The “multidirectional” damage procedure allows for the 
preservation of memory about damage orientation while keeping unaltered the scalar damage 
nature of the original model. 

The present paper is structured as follows. In Section 2, the salient aspects of the original d+/d− 
model are briefly recalled, and different possible definitions for the secant stiffness matrix in a strain 
equivalence framework are explored. Then, in Section 3, the new energy-equivalent damage 
formulation is presented and its thermodynamic consistency discussed. Moreover, the damage 
criteria and the damage evolution laws adopted for the definition of d+ and d− are provided.  
Appendix A completes this section with the proof of the second principle of thermo-dynamics for 
the new model. In Section 4, the multidirectional procedure is extensively described with reference 
to plane problems. Reflections on how to extend the formulation to the 3D case are however added. 
To demonstrate the enhancements in terms of both Poisson’s effect and stiffness recovery 
capabilities under cyclic conditions, some examples solved with the original and the new d+/d− 
damage formulation are shown in Section 5. These betterments are finally summarized in Section 6, 
which is dedicated to the concluding remarks. 

Notation 

I2 and ( ) 2 2I I I  are the second and fourth order identity symmetric tensors, respectively. 

2. Original d+/d− Damage Model 

2.1. Strain Equivalence and Constitutive Law 

The original d+/d− damage model is based on the notion of effective stress and on the hypothesis 
of strain equivalence. The effective stress σ  and the effective strain ε  are the stress and strain to 
which the undamaged material between micro-cracks is subjected; they are related by the  
fourth-order elastic tensor D0: 

:σ D ε0  (1)

The nominal quantities σ  and ε  refer to an average of the corresponding effective quantities 
on the total surface of the material (including also micro-cracks); for instance, the nominal stress 
tensor is related to the effective one by means of a fourth-order tensor A dependent on damage: 

A :σ σ  (2)

The strain equivalence assumption, as formulated in [8,15], asserts that: “The strain associated 
with a damage state under the applied stress σ is equivalent to the strain associated with its 
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undamaged state under the effective stress σ ”. In other words, it is considered by hypothesis that 
the effective and the nominal strain are equal ( ε ε ) and that only the nominal and the effective 
stress are different. Consequently, the effective stress of Equation (1) can be rewritten as: 

: 0σ D ε  (3)

The basic features of concrete that the original model reproduces are the following ones: (i) the 
development of irreversible deformations; (ii) the strongly asymmetrical behavior under tension and 
compression; (iii) the microcrack closure-reopening (MCR) effects visible in the case of uniaxial 
cyclic actions, i.e., the stiffness recovery when passing from tension to compression and vice versa; 
and (iv) the anisotropy induced by the damage process in the material. 

Since the modelling of the plastic strains is outside the scope of the present study, they are 
assumed equal to zero, and the elastic strain tensor εe adopted in the original model is replaced by 
the total strain ε henceforth, so that ε = εe. In order to represent the differences between the  
stress-strain envelops under tension and under compression, two independent scalar variables, one 
for tension d+ and one for compression d−, are introduced. Moreover, to deal with Points (ii), (iii) and 
(iv), a spectral decomposition of the effective stress tensor (Equation (3)) into a positive and a 
negative part is carried out: 

:
3

i
i 1

σ


  +
i iσ p p Q σ  

 
  : = =σ σ - σ I-Q σ  

(4)

where pi is the eigenvector identifying the principal direction i-th of the effective stress tensor while 
the Macaulay brackets act on the i-th principal value of the effective stress tensor iσ  in such a way 
that: if iσ  is positive (tensile principal stress), 〈 〉 = ; else (compressive principal stress)  〈 〉 = 0. The fourth-order projection operator Q, which extracts from the effective stress tensor its 
positive part, is: 

)(
3

i 1
    i i i iQ p p p piH σ  (5)

and its explicit expression is given in [30]. H( iσ ) is the Heaviside function, such that, if iσ is 
positive, H( iσ ) = 1; else, H( iσ ) = 0. 

The constitutive law of the original model is written in terms of the spectral decomposition of 
the effective stress tensor (4) and has the following expression:  

          σ ε σ σ1 1: d dsD  (6)

where DS is the fourth-order secant stiffness operator (subscript “S” stands for strain equivalence), 
introduced in order to relate the nominal stress tensor σ to the nominal strain tensor ε. 

Remark 2.1. The versatility of the model in treating the damage-induced anisotropy is intrinsic in  
Equation (6). In fact, depending on the sign of the principal effective stresses, two different cases can be 
distinguished: 

 iσ  with concordant sign ( σ σ or σ σ ): isotropy is preserved after damage, and an isotropic (tensile 
or compressive, respectively) damage model is recovered. 

 iσ  with discordant sign: the damaged material is anisotropic, and the directions of maximum and 
minimum axial stiffnesses are coincident with the principal directions of the effective stress tensor. As 
observed in [31,32], the coaxiality between the reference system of the anisotropic material and the 
principal directions of the nominal strain ε is a particular condition in anisotropic elasticity, which 
corresponds to the extremization of the strain energy density. In addition, the maximization or 
minimization of the strain energy density implies the coaxiality between the nominal strain tensor ε and 
the nominal stress tensor σ. These observations lead to assert that the d+/d− formulation can be interpreted 
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within the rotating smeared crack concept, due to the co-rotation of the axes of material anisotropy with 
the principal axes of the strain ε, which consequently coincide also with the principal axes of the stress σ. 

2.2. Discussion on Different Secant Stiffness Operators Based on Strain Equivalence 

In [1], the constitutive law (6) is provided, but not the definition of the fourth-order secant 
stiffness tensor DS relating the nominal stress σ and the nominal strain ε. In this section, this issue is 
addressed evaluating two different expressions for the secant stiffness DS, both derived in the 
hypothesis of strain equivalence, i.e., considering the effective stress definition shown in  
Equation (3). In order to guarantee thermodynamic consistency, two properties have to be fulfilled 
by the secant operator: major symmetry (in addition to the minor ones), as stated in [1] with 
reference to the Schwartz theorem about the equality of the mixed partial of the potential (6); 
positive definiteness, a major requirement in order to have a damaged orthotropic material with  
stable behavior. 

The first expression to be considered for the secant stiffness tensor, DS1, is obtained by replacing 
in the constitutive law (6) the positive and negative parts of the effective stress tensor (4), expressed 
in terms of the positive projection operator Q (5): 

                     0 0σ σ σ Q D ε I Q D ε1 1 1 1d d d : : d : :  (7)

From Equation (7), exploiting the distributive rule, the expression of DS1 is: 

         s1 0 0D Q D I Q D1 1d : d :  (8)

Considering the constitutive law written in terms of DS1 (8) and referring to the Relations (2) 
and (3) for the nominal and effective stress tensors, respectively, the definition of the fourth-order 
operator A appearing in Equation (2) is: 

         A Q I Qd d1 1  (9)

Although both the projection operator Q (5) and the elastic fourth-order tensor D0 have major 
symmetry, this does not imply that the fourth-order tensor DS1 (8) resulting from their double 
contraction is necessarily endowed with major symmetry. Specifically, besides the undamaged 
situation (DS1 = D0), the symmetry of the secant operator is guaranteed only when the Poisson’s ratio 
is null or when an isotropic damage model is recovered, i.e., in the cases of purely tensile regimes or 
purely compressive regimes (see Remark 2.1). 

Since the quadratic form associated with a non-symmetric matrix is equal to the quadratic form 
associated with its symmetric part only, the second expression to be evaluated for the secant 
operator, Ds2, is the symmetric part of the non-symmetric secant operator Ds1 (8): 

          1 1 1
2 2 2

            
T

s2 s1 s1 0 0 0 0D D D Q D D Q I Q D D I Q1 1d : : d : :  (10)

However, for this second proposal, the positive definiteness cannot be proven. This is shown by 
resorting to Equation (11), where the matrix form of DS2 is given in the principal reference system of 
orthotropy of the damaged material, in terms of the Lamé constants and the damage variables; a 3D 
stress state composed of two tensile directions and a compressive one is considered in such a way 
that two eigenvectors contribute in defining Q (5). 
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Despite the evident symmetry of the matrix (11), it is easy to demonstrate its lack of positive 
definiteness by adopting Sylvester’s criterion. In fact, analyzing the first principal minor of order 
two, equal to: 

        
22 2

2 1 1 2 1 1 4d d G d d                 (12)

and considering d+ = 1 and d− = 0, it follows that the quantity (12) is negative. 
Therefore, the necessity of formulating a new version of the original d+/d− model derives mainly 

from the just-described difficulties found in the definition of a consistent secant stiffness operator in 
a strain-equivalence framework. Consequently, in accordance with the discussion provided in [17] 
for a general anisotropic damage model, in the new d+/d− formulation presented henceforth, the 
strain equivalence assumption is abandoned in favor of an energy equivalence one. 

3. New d+/d− Damage Model Based on Energy Equivalence 

3.1. Consistent Secant Stiffness for the Damage-Induced Orthotropy 

The hypothesis of energy equivalence (see [16,17]) consists of considering the coincidence 
between the energy stored in the terms of the nominal quantities and secant stiffness and the elastic 
energy stored in terms of the effective quantities and undamaged linear elastic stiffness. This means 
that neither the nominal stress, nor the nominal strain are equal to their effective counterparts; 
therefore, in addition to the relation (2) between the nominal and the effective stress, a relation 
between the effective and the nominal strain is needed. Following the procedure described in [17], 
this relation is governed by the fourth-order tensor A introduced in Equation (2) and is written as: 

:ε A ε  (13)

From the mechanical point of view, this lack of coincidence between the effective and the 
nominal strain tensor is essential in representing a fundamental feature of orthotropic damage 
models, i.e., the fact that the nominal Poisson’s ratio does not remain constant throughout the 
damage process. Due to the strain equivalence assumption, this feature is not taken into account by 
the original model. 

Exploiting Relations (1) and (13), the effective stress tensor, expressed as a function of the 
nominal strain ε, is: 

: : : 0 0σ D ε D A ε  (14)

For the damage model described in [1], the operator A relating the nominal and the effective 
stress is the one expressed in Equation (9). Herein, some minor modifications with respect to (9) are 
introduced for the definition of this fourth-order tensor, even though its fundamental dependence 
on the damage variables and on a spectral projection operator is maintained. First, the integrity 
quantities in tension and in compression (1 − d+) and (1 − d−) are replaced by their square roots, in 
order to keep comparable the amount of stiffness degradation between the original model and the 
new proposal. Secondly, the quantity on which the decomposition is performed is no longer the 
effective stress, as described in Section 2.1 (see Equations (4) and (5)): the reason lies in the 
dependence of σ  obtained in an energy-equivalence framework (14) on the fourth-order tensor A 
(hence, on the projection operator and on the damage variables), which would make the procedure 
of the definition of the projection operator iterative. Consequently, the nominal strain tensor ε is 
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chosen as the variable object of the spectral decomposition, similarly to what is done in [7]; in this 
way, the algorithmic efficiency related to a strain-based formulation, one of the attractiveness of the 
original model, is kept unchanged. In addition, a definition for the projection operator slightly 
different from (5) is here preferred. Specifically, a tensor first introduced in [33] and then presented 
again in [34] is adopted; its expression is: 

      
i

       ij ij
CW i i i iQ p p p p P P

3 3

i i j
i= , j=

 j> i

H ε H ε H ε
1 1

 
(15)

     ij ji
i j j iP P p p p p1

2
 (16)

where εi and pi are the i-th principal value and the eigenvector associated with the i-th principal 
direction of the nominal strain tensor ε. H(εi) is the Heaviside function, such that, if εi is positive,  
H(εi) = 1; else, H(εi) = 0. This projection operator does not alter the positive and negative components 
extracted from the strain tensor, which are exactly the same obtained adopting the conventional  
Q (5). The advantage of using it lies in the fact that, when all of the strain eigenvalues εi are of the 
same sign, QCW satisfies the so-called natural property. For a generic fourth-order projection 
operator P that performs a spectral decomposition on a second-order tensor a, this property can be 
written in the following way: 

 
 

iff

iff i





   


  

i

i

a 0 i =

a < 0

1,2,3

1,2,3

P I

P I

 

 
 (17)

The satisfaction of Property (17) is discussed in [11,33]. 
Referring to Equation (9) and applying the mentioned minor modifications, the proposal A* for 

the fourth-order tensor A, appearing in Equations (13) and (14), is: 

      *
CW CWA Q I Qd d1 1  (18)

In view of this definition, the relations (2), (13) and (14) between the nominal and the effective 
quantities in an energy-equivalent framework can be re-written as: 

: *σ A σ  (19)

: *ε A ε  (20)

: : :  *
0 0σ D ε D A ε  (21)

Making use of Relations (20) and (21), the equality between the strain energy in the effective 
and in the real configuration is: 

: : : : : : : * *
0 Eσ ε ε A D A ε ε D ε1 1 1

2 2 2
 (22)

From Equation (22), the form of the secant stiffness fourth-order tensor DE (subscript “E” stands 
for energy equivalence) is derived: 

: : * *
E 0D A D A  (23)

By replacing the definition of A* (18) in Equation (23), the complete expression for the secant 
matrix DE is: 

   : :                    E CW CW 0 CW CWD Q I Q D Q I Qd d d d1 1 1 1  (24)

A similar secant stiffness operator, obtained under the same assumption of energy equivalence, 
can be found in [14]: there, the projection operator is adopted in its classical form (analogously to 
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Equation (5)), and the split is performed on the nominal stress tensor σ, which, as mentioned earlier, 
makes iterative the definition of the projection operator. 

From Equation (24), some immediate considerations can be given. Firstly, in the absence of 
damage, the linear elastic stiffness tensor D0 is recovered. Secondly, the versatility of the original 
model in treating the damage-induced anisotropy (see Remark 2.1) is preserved in the new 
formulation. As a matter of fact, in the case of εi with concordant sign (ε = ε+ or ε = ε−), an isotropic 
damage model is regained, while in the case of εi with discordant sign, the damaged material is 
orthotropic, and the coaxiality between the directions of induced orthotropy and the principal 
directions of the strain and stress tensors is assured. In addition, Equation (23) shows how, due to 
the major symmetry of the tensor A*, the hypothesis of energy equivalence (22) induces automatically 
major symmetry in the secant stiffness tensor DE. 

The matrix form of the secant stiffness operator DE is given in (25) in the principal reference 
system of orthotropy of the damaged material. As done for the expression of the matrix form of  
Ds2 (11), a 3D strain state composed of two elongation directions and a contraction one is considered:  
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(25) 

First of all, it is interesting to note how the secant stiffness matrix associated with the operator 
DE here derived fits perfectly within the framework described in [17], based on the hypotheses of 
energy equivalence and sum-type symmetrization. Differently from a generic orthotropic material, 
which is characterized by nine independent material properties, the secant stiffness matrix (25) 
depends on four variables (the two elastic constants G and λ of the initial isotropic material and the 
two damage variables d+ and d−). This aspect is strictly related to one of the particularities of this 
formulation, i.e., the coaxiality between directions of induced orthotropy and principal directions of 
nominal strain and stress tensors. 

Moreover, considering the shear stiffness terms in matrix (25), it is possible to see that the shear 
modulus G is reduced by the squares of the sum averages of both d+ and d−. This constitutes a 
modification with respect to the secant operators DS1 and DS2 (see Equation (11)), due to the adoption 
of the projection operator QCW (15) instead of Q (5); the main positive implication deriving from this 
choice is the recovery not only of the constitutive law, but also of the secant stiffness matrix of an 
isotropic damage model, when ε = ε+ or ε = ε−. 

Besides an evident symmetry visible in Equation (25), the stiffness operator DE (24) is also 
positive definite, and this can be checked, without loss of generality, by applying Sylvester’s 
criterion to its matrix form (25). In fact, as demonstrated by the relations (26), all of the minors of (25) 
are always positive, provided that the damage variables range from zero (virgin material) to one 
(completely damaged material): 
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Therefore, the new d+/d− damage model, based on the hypothesis of energy equivalence, is 
governed by the secant stiffness operator DE (24), which is symmetric and positive definite; 
consequently, as further commented in Remark 3.1, it provides an adequate representation of the 
damage-induced orthotropy. 

Remark 3.1. The relationships between the effective and the nominal configuration deriving from the energy 
equivalence assumption, together with the constitutive laws proper of each space, are summarized in Figure 1. 

 
Figure 1. Energy equivalence hypothesis: relations between effective and nominal spaces. 

An interesting parallelism can be found between these relationships, adopted to derive an orthotropic d+/d− 
damage model, and the mapping procedure presented in [35] to define a damage model for orthotropic materials. 
In [35], the stress σ and strain ε tensors of the orthotropic real space are related by means of suitable 
fourth-order symmetric transformation tensors to those (σ* and ε*, respectively) of an equivalent isotropic solid:  

  :


σ A σσ *1  (27)

:ε A εε*  (28)

Considering the equivalence between the orthotropic real space and the real damaged material (nominal σ 
and nominal ε) and between the mapped isotropic space and the effective undamaged configuration (σ and ε), 
the similarity of Equations (27) and (28) with (19) and (20) is evident. Specifically, in accordance with [17], in 
the present orthotropic damage model, the tensor (Aσ)−1 and Aε are coincident and equal to the mapping 
operator A* (18). All of the features required for the mapping operators (Aσ)−1 and Aε  (fourth-order tensors, 
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minor and major symmetry, positive definiteness in order to be invertible) are satisfied by A*. This observation 
confirms the effectiveness of the energy-equivalence assumption in representing the damage-induced orthotropy. 

3.2. Thermo-Dynamic Framework 

The free energy potential of the orthotropic damage model presented in Section 3.1 is here 
provided, in accordance with the energy equivalence assumption (22): 

 , , : :   Eε ε D εψ d d 1
2

 (29)

where the positive definiteness of the secant stiffness fourth-order tensor DE (24) has been proven in 
Section 3.1. 

In order to assess the thermodynamic consistency of the proposed model, the satisfaction of 
both the first and the second law of thermodynamics needs to be investigated. 

On the one hand, the first law of thermodynamics for elastic-degrading materials demands 
considering the conservation of energy in the unloading-reloading regime, for a fixed state of 
degradation. As pointed out in [33,34], under those conditions and when non-proportional loadings 
are applied, damage models including micro-crack closure reopening (MCR) effects may suffer the 
problem of energy generation/dissipation under closed-load cycles. Specifically, only in the presence 
of anisotropic degradation, a lack of energy dissipation occurs. 

The here-formulated damage model is orthotropic in the sense that a directional degradation in 
stiffness is induced in the material after surpassing the linear threshold. From the definition of 
A*(18), which, according to Remark 3.1, is the fourth-order operator performing the mapping 
between the isotropic and the orthotropic spaces, it is asserted that the projection operator QCW is 
responsible for the damage-induced orthotropy, since the damage variables are scalars. Both in [33] 
and in [34], the term “anisotropic degradation” is adopted for describing those damage models that 
include an anisotropic (or orthotropic) stiffness reduction, beyond the application of the projection 
operator Q. Therefore, the here-presented damage model cannot be classified as anisotropic 
according to these references, even if an orthotropic behavior is induced by the damage process; 
consequently, it observes the first law of thermodynamics.  

On the other hand, the second law of thermodynamics states that the total entropy of an 
isolated system tends to increase over time, taking into account the irreversibility of the natural 
processes. This condition can be expressed by the Clausius–Duhem inequality (see [36]): 

: 0  σ εγ = -ψ  (30)

Substituting in Equation (30) the rate of the total potential energy expressed in Equation (29), 
the positiveness of the energy damage dissipation can be rewritten in this way: 

:  
 

   
          

  ψ ψ ψ
γ d d

d d
σ ε

ε
0  (31)

Since ε is a free variable, in order to have non-negativeness of γ, the term between round 
brackets in Equation (31) has to be null, and the constitutive law is established, in accordance with 
Coleman’s relation σ = ψ/ε (see [37]). Consequently, Equation (31) reduces to: 

 
 

 
     

 
  ψ ψ

γ d d
d d

0  (32)

where the partial derivatives of the potential with respect to d+ and d−, with signs reversed, represent 
the elastic strain energy release rates produced by a unit growth of the corresponding damage 
variable; they play the role of thermodynamic forces conjugated to the damage variables. For the 
sake of brevity, their expressions, together with the discussion of the satisfaction of the second 
principle of thermodynamics, are provided in Appendix A. 

Considering Coleman’s relation σ =ψ/ε and the expression of the free energy potential (29), 
the constitutive law between the nominal stress and strain tensors results, as expected: 
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: Eσ D ε  (33)

3.3. Damage Criterion for Cohesive-Frictional Materials and Damage Evolution Laws 

In accordance with the original d+/d− damage model, two equivalent stress variables and two 
independent evolution laws are adopted to define the degradation process in tension and in 
compression, respectively. 

In order to identify the situations of loading, unloading or re-loading, the Kuhn–Tucker 
relations and the persistency conditions are taken into account, expressed in terms of the equivalent 
stress variables ±τ , monitoring the behavior in tension and compression, and of the internal state 
variables r  , representing the damage thresholds. 

±r 0  (34)

g τ r     0  (35)

g   ±r 0  (36)

g   ±r 0  (37)

Combining Equations (34)–(36), it can be asserted that, during the unloading or in the 
undamaged initial state, g   < 0 and ±r 0 , while, in the case of loading, g   = 0 and ±r 0 . 
Moreover, the satisfaction of Equation (37) in the case of loading ( ±r 0 ) allows one to derive the 
following expression for the internal state variables ±r :  

 
[ ]

;
 

   
 

北 ?
0

0,t

r r τmax max  (38)

where: 

0  北 北
e er f γ f  (39)

As shown in Equation (39), the quantities fe+ and fe− are related to the corresponding uniaxial 
peak strengths f+ and f− by means of the proportional parameters γe+ and γe−, and they identify the 
onset of damage in uniaxial tension and compression, respectively. 

As can be inferred from Equation (35), the definition of the damage criterion is strictly related to 
the choice of the equivalent stress variables τ+ and τ− since the damage limit surface g   = 0 is 
obtained by equating τ+ and τ− to r+ and r–, respectively. In this regard, similarly to the choice done  
in [22,38], the following equivalent stress variables τ+ and τ– are here considered, inspired by the 
failure criterion proposed in [10] for the modelling of concrete:  

   e
1

e





 

emax 2 emax
f

τ = H σ 3J αI β σ
α f
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1

 (40)
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with the material parameters: 
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In Expressions (40)–(42), fb − is the biaxial compressive strength of the material, while the first 
invariant 1I , the deviatoric second invariant 2J , the maximum (σemax) and minimum (σemin) 
principal stress values are referred to the elastic stress tensor σe, whose definition is: 

:eσ D ε0  (43)

The choice of σe, as the quantity determining the equivalent variables, is addressed to avoid an 
iterative procedure for the computation of d+ and d−, which would be otherwise necessary opting for 
the effective stress σ  defined in (21). 

The parameters introduced in Equation (42) are related to the frictional properties of the 
material, while r0–, i.e., the compressive uniaxial strength at the onset of damage (see Equation (39)), 
represents the cohesive contribution in the undamaged state. 

The limit surface for the activation of damage in the initial elastic stage, derived by equating τ+ 
and τ– (Equations (40) and (41)) to r0+ and r0– (Equation (39)), is plotted in Figure 2 in the elastic stress 
principal space, for the plane stress case. In the first and third quadrants, thanks to the presence of 
the Heaviside functions in Equations (40) and (41), the limit surface is ruled by τ+ and τ–, separately, 
meaning that only tensile damage can be activated in the first quadrant and only compressive 
damage in the third one. Specifically, in biaxial compression, the Drucker–Prager criterion is 
recovered. Differently, in the second and fourth quadrants, tensile and compressive damages are 
activated contemporarily because of the perfect overlapping between the surfaces identified by τ+ 
and τ–. Such a modelling of the failure conditions in the second and fourth quadrants is a betterment 
with respect to the damage limit surface considered in the original model; as a matter of fact, in [1], 
the behavior of the material in these quadrants is not represented directly, but is only considered as 
the intersection of the two distinct failure criteria in pure tension (first quadrant) and pure 
compression (third quadrant). 

 
Figure 2. Damage surface in plane stress conditions, for α = 0.121 and β = 7.667. 

In this work, the damage evolution laws for d+ and d− are explicitly defined as  
monotonically-increasing functions of the corresponding thresholds r+ and r−, such that ±d 0 . 
Specifically, the formulation proposed in [39] is herein considered, which models both the  
strain-hardening and the strain-softening in the uniaxial stress-strain law, adopting a parabolic and 
an exponential trend, respectively: 

 
2

 
    

 

    
  

±
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p 0
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 (44)
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Two further variables, fp+ and fp−, appearing in Equations (44) and (45), have to be introduced: 
they represent the damage limit surfaces at the corresponding peak strengths and they depend on f+ 
and f− by means of the proportional factors γp+ and γp− (γp ±  ≥ 1): 

p p
  f γ f  (46)

Moreover, the definition for the positive parameters Ad and Hd is needed:  
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(47)

with    e e p e
           

   
北 北 北 北
d d p pA A f f f f f f f

3 22 33 2 6 . 

The dependence of the exponential strain softening laws (45) on the fracture energies in tension 
and compression, Gf+ and Gf−, and on the length related to the discretization, ldis, is introduced in 
order to ensure mesh-size objective results, in accordance with the crack-band theory presented  
in [40]. The definition of the crack width parameter ldis can be done taking into account [41] and is 
related to the area (volume) of the finite elements in 2D (3D) problems. 

For cohesive-frictional materials, which are the main objective of the present study, it is realistic 
to consider the parabolic hardening before strain softening only for the compressive variable d−, i.e., 
to consider fp− > f−− > fe−. For the tensile damage variable d+, the hypothesis of fp+ = f+ = fe+ is made, 
meaning that the onset of damage is immediately followed by a strain softening behavior. The 
uniaxial stress strain curves resulting from these assumptions under tension and under compression 
are shown in Figure 3a,b, respectively. 

 
Figure 3. Uniaxial normalized σ-ε curves: (a) softening behavior in tension and (b) in compression. 
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3.4. Algorithm for the d+/d− Damage Model 

To have further insight into the d+/d− damage model proposed in this section, the main points of 
its numerical algorithm are summarized in Table 1.  

Table 1. Algorithm for the d+/d− damage model based on energy equivalence. 

Load increment n = 0: 
Set r+n = r+0, r−n = r−0 (definition of r  0 from Equation (35)), d+n = 0 and d−n = 0. 

Load increment n: 
i. Compute the strain tensor εn. 

ii. Compute the projection operators QCWn and I − QCWn with the spectral decomposition of 
the strain tensor εn (Equation (15)). 

iii. Compute the elastic stress tensor σen (Equation (43)). 
iv. Compute τ+n (Equation (40)) and τ−n (Equation (41)). 
v. If τ  n > r  n-1: update damage thresholds r  n = τ  n and update d  n (Equations (44) and (45). 

If τ  n < r  n-1: no updating is required, i.e., r  n = r  n-1 and d  n = d  n-1. 

vi. Compute the operator A*n (Equation (18)):  *
n n n n n

     CW CWA Q I Q1 1d d . 
vii. Compute σ n adopting the symmetric secant operator E D n (Equation (23)): 

* *: : : 0σ A D A εn n n n .  

Due to the material non-linearity, an incremental-iterative procedure is required. Here, the 
details about the iterative process to assure equilibrium are not provided, and only the numerical 
scheme for the derivation of the local constitutive equation is shown. The adoption of a  
displacement-based finite element method allows one to determine the nominal strain tensor ε at the 
beginning of each loading step (or at the beginning of every equilibrium iteration) and consequently 
allows the explicit computation of damage from the strains. 

4. Multidirectional d+/d− Damage Model for Cyclic Loadings 

4.1. Limitations of the Original d+/d− Formulation 

Together with the damage-induced anisotropy, another essential feature that needs to be taken 
into account in the constitutive behavior of cohesive frictional materials as concrete is the modelling 
of the microcrack closure-reopening (MCR) effects [42]. These effects consist of the partial or total 
recovery of the material stiffness upon load reversal, related to the closure of previously-generated 
microcracks. As shown in [1], the original d+/d− damage formulation is able to capture this unilateral 
behavior in the presence of a 1D tension-compression cyclic load history. This is achieved thanks to 
the spectral decomposition of the effective stress tensor (4), which allows one to consider the axial 
stiffness first affected by d+ in tension and then unaffected (or affected by d−) in compression. 
Likewise, the new damage model proposed in Section 3 ensures such a unilateral effect upon 1D 
loading reversal, adopting the strain decomposition projection operator (15).  

However, neither with the original formulation nor with the new damage model, the 
microcrack closure-reopening effects in the presence of a generic cyclic load history (not necessarily 
uniaxial) can be adequately taken into account.  

An illustrative case is for instance a problem involving pure shear cyclic loading conditions, 
characterized by a swapping between minimum and maximum principal strain directions in 
correspondence of the loading reversal. At the end of the first loading path, both the damages in 
tension and in compression are assumed different from zero and equal to d1+ and d1−; after loading 
reversal, d1+ is assigned to the current maximum principal direction, although this direction has not 
been affected by tensile damage in the previous loading stage. The same happens for d1−, and 
consequently the material response does not show any stiffness recovery associated with the crack 
closure phenomena.  
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From this example, the limitation of the model due to the scalar representation of damage, 
which implies the impossibility of maintaining permanent memory of the damage orientation, is 
evident. Non-negligible consequences of this fact can be observed in cyclic loadings and, in a more 
general framework, for non-proportional loadings, since those cases are characterized by a rotation 
of the minimum and maximum strain/stress principal directions.  

4.2. Multidirectional Procedure 

Without the necessity of resorting to a tensor definition for damage, a procedure able to 
enhance the stiffness recovery capabilities of the d+/d− model is here presented. The interest is 
specifically addressed to the case of cyclic loadings, either considered alone or preceded and/or 
followed by non-cyclic (permanent or proportionally increasing) loadings. The essential aspects of 
this approach lie in maintaining only two scalar variables in the constitutive law (33) and, 
contemporarily, in preserving the memory of the directionality of the damage process. The former 
aspect is related to the will of not altering the basic scheme of the original formulation, which has 
proven to be effective and adequate in modelling the material behavior of concrete and concrete-like 
materials; as discussed in Section 4.1, the latter is instead a fundamental requirement in order to 
capture the MCR effects in the presence of cyclic loadings.  

Although the procedure holds general validity, for the sake of clarity, it is described in the 
follow-up with reference to plane problems.  

The main novelty with respect to the standard computation of the d+ and d− damage variables 
(as described in Section 3.3) is represented by the possible activation of a “multidirectional” damage 
model. The concept of a “multidirectional” damage model refers to a partition of the plane into two 
regions for tensile damage, each one endowed with its own d+ and r+ values, and into two regions for 
the compressive one, each one endowed with its own d− and r− values. Hence, all of the directions 
contained in a region are associated with its own d+ or d− degradation parameters. A tensile 
(compressive) damage value is associated with a certain region depending on the maximum 
(minimum) principal strain direction that has generated it. Between the two values of d+ (d−), the 
active one, i.e., the one adopted in the constitutive law (33), is computed starting from the d+ (d−) 
already developed in the region, which includes the current maximum (minimum) principal strain 
direction. The other values of damage are instead maintained temporarily inactive with the 
possibility of being re-activated when the rotation of the maximum/minimum principal directions 
occurs. This means that, with the activation of a multidirectional d+/d− damage model, two 
independent damage evolution laws for tension and two independent damage evolution laws for 
compression are considered, differing for the directions in which they act. 

In this regard, an important remark is in order: the switch from a region to another one does not 
alter the irreversibility of the damage process; in fact, within each region, the damage variables are 
monotonically increasing functions, and their updating follows the Kuhn–Tucker and persistency 
conditions (34)–(37) and the evolution laws (44) and (45). 

It is useful to examine separately two types of cyclic conditions: (i) cyclic loading characterized 
by a fixed principal reference system and with only swapping between maximum and minimum (or 
vice versa) principal directions; (ii) cyclic loading with continuous rotation of maximum and 
minimum principal directions. This distinction is mainly justified by the fact that, as discussed in the 
follow-up, different stiffness recovery capabilities are expected and, consequently, have to be 
modelled, in the two cases. 

For loading Type (i), the cyclic conditions imply a π/2 rotation of the principal directions in the 
occurrence of swapping. This orthogonality allows one to assume that the full fracture energies Gf+ 
and Gf− are consumed in each principal direction independently of one another. From the modelling 
point of view, this translates into considering active the multidirectional damage procedure from the 
beginning of the cyclic loading history, with the consequence that a complete regain of the initial 
stiffness is assured when, for the first time, a swapping between the maximum and minimum (or 
vice versa) principal directions occurs. Since the principal reference system is fixed in these loading 
conditions, also the damage regions in which the space is partitioned are considered fixed: their 
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bisectors are assumed coincident with the principal directions, and their amplitude is equal to π/2. 
The problem described in Figure 4a, characterized by a panel subjected to a cyclic horizontal 
displacement ux inducing shear, is an example of these cyclic loading histories. In Figures 4b,c, the 
working principles of the multidirectional damage model are shown: two damage values for tension 
and two damage values for compression are kept in memory based on the current principal strain 
directions (which are p+ a c , p− a c  in Figure 4b and p+ c e , p− c e , in Figure 4c). A perfect 
overlapping between the damage regions in tension and the damage regions in compression, which 
are fixed throughout the cyclic loading history, is visible.  

 

 

 
Figure 4. Multidirectional damage procedure in the case of cyclic loading of Type (i): (a) problem 
statement; (b) identification of the damage regions and damage variables before the load reversal 
and (c) after the load reversal. 

For loading Type (ii), the assumption of considering from the beginning two independent 
damage evolution laws in tension and in compression does not hold anymore, since, instead of the 
brusque π/2 rotation of the principal directions typical of a loading Type (i), there is a continuous 
rotation of the principal reference system. Therefore, an estimation during the loading history of the 
deviation of the principal directions with respect to the initial conditions becomes necessary in order 
to evaluate the possible activation of a multidirectional damage procedure. In this regard, two sets of 
variables are introduced. The first one, the equivalent deviation quantity τ+θ (τ−θ), is defined in the 
following way:  
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 北
θ ττ θcos  (48)

where θ+τ (θ−τ) is the absolute value of the angle between the current maximum (minimum) principal 
strain direction and the maximum (minimum) principal strain direction at the initial stage of the 
cyclic loading history; it ranges from zero to π/2. The second quantity is the internal state variable  
r ± θ, which assumes the role of a threshold angle; moreover, it allows one to identify the bisectors of 
the two regions with distinct d+ (d−) damage values.  

To monitor the multidirectional damage model procedure and to identify and update the 
damage regions in the presence of loading or unloading conditions, the following relations  
are considered: 

 ±
θr 0  (49)

北?
θ θ θg = τ - r 0  (50)

 北θ θr g 0  (51)

  北
θ θr g 0  (52)

The similarity with the Kuhn–Tucker and persistency conditions (34), (35), (36) and (37) 
adopted for the onset and evolution of the damage variables is evident. 

The definition of r ± θ is derived from Equation (52) and is equal to: 

     ;
 
  
 
 

北?
θ r min θr θ θ τ

[0,t]

cos min cos min  (53)

where θmin is the minimum deviation for which an independent treatment of the damage variables 
depending on the spatial orientation is valid. As r+ (r−) (Equation (38)) allows one to define the 
evolution of the damage variable d+ (d−) (see Equations (44) and (45)), r+θ (r−θ) allows one to identify 
the evolution of the bisectors and of the amplitude of the two regions with distinct d+ (d−)  
values. Specifically: 

 if  cos π 4 π 4北 北
1,2 r θ rbisector θ r θ

   if  π 4 cos π 4 π 4北 ?
1,2 θ rbisector r θ  

(54)

where bisector+1,2 and bisector−1,2 refer to the directions with respect to the initial maximum and 
minimum principal strain directions, respectively. The amplitude of each region is exactly equal to 
the double of the angle generated between the bisectors and the initial directions. Due to the 
orthogonality between maximum and minimum principal directions, the equality between r+θ and 
r−θ is always assured; this implies that the activation of the bidirectional procedure and the updating 
of the damage regions in tension and compression occur simultaneously.  

If r ± θ = cos(θmin) ( ±
  θg > 0  and  ±

θr 0 ), the differentiation of the damage values in tension and 
compression depending on the principal directions is not performed, which translates in the fact that 
d+ and d− are computed as in the original formulation. When τ ± θ = cos(θmin) (g ± θ = 0) for the first time, 
the bidirectional damage model is activated and the bisectors of the damage regions in tension and 
compression are the directions inclined by the angles  minθ . 

On the one hand, in case of loading ( ±
  θg 0  and  ±

θr 0 ) and when θ ± r < π/4, the bisectors 
rotate, coinciding always with the principal directions; their rotation is accompanied by a 
continuous increase of the regions’ amplitude, which is assumed equal to 2 ∙ θ ± r. In this way, two 
directions initially belonging to the same region are affected by the same degradation values for the 
whole damage process. In the case of loading ( ±

  θg 0  and  ±
θr 0 ) and when θ ± r > π/4, the rotation 

of the bisectors stops in order to avoid overlapping between the two tensile (compressive) damage 
regions; their bisectors are identified by π/4, and their amplitude is equal to π/2. On the other hand, 
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in the case of unloading (r ± θ < cos(θmin), ±
  θg > 0  and  ±

θr 0 ), the damage regions are fixed to the 
values assumed at the last loading step. 

Those problems where a proportionally-varying load is applied before a cyclic history are 
included among the loading conditions of Type (ii), since the simultaneous presence of a permanent 
load and of a cyclic one is responsible for the rotation of the principal directions. In these specific 
cases, the equivalent quantities τ ± θ defined in (48) represent the deviation of the current principal 
directions with respect to the principal directions of the permanent load. An example of these 
loading conditions is shown in Figure 5a, where a structural element is subjected first to an 
increasing vertical contraction and then to a cyclic horizontal displacement ux. The essentials of the 
multidirectional damage model in the presence of rotating principal directions are illustrated 
making reference to this problem. In Figure 5b, the damage values in correspondence with the 
activation of the multidirectional procedure (point f of the loading history) are shown: no distinction 
between the damage values in the tensile and compressive regions is visible from a to f, as in the 
standard d+/d− formulation. Moreover, Figure 5c describes the damage distribution in the unloading 
conditions ( ±

  θg > 0  and  ±
θr 0 ), after the achievement of the peak displacement in b. In this case, 

the damage values and the damage regions are the ones assumed in correspondence with b, and the 
multidirectional procedure is activated since only in the regions including the current principal 
strain directions (Region 1+ and Region 1−), the damage variables have evolved with respect to the 
values in f. Finally, in Figure 5d, the damage distribution in correspondence with the maximum 
displacement (point d of the loading history) is depicted: due to the loading conditions ( ±

  θg 0  and 
 ±

θr 0 ) and the satisfaction of the inequality θ ± r < π/4, a growth in the regions’ amplitude and a 
further rotation of the bisectors is visible comparing Figure 5c,d. In all of the situations analyzed in 
Figure 5, the regions for the tensile and compressive damage never perfectly overlap since the 
maximum rotation that a principal direction covers, i.e., 2 ∙ θ ± r, is in any case lower  
than π/2. 

In view of this example, the introduction of a minimum threshold θmin can be better understood: 
it has the objective of delaying the activation of a multidirectional damage model, and consequently, 
it implies the possibility of a partial stiffness recovery in a generic loading history. The modelling of 
a partial stiffness recovery seems adequate for loading conditions of Type (ii): in fact, a continuous 
rotation of the principal directions without any brusque variation allows one to transfer a certain 
amount of damage accumulated in a direction to the closest ones. 

The two limit cases, characterized by no stiffness recovery and by complete stiffness recovery, 
are however covered by the present formulation: if the cyclic history does not generate relevant 
deviations from the principal reference configuration of the permanent load, no stiffness recovery 
occurs; if no damage is present before the activation of the multidirectional damage procedure, a 
total stiffness recovery is obtained. 

Adequate values for θmin range from π/12 to π/6, in accordance with the choice done in [43] for 
defining the threshold angle in a multidirectional fixed crack model. As a matter of fact, a strong 
analogy between the present formulation and a multidirectional fixed crack model can be found in 
the common preservation of memory regarding damage orientation and in the common use of a 
minimum deviation ruling the independent treatment of the cracking phenomenon. 
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Figure 5. Multidirectional damage procedure in case of cyclic loading of Type (ii): (a) problem 
statement and identification of the damage regions and damage variables in three different situations: 
(b) in correspondence with the activation of the multidirectional procedure; (c) in unloading 
conditions and (d) in loading conditions. 
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4.3. 3D Extension of the Multidirectional Procedure 

The 3D extension of the here-described multidirectional damage model has to be further 
analyzed, but it seems possible by referring to the same concepts introduced for plane problems and 
adopting the same distinction in cyclic loading Type (i) and cyclic loading Type (ii). Specifically, as 
in 2D, the partition of the space in regions for tensile and compressive damage is performed, d+ (d−) is 
assigned to all of the regions including an eigenvector associated with a positive (negative) principal 
strain, and the active value of the tensile damage variable (compressive damage variable) is 
computed considering the current maximum (minimum) principal strain direction.  

As regards loading Type (i), the multidirectional procedure is considered active from the 
beginning of the cyclic loading history, and the space is divided into three regions for tensile damage 
and into three regions for compressive damage. As in 2D, the bisectors of the damage regions 
coincide with the principal directions, which are fixed throughout the loading history, and the 
amplitude of each region is equal to π/2, meaning that each principal direction that forms an angle θ 
with the bisector of a region, such that |cos(θ)| ≥ cos(π/4) belongs to that region.  

For loading Type (ii), characterized by a continuous rotation of the principal directions, the 
activation of the multidirectional procedure and the updating of the damage regions are ruled by the 
same conditions holding in 2D, i.e., the conditions in (49)–(52). Likewise, the deviation with respect 
to the initial configuration is evaluated resorting to Definition (48), and the threshold quantity is 
provided by (53). Since the active damage values are computed based on the maximum and 
minimum principal directions (not the intermediate principal directions) and the loading conditions 
foresee a continuous, and not abrupt, rotation of the principal reference system, additional damage 
regions associated with the rotation of the intermediate principal direction are not necessary. 
Therefore, as in 2D problems, two regions for tensile damage, related to the rotation of the maximum 
principal direction, and two regions for compressive damage, related to the rotation of the minimum 
principal direction, are considered. If the bisector of the tensile damage Region 1, coinciding with the 
current maximum principal direction (loading conditions), is inclined by an angle +θ+r (or +π 4 ) 
with respect to the initial maximum principal strain direction, the bisector of the tensile damage 
Region 2 is automatically defined as the direction inclined of an angle −θ+r (or π 4 ) with respect to 
the initial maximum principal strain direction and belonging to the plane in which the maximum 
principal strain direction has rotated in the loading history. A direction is included in a region if it 
forms an angle θ with the bisector of that region, such that |cos(θ)| ≥ |cos(θ ± r)|. 

4.4. Algorithms for the Multidirectional d+/d− Damage Model 

In the present section, the numerical algorithm of the multidirectional damage procedure in a 
displacement-based finite element framework is described, with reference to plane problems. As 
done in Section 3.4 for the energy-equivalent d+/d− damage model, only the details about the 
derivation of the local constitutive equation are provided and not the details about the iterative 
equilibrium procedure. Specifically, the distinction discussed in Section 4.2 between cyclic load  
Type (i) and cyclic load Type (ii) is here maintained: the former case is contained in Table 2, while 
the latter in Table 3. Besides the initialization of the quantities at the load increment n = 0, the 
multidirectional damage model requires also the initialization of the bisectors of the damage 
regions, which is performed in the first load step (n = 1). 

Three subroutines are adopted in Table 2 and Table 3, where the input parameter θ represents 
one half of the amplitude of the damage regions.  

 “Damage multidirectional saving (θ)” allows one to keep permanent memory of the damage 
orientation, assigning a tensile (compressive) damage value to a certain region depending on 
the maximum (minimum) principal strain direction that has generated it; 

 “Damage multidirectional updating (θ)” provides the active damage values and the corresponding 
active damage thresholds, computed with reference to the current principal strain directions 
and the current equivalent stress quantities τ  (Equations (40) and (41));  
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 “Bisectors updating (θ)”, useful in the presence of cyclic load Type (ii), modify the bisectors and 
the amplitudes of the damage regions, according to Condition (54), when ±

θg 0  and  ±
θr 0 . 

Table 2. Algorithm for the multidirectional d+/d– damage model, Type Load (i). 

Load increment n = 0: 
 Set r  1 = r  2 = r  0 (definition of r  0 from Equation (38)) and d  1 = d  2 = 0. 

Load increment n = 1: 
 Perform steps i, ii, iii and iv described in Table 1. 
 Define the bisectors of the damage regions according to the eigenvectors of the strain 

tensor εn: 
bisector+1 = pmax_n; bisector+2 = pmin_n; bisector−1 = pmin_n; bisector−2 = pmax_n 

 Call the subroutine “Damage multidirectional updating (θ = π/4)”. 
 Perform steps vi and vii described in Table 1. 

Load increment n: 
 Save the strain tensor εn−1. 
 Perform Steps i, ii, iii and iv described in Table 1. 
 Call the subroutine “Damage multidirectional saving (θ = π/4)”. 
 Call the subroutine “Damage multidirectional updating (θ = π/4)”. 
 Perform Steps vi and vii described in Table 1. 

Table 3. Algorithm for the multidirectional d+/d– damage model, Type Load (ii). 

Load increment n = 0: 
 Set r  1 = r  2 = r  0 (definition of r  0 from Equation (38)) and d  1 = d  2 = 0. 
 Set multidir_damage = false (logical variable which monitor the activation of the 

multidirectional procedure) and r  θn = cos (θmin). 
Load increment n = 1: 

 Perform Steps i, ii, iii and iv described in Table 1. 
 Save the strain principal directions pmax_n and pmin_n and define the bisectors of the damage 

regions: 
bisector+1 = pmax_n + θmin; bisector+2 = pmax_n − θmin 
bisector−1 = pmin_n + θmin; bisector−2 = pmin_n − θmin 

 Compute the equivalent deviation quantity τ  θn according to Equation (48). 
 If τ  θn < r  θ n-1

 
and τ  θn > cos (π/4): r  θ n = τ  θn, i.e., θ  r n = θ  τ n, multidir_damage = true and 

call the subroutine “Bisectors updating (θ = θ  r n-1)”. 
   If τ 

θn > r 
θ n-1 or (τ 

θn < r 
θ n-1 and τ 

θn < cos (π/4)): r 
θ n = r 

θ n-1, i.e., θ 
r n = θ 

r n-1. 
 Call the subroutine “Damage multidirectional updating (θ = θ  r n)”. 
 Perform Steps vi and vii described in Table 1. 

Load increment n: 
 Save the strain tensor εn−1. 
 Perform Steps i, ii, iii and iv described in Table 1. 
 Compute the equivalent deviation quantity τ  θn according to Equation (48). 
 If τ  θn < r  θ n-1

 
: r  θ n = τ  θn, i.e., θ  r n = θ  τ n, multidir_damage = true and call the subroutine 

“Bisectors updating (θ = θ  r n-1)”. 
    If τ 

θn > r 
θ n-1 : r 

θ n = r 
θ n-1, i.e., θ 

r n = θ 
r n-1. 

 If multidir_damage = false: d+1 = d+2 = d+n-1, d−1 = d−2 = d−n-1, r+1 = r+2 =r+n-1, r−1 = r−2 =r−n-1  
If multidir_damage = true: call the subroutine “Damage multidirectional saving (θ = θ  r n)”. 
 Call the subroutine “Damage multidirectional updating (θ = θ  r n)”. 
 Perform Steps vi and vii described in Table 1. 
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5. Enhanced Capabilities of the New Multidirectional d+/d− Damage Model 

To have a further insight into the energy-equivalent symmetric damage model proposed in 
Section 3 and the multidirectional procedure described in Section 4, some problems are solved at a 
finite element level and commented on. Specifically, the betterments with respect to the original d+/d− 
damage model presented in Section 2.1 are underlined. In order to focus on the most important 
aspects, all of the comparisons are performed adopting for both the original and the new formulations 
the same equivalent stress quantities and the same damage evolution laws, in particular the ones 
presented in Section 3.4.  

The constitutive properties adopted in the numerical analyses are given in Table 4. They are 
representative of masonry, once the cohesive-frictional materials more of interest in civil structural 
applications. The values presented in Table 4 satisfy Inequalities (A7) and (A8), which are the only 
conditions to be evaluated for the consistent application of the damage model. 

Table 4. Constitutive properties adopted in the numerical analyses. 

E 
(MPa) 

ν  
(-) 

f+ 
(MPa) 

f− 
(MPa) 

γe+ 
(-) 

γp+ 
(-) 

γe− 
(-) 

γp− 
(-) 

Gf+ 
(N/mm) 

Gf− 
(N/mm) 

fb−/f− 
(-) 

1540 0.2 0.13 −3.9 1 1 0.5 1.3 0.1 10 1.15 

5.1. Enhanced Representation of the Damage-Induced Orthotropy 

As extensively discussed in Section 3.1, the proposed energy-equivalent damage model, based 
on the consistent secant operator DE (24), represents a step forward with respect to the previous 
formulation thanks to an adequate consideration of the Poisson effect on the representation of the 
damage-induced orthotropy. The implications deriving from this fact are shown with reference to 
the plane stress problem of a bar loaded in tension along the x-axis. 

Comparing the normalized σx − εx curves obtained with the original model (Section 2.1) and 
with the energy-equivalent one (Section 3), no significant differences can be found in the softening 
response (see Figure 6a). The substantial improvement of the proposed damage model is instead 
visible looking at the strain behavior in the transversal direction y (see Figure 6b). By plotting in 
abscissa the longitudinal strain εx and in ordinate the absolute value of εy/εx, i.e., the nominal 
Poisson’s ratio predicted by the models, completely different trends result. 

 
Figure 6. Comparison between the original formulation and the new energy-equivalent model for 
the problem of a bar uniaxially loaded in tension: (a) σx-εx curves and (b) the nominal Poisson’s  
ratio trends. 

On the one hand, with the original damage model, the nominal Poisson’s ratio maintains 
constant throughout the loading history, meaning that the transversal contractions εy increase 
unrealistically throughout the whole loading history, together with the growing of the axial 
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elongations εx. On the other hand, the adoption of the proposed orthotropic symmetric damage 
model allows one to take into account a progressive reduction of the nominal Poisson’s ratio with 
the development of tensile damage. Specifically, by deriving the stiffness matrix DE (24) for a 
uniaxial tensile plane stress problem and by equating to zero the transversal normal stress σy, it is 
easy to find the expression of the nominal Poisson’s ratio predicted by the model, which is 

/ 1    y xν -ε ε d ν . 

As noticed in [28], the feature of a constant Poisson ratio is usually typical of isotropic damage 
models, and it is not coherent within the framework of the classical smeared crack models [44,45]. 
Under a mechanical point of view, a crack generation under uniaxial tension is accompanied by a 
release of the transversal strains, due to the progressive loss of coupling between longitudinal and 
transversal directions induced by the degradation process. Thanks to the satisfaction of the 
symmetry requirement, the enhanced orthotropic damage formulation here proposed is able to 
simulate adequately such a lateral deformation behavior, whose importance has been generally 
overlooked by other damage models for quasi-brittle materials (see [46] for a comprehensive 
discussion about this topic). 

5.2. Enhanced MCR Effects under Cyclic Loading 

In order to show the capabilities of the multidirectional damage model described in Section 4, 
the qualitative structural responses obtained in presence of Type (i) and Type (ii) cyclic loadings  
are discussed.  

First of all, a cyclic uniaxial load history, belonging to the category of loading Type (i), is 
considered. Since the constitutive behaviors obtained by adopting the original d+/d− damage model 
(Section 2) and the new d+/d− model (Section 3) enriched with the multidirectional damage procedure 
are qualitatively the same in terms of unilateral effects, only one σ-ε curve is shown, in Figure 7. 

 
Figure 7. 1D cyclic loading history. 

It refers to the following loading sequence: a loading in tension with an exceeding of the initial 
damage threshold r  0 (O-A-B), a partial unloading followed by a reloading in tension with further 
progression of damage (B-C-D), an unloading in compression with development of softening  
(D-O-E-F) and a further reloading in tension (F-O-D-G). It is evident from Figure 7 that the initial 
stiffness recovery in the transition from tension to compression (D-O-E) is captured. Therefore, in 
uniaxial loading conditions, the multidirectional damage model coincides with the standard 
procedure in the modelling of unilateral effects. 

The advantages of the proposed formulation are demonstrated in more generic loading 
conditions, as the ones previously commented on and represented in Figure 4a (Type Load (i)) and 
in Figure 5a (Type Load (ii)). Regarding the problem of the panel subjected to pure shear cyclic 
loading conditions (Figure 4a), the normalized τ-γ responses obtained with the original formulation 
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and with the multidirectional damage procedure are displayed in Figure 8a,b. In this case, the 
differences in terms of stiffness recovery are clear: in Figure 8a, no stiffness recovery is visible when 
the inversion of the horizontal displacement occurs (in the stage from the point b of the loading 
history to d), while in Figure 8b, the regain of the initial stiffness is present. As commented on in 
Section 4.2, the total stiffness recovery is justified by the orthogonality of the tensile and compressive 
directions between the first loading part (going from the point a of the loading history to c) and the 
second loading part (going from c to e).  

 
Figure 8. Structural response for the problem represented in Figure 4a: (a) damage formulation 
presented in Section 2 and (b) multidirectional damage model. 

As regards the problem of the panel subjected first to a contraction and then to a shear cyclic 
loading history (Figure 5a), three combinations of horizontal and vertical displacement values are 
analyzed, differing for the ratio m = |uxmax/uymax| between the maximum ux and maximum uy attained. 
Different values of this ratio translate into different maximum values assumed in the loading history 
by the variable r ± θ (Equation (53)). The minimum deviation θmin, first introduced in Equation (53), is 
chosen equal to π/8. 

On the one hand, in Figure 9, the value θ+τ is lower than θmin, meaning that the multidirectional 
procedure is never activated (m = 1). As a matter of fact, no differences can be found between the τ-γ 
curves obtained with the original damage formulation (Figure 9a) and with the multidirectional one 
(Figure 9b), both characterized by the absence of stiffness recovery when the horizontal 
displacement changes sign.  

 
Figure 9. Structural response for the problem represented in Figure 5a, ratio m = 1: (a) damage 
formulation presented in Section 2 and (b) multidirectional damage model. 

In these conditions, the lack of MCR capabilities is adequate because the maximum and 
minimum principal strain directions responsible for the damage generation do not deviate 
significantly from the principal configuration induced by the permanent vertical displacement. 
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On the other hand, in both Figures 10 and 11, the maximum deviation is greater than θmin, and 
the ratios between the horizontal and vertical displacements considered are m = 1.8 and m = 8, 
respectively. In both of these cases, the enhanced microcrack closure reopening capabilities of the 
multidirectional damage procedure are evident: the curves resulting from the original damage 
formulation (Figures 10a and 11a) do not show any stiffness recovery while the multidirectional 
damage procedure (Figures 10b and 11b) simulates the stiffness regain (from b to d) satisfactorily.  

 
Figure 10. Structural response for the problem represented in Figure 5a, ratio m = 1.8: (a) damage 
formulation presented in Section 2 and (b) multidirectional damage model. 

 
Figure 11. Structural response for the problem represented in Figure 5a, ratio m = 8: (a) damage 
formulation presented in Section 2 and (b) multidirectional damage model. 

Specifically, for m = 1.8, the stiffness recovery is only partial (Figure 10b), while for m = 8  
(Figure 11b), it is complete. The response in Figure 11b is analogous to the one in Figure 8b in terms 
of total recovery of the initial stiffness: this is coherent since in the former case, the vertical 
displacement is almost negligible compared with the horizontal one, while in the latter case,  
it is absent.  

This observation translates in the fact that the multidirectional procedure for Loading Type (ii) 
is able to simulate the same MCR capabilities of the multidirectional procedure in case of Load Type (i), 
when the maximum rotation performed by the strain principal directions is large enough. 

Finally, referring to the problem of the pre-contracted panel, the case of a top displacement 
history ux composed of five cycles with increasing amplitude is analyzed. The ratio between the 
amplitude ux1 of the first cycle and the contraction uymax is equal to eight, meaning that a full stiffness 
recovery is expected in the first cycle with the adoption of the multidirectional damage model. The 
responses obtained with the original damage model and with the new formulation are shown in 
Figure 12a,b, respectively.  
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Figure 12. Structural response for the problem represented in Figure 5a, considering a loading 
history for the horizontal displacement ux composed of five cycles: (a) damage formulation presented 
in Section 2 and (b) multidirectional damage model. 

Once again, the enhanced MCR capabilities of the multidirectional procedure are evident: while 
in a generic unloading and reloading regime b-c-d, in Figure 12a, no stiffness regain is present, in 
Figure 12b, a clear transition from a damaged stiffness to a less damaged stiffness (the initial elastic 
one in the first cycle) is visible, and it is related to the switch from a damage region to another 
damage region, due to the rotation of the principal strain directions. From the example, it can be also 
deduced how the enhanced description of unilateral effects permits avoiding an underestimation of 
the structural performance under cyclic actions, which is instead an intrinsic problem of the original 
formulation. In fact, referring to Figure 12a, in the reloading stage, a peak strength unrealistically 
much lower than the peak strength in the loading stage is attained, and this is particularly 
pronounced in the first cycle. Conversely, the behavior predicted by the multidirectional damage 
model (see Figure 12b) is not characterized by such an asymmetry, and this is fully supported by 
experimental evidence on shear (masonry or reinforced concrete) panels subjected to  
cyclic conditions [20,21]. 

6. Conclusions 

In the present paper, an enhanced version of the d+/d− model originally presented in [1], apt for 
cohesive-frictional materials, is proposed. The betterments regard two essential aspects: 

1. the description of the orthotropy induced in the material by the degradation process is achieved 
by means of a consistent secant stiffness operator, whose definition is explicitly provided. To do 
this, the strain equivalence assumption considered in the original model is abandoned in favor 
of an energy-equivalent formulation, which yields both symmetry and positive definiteness in 
the constitutive matrix (Equation (23)). Further confirmation of the adequacy of this procedure 
in representing that the damage-induced orthotropy can be found in the analogy between the 
energy-equivalent framework and the tensor mapping procedure adopted in [35] for modelling 
an orthotropic behavior. From a mechanical point of view, the effects of the new d+/d− 
formulation are especially visible in the lateral deformation behavior of the material, whose 
relevance has been generally overlooked in damage mechanics; specifically, its adoption 
permits simulating a reduction of Poisson’s ratio throughout the damage process, rather than 
considering it unrealistically constant. Moreover, having an explicit version of the secant 
stiffness matrix, which lacks in the original formulation, is beneficial in computational terms 
since it allows the implementation of the secant Picard method. 

2. Microcrack closure-reopening effects are taken into account in the presence of generic cyclic 
conditions, especially under shear, making the model suitable for dealing with seismic actions. 
In fact, the impossibility of maintaining the memory of the damage directionality, due to the 
adoption of only the scalar variables d+ and d−, is overcome with the formulation of a 
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“multidirectional” damage model. According to this procedure, a partition of the plane (2D 
problems) into two regions for tensile damage and two regions for compressive damage is 
performed, in order to monitor separately two damage values in tension and two damage 
values in compression, differing for the direction in which they act. The active d+ (d−) is chosen 
between these two tensile (compressive) damage values on the basis of the current principal 
directions. Moreover, the distinction between two different cyclic conditions, i.e., cyclic 
loadings considered alone (Type Load (i)) or preceded by not-cyclic permanent loads (Type 
Load (ii)) and the proposal of an ad hoc procedure for each of them add versatility to the 
formulation, since after loading reversal, a complete stiffness recovery, no stiffness recovery 
and even a partial stiffness recovery can be modelled, as demonstrated in the problem of the 
shear panel. 

As a final remark, it has to be noticed that the new version of the d+/d− model, including the two 
enhancements just described, is endowed with the same algorithmic efficiency of the original one: 
the energy-equivalent assumption allows following, once again, a strain-based formulation (see  
Table 1), and the multidirectional procedure is able to maintain the memory of the degradation 
directionality without resorting to a tensor damage definition. 
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Appendix A 

This Appendix describes the steps necessary in order to prove the consistency of the model 
proposed in Section 3 with regard to the second principle of thermodynamics. Specifically, in 
accordance with the Clausius–Duhem inequality, the positiveness of the work done by the 
generalized thermodynamic forces has to be demonstrated (Equation (32)). Since the rates d  and 

d of the damage variables are positive (due to the choice of the monotonically-increasing damage 
evolution laws; see Section 3.3), the non-negative energy dissipation is satisfied as long as the 
damage energy release rates are positive. The definition for these quantities, referring to the 
potential ψ expressed in (29), is: 

: :
 

 
  
 

EDε ε
ψ
d d
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2

 (A1)
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EDε ε
ψ
d d
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2

 (A2)

Accounting for Equations (18) and (23), the derivatives of the secant stiffness operator with 
respect to the damage variables are:  
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Replacing these definitions in Equation (A1) and (A2) and recalling that ε+ = QCW: ε and 
ε− = (I − QCW): ε, clearer expressions for the damage energy release rates are provided: 

  2 :
2

: : : :


   
 


    



  
    
   

 
  

  

0 0ε D ε ε D ε

ε ε ε ε ε

ψ d
d d

dλ tr G λtr tr
d

1 1
2 1
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2 1
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ψ d
d d

dλ tr G λtr tr
d

1 1
2 1

1 12
2 1

 (A6)

The quantities inside round brackets in Equations (A5) and (A6) are always positive while 
ε ε+ -λtr tr is zero in the cases of the full tensile regime (ε− = 0) or full compressive regime (ε+ = 0) and 

negative otherwise. Consequently, the positiveness of Equations (A5) and (A6) is assured for the 
situations of full tensile regime (ε− = 0) and full compressive regime (ε+ = 0), while having to be 
proven in the other cases. In order to do this, three strain states are identified as the most critical ones 
for the satisfaction of the second principle of thermo-dynamics; the non-negativeness of the 
dissipated energy (Equation (32)) for these situations allows asserting the consistency of the present 
model with respect to the second principle. 

 In pure shear conditions (trε+ = −trε−, ε+:ε+ = (trε+)2 = ε−:ε− = (trε−)2, d+ ≠ 0, d− ≠ 0), the positiveness of 
the quantities contained in Equations (A5) and (A6) translates in the following  
inequalities, respectively: 

   


νd d
ν

1 1
1

 (A7)

 
  

νd d
ν

11 1  (A8)

Considering the typical mechanical parameters of a cohesive-frictional material, such as 
concrete or masonry, these relations among the damage variables, strictly related to the fracture 
energies in tension and compression (see Equations (44), (45) and (47)), are always satisfied. 

 In the case of uniaxial tensile load in Direction 1 (trε+ = ε1 and   ε 1tr νε d2 1 , d+ ≠ 0, d− = 0), 
the quantity contained in Equation (A5) is always positive and can be expressed in the 
following way: 

   0-  2 2
1 1λε ν Gε1 1 2 2

2
 (A9)

The same results can be obtained for the case of uniaxial compressive load (d+ = 0 and d− ≠ 0). 
 Although the quantity 1 d  is in the denominator in Equation (A5), in the case of d+ close to 

one, the work done by 





ψ
d

 in Equation (32) remains bounded, specifically tends to be null, 

because in that situation, d  tends to zero. An analogous consideration holds for the work 

performed by 





ψ
d

 when d− is close to one. 
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