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Abstract: SBS (styrene-butadiene-styrene block copolymer) modified bitumen is one of most widely
used polymer modified bitumens in China. It is also not satisfactory when subjected to extreme
conditions. Multiple-walled carbon nanotubes, as a type of advanced nanomaterial, are investigated
extensively because of their strong adsorption capacity. Little research has been done about
MWCNTs/SBS modified bitumen, and in view of this, the performance and modification mechanism
of MWCNTs/SBS modified bitumen was investigated in this paper. Conventional bitumen tests,
Brookfield viscosity, bending beam rheometer, and dynamic shear rheometer tests showed improved
performance at high and low temperature. The optimum MWCNTs content was determined as 1.0%.
FT-IR, bitumen four components, and thermal analysis tests were conducted and revealed that the
addition of MWCNTs led to a decrease in the content of light components. In addition, the rate
of decomposition and volatilization of saturates and aromatics was reduced and better thermal
stability of bitumen was found. Fluorescence microscopy tests showed that MWCNTs improved the
dispersion of SBS and storage stability of the binder. Finally a schematic was proposed to explain
how MWCNTs improved the performance of SBS modified bitumen through their strong adsorption
property created by -7 intermolecular forces.
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1. Introduction

The total mileage of bitumen highways in China reached 117,000 kilometers in 2016, and it is
expected that there will be a rapid increase in the next few years. Highways are expected to have high
temperature rutting resistance and low temperature crack resistance, and in view of this, modified
bitumen such as SBS modified bitumen has shown a better rutting and cracking resistance compared
to unmodified bitumen. The main problems identified with modifiers such as SBS have been its poor
dispersion and compatibility with bitumen, and this is known to affect the rheological properties of
bitumen [1].

In recent years, nanomaterials have been widely used to improve the rheological properties
of bitumen, and to that effect, researchers have doped different nanoparticles [2,3]. Two specific
types of nanomaterials, namely nano-metal oxides and nano-inorganic materials, have been widely
investigated. Nano-metal oxides including nano-TiO,, nano-SiO;, and nano-ZnO could improve the
rutting resistance of bitumen, but had little effect on its low temperature cracking resistance [4,5].
Nano-inorganic materials including nano-clay and nano-CNTs exhibited some special properties in
bitumen because of their specific properties and structures. For example, nano-clay had a positive
interaction effect with bitumen and polymer, because of the high compatibility between the clay and
polymer which led to a better dispersion of the polymer in the bitumen. Nano-OMMT improved the
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thermal oxidative aging resistance of bitumen because of its specific layered structure which effectively
blocked oxygen penetration in bitumen and thus improved thermal oxidative aging [6].

Carbon nanotubes (CNTs) are seamless nanotube structures containing monolayer or multilayer
graphite sheets revolving at specific helix angles around the same axis. Each layer wall is
a cylindrical surface composed of a hexagonal network plane made of sp2 hybrid carbon
atoms [7]. Because of the overlap of P orbitals, the highly disjointed m-bond could exist at the outer
layer of the CNTs. The non-covalent interaction between multi-wall carbon nanotubes (MWCNTs) and
other macromolecules with conjugated properties such as aromatics and styrene exist because of the
highly disjointed 7-bond [8-10].

Amin et al. [11] used multi-wall carbon nanotubes (MWCNTSs) as an additive to bitumen and
it enhanced the high temperature performance of bitumen. Yang et al. [12] reported that single-wall
carbon nanotubes (SWCNT5s) as an additive to bitumen improved its penetration, softening point,
ductility, and flash point properties. In bitumen mixtures, an optimum percentage of 0.05% of
SWCNTs improved the Marshall stability and rigidity flow. Faramarzi [13] also investigated the
effect of MWCNTs in bitumen and reported an increase of rutting factor G*/ sind. The study of
Santagata et al. [14] showed that susceptibility to oxidative aging of bitumen was reduced with the
addition of carbon nanotubes. Aging was expected to further improve with the long-term performance
of bituminous mixtures.

SBS is widely used to improve the properties of bitumen such as rutting resistance, but it has
been reported that the polystyrene in SBS was incompatible with bitumen. The attraction between
polystyrene molecules resulted in the formation of insoluble agglomerates, and thus the swelling
potential of SBS was limited [15]. Due to the highly disjointed 7t-bond of MWCNTs, a 7t interaction
with polystyrene of SBS was expected, which would improve its compatibility with bitumen, and thus
result in an improved rheological performance. For that reason, this paper conducted a series of
experiments to determine the effect and mechanism of MWCNTs on SBS modified bitumen.

2. Experiments

2.1. Materials

90A bitumen was supplied by KOCH Bitumen Co., Ltd. (Wuhan, China). SBS was bought from
Dongguan Huahong Engineering Plastic Co., Ltd. (Dongguan, China). The type of SBS is Linear/161B.
MWCNTs were bought from Suzhou Hengqiu Graphene Technology Co., Ltd. (Suzhou, China).
The properties and micro-morphology of the MWCNTs are shown in Table 1 and Figure 1, respectively.
From the SEM images it is seen that MWCNTs intertwined with each other because of their extremely
large surface area, and so it was essential to use a high-speed shearing mixer to make them disaggregate
in bitumen during the preparation of the MWCNTs/SBS modified bitumen. In order to determine the
specific surface area of MWCNTs, the Specific surface area test (BET test) was conducted and the result
was 213.6872 m?/g.

Table 1. Physical properties of multi-wall carbon nanotubes (MWCNTs) supplied by the manufacturer.

Internal Outside Surface

Purity Diameter Diameter Length Area

Density Preparation Method

>95/(70

_ _ _ 2 3 . ..
(by weight) 3-5 nm 8-10 nm 3-12 um >200m~/g 0.1g/cm Chemical vapor deposition
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(b)

Figure 1. SEM images of MWCNTs (1 um scale bar) at different magnification. (a) x20,000; (b) x10,000.

2.2. Preparation of MWCNT5/SBS Modified Bitumen

(1)  3.5% SBS (determined by weight) was added to 90A virgin asphalt which was at a temperature
of 160 °C. The mixture was stirred using a high-speed shearing mixer at 5000 rpm for one hour.

(2) The temperature of the SBS modified bitumen was maintained at 160 °C by heating using
an oil bath.

(3) MWCNTs were steadily added into the bitumen for 30 min with a high-speed shearing mixer
running at 5000 rpm.

(4) Finally, the high-speed shearing mixer at 5000 rpm was applied for 30 min to disaggregate
and disperse the agglomerated MWCNTs into the bitumen matrix. High-speed shearing and
intelligent temperature control device was showed in Figure 2. In addition, the normal properties
of 90A bitumen and SBS modified bitumen were showed in Table 2.

Figure 2. High-speed shearing and intelligent temperature control device. Part 1: Electronic temperature
controller: Controls the temperature of bitumen intelligently by connecting with the temperature
probe and the electrical resistance furnace. Part 2: Electrical resistance furnace: Heats bitumen
intelligently by connecting with the electronic temperature controller. Part 3: Oil bath: Heats bitumen
uniformly. Part 4: High speed shearing machine: Provides high-speed shearing and shearing rate
control. Part A: Temperature probe: Detects the temperature of bitumen.
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Table 2. Properties of virgin binder and SBS modified asphalt.

Physical Properties 90A  SBS Modified Bitumen
Penetration (25 °C, 0.1 mm) 84.7 72.8
Softening point (°C) 47.8 52.0
Ductility (5 cm/min, 5 °C, 1 mm) / 521
Viscosity (135 °C, pa-s) 0.47 0.69

90A is an abbreviation of bitumen with 80/100 pen grade. The content of MWCNTs (namely x%) involved in this
paper was mass percentage relative to the binder.

2.3. Instrument and Performance Tests

2.3.1. Conventional Bitumen Tests

The three conventional bitumen indexes were conducted to make comparisons between the
SBS modified bitumen and the MWCNTs/SBS modified bitumen. A penetration tester (SYD-2801F,
Shangyi, Shanghai, China), softening point tester (SYD-2806F, Shangyi, Shanghai, China), and ductility
tester (LYY-7D, ZGHTKY, Cangzhou, China) were used in this paper. They were used to perform the
penetration test (0.1 mm at 25 °C, 100 g, 5 s), softening point test, and ductility test (5 cm/min, 5 °C),
which were done in accordance with JTG E20-2011 [16].

2.3.2. Brookfield Viscosity

The Brookfield rotational viscometer (THERMOSEL, BROOKFIELD, Stoughton, MA, USA)
test was conducted to determine the viscosity temperature susceptibility of the SBS modified bitumen
and MWCNTs/SBS modified bitumen at four different temperatures of 120 °C, 135 °C, 150 °C and
165 °C, in accordance with JTG E20-2011 [16].

2.3.3. Dynamic Shear Rheometer (DSR) Tests

A dynamic shear rheometer (DSR) of model MCR101 and manufactured by Anton Paar
(Vienna, Austria) was used. A temperature sweep test was conducted using the DSR under strain-controlled
mode with a constant frequency of 10 rad /s according to specifications [17]. A temperature sweep from
30 to 80 °C with a temperature increment of 2 °C per minute was designed to investigate the high
temperature property of MWCNTs/SBS modified bitumen. Plates with 25 mm diameter and 1 mm
gap were used. The performance indicators recorded by DSR were the complex shear modulus (G*)
and phase angle (J).

2.3.4. Bending Beam Rheometer (BBR) Tests

In order to obtain the different low temperature performances between the SBS modified bitumen
and SBS/MWCNTs, the BBR (TE-BBR, Cannon, New York, NY, USA) test was used to measure the
stiffness and m value in accordance to specifications [16]. According to the standard [18], SBS modified
bitumen was tested for several temperatures and finally —16 °C was determined as the critical
temperature to evaluate the low temperature property of MWCNTs/SBS modified bitumen.

2.3.5. Modification Mechanism Characterization

In order to compare the modification difference between the SBS modified bitumen and
MWCNTs/SBS modified bitumen, bitumen’s four components test was conducted in accordance
with specifications [16]. In addition, thermal analysis and FTIR tests were also conducted to investigate
the modification mechanism.

The thermal analysis test with a working temperature range of 100-700 °C was conducted.
A TGA/DSC simultaneous thermal analyzer STA449¢/3/G manufactured by NETZSCH (Selb, Germany)
was used in this paper. The heating rate was controlled at 20 °C/min with a maximum temperature of
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700 °C. At the same time, high-purity nitrogen ambient gas was applied at a flow rate of 500 mL/min.
During the pyrolysis process, the organic volatile substances of the polymers were decomposed to low
molecular weight products. The relationship between the mass of the test sample and the temperature
can be obtained from the TGA tests, and the decomposition temperature of different components can
also be obtained from the DTG and DSC curves.

The FT-IR test was conducted to investigate the modification mechanism with wavelengths
ranging from 400 to 4000 cm~!, using an infrared spectrum instrument Nexus manufactured by
Thermo Nicolet Corporation (MA, USA). The FT-IR test can detect functional groups in an organism
which can be used to determine whether a chemical reaction occurs by comparing the differences in
functional groups.

The concentration change of different components (saturates, aromatics, resins, and asphaltenes) in
bitumen was studied by the thin layer chromatography detection (TLC-FID) method. The four components
analyzer Iatroscan MK-6 manufactured by IATRON (Japan) was used. Bitumen was dissolved in
dichloromethane solution, and then N-heptane, toluene /heptane (80:20, v/v), toluene/ethanol (55:45, v/v)
were used as the first, second, and third extension solvent, respectively, to isolate saturates, aromatics,
and resins successively. Organic ions are generated by the high temperature of the hydrogen flame,
and FID can detect the current intensity generated by the organic ions. The larger the current intensity,
the more content of bitumen components corresponds to this area on the chromatography.

The fluorescence microscopy test was used to detect fluorescence materials in the binder
such as SBS. The specimens included the SBS modified bitumen, 1.0% MWCNTs/SBS modified
bitumen, and those obtained by the segregation experiment. The segregation test, in accordance with
specifications [16], was conducted by heating tubes filled with binder for 48 h at 160 °C to analyze the
difference between the upper 1/3 part of the bitumen and the bottom 1/3 part of the bitumen.

For all the tests listed above, three replicates were performed for the different contents of MWCNTs
for the same testing conditions.

2.3.6. Experimental Program Outline

The experimental program outline is shown in Figure 3. Firstly, 90A virgin bitumen, SBS,
and MWCNTs were mixed to produce MWCNTs/SBS modified bitumen by high-speed shearing.
Secondly, the performance tests and modification mechanism tests were conducted. Finally, a novel
conjecture was proposed based on the performance and modification mechanism analysis.

Conventional |
bitumen test

Brookfield

viscosity test

Performance
analysis
bitumen + 5BS
i

MWCNTs/SBES A novel
modified bitiumen || conjecture

1 Far infrared
spectrum test
MWCNTs
Modification Bitumen four
mechanism = components test

analysis -
Thermal analysis
test
Fluorescence | |
microscope test

Figure 3. Experimental program outline.
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3. Results and Discussion
3.1. Performance Analysis

3.1.1. Conventional Test Analysis

Figure 4 shows the effect of the MWCNTs additive on the penetration and softening point of
original bitumen. The penetration reflects the softening and hardening degrees of bitumen at moderate
conditions. The smaller the penetration value, the harder the bitumen. It was observed that the
addition of MWCNTs to the SBS modified bitumen had a significant effect on the penetration resistance.
Penetration significantly decreased with the addition of MWCNTs up to 1%. After then, a moderate
decrease was observed. This implied that the MWCNTs could significantly improve the hardening
degree of the SBS modified bitumen.

The softening point test is commonly used as a standard test for describing an approximate limit
between viscous and visco-elastic bitumen behavior, and it reflects the deformation resistance degree
of bitumen at high temperature [19]. When the softening point value is higher, the modified bitumen is
considered to have a stronger elastic characteristic against bitumen flow. Seen in Figure 4, the softening
point had a moderate increase with the addition of 0.5% MWCNTs and a sharp increase with the
addition of 1.0% MWCNTs. When more than 1.0% of MWCNTs were added, the softening point value
fluctuated and no significant change was observed. It was generally concluded that MWCNTs made the
SBS modified bitumen more stable against flowing when subjected to high temperatures, which meant
that the MWCNTs/SBS modified bitumen had a better high temperature rutting resistance.

» t 60
751 !
1
! 158
£ 70, - g
= 56 =
< -— —a—Penetration b 3
s .
S —e—Softening point o0
= k=
§ 65- {54 é
, ! . {52
601 -
50

00 05 10 15 20 25 30
Content of MWCNTs/%

Figure 4. Penetration and Softening point of bitumen with different content of MWCNTs.

Figure 5 shows the results of the ductility test. There was a small amplitude increase or decrease
compared to the original bitumen at 0.5%, 1.0%, 1.5% and 2.0% MWCNTs. A general fluctuation
of ductility was observed for MWCNTs addition up to 2.0%. With the addition of 3.0% MWCNTs,
there was a significant decrease in ductility. One possible reason was that when the content of MWCNTs
was less than 2.0%, there was a complex interaction between the MWCNTs and the SBS modified
bitumen which reflected no severe regularity against ductility. However with the addition of 3.0%
MWCNT5, the agglomeration of MWCNTSs became a stress concentration area which accelerated the
fracture process when subjected against tensile stress at low temperature.
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Figure 5. Ductility of bitumen with different content of MWCNTs.

3.1.2. Brookfield Viscosity Test Analysis

Figure 6 shows the results of the Brookfield viscosity test. The Brookfield viscosity test reflects the
frictional resistance which comes from the relative motion between two fluid layers in the bitumen.
The higher the viscosity, the better the frictional resistance of bitumen against flowing, and this reflects
a better high temperature rutting resistance property. The VTS (Viscosity temperature susceptibility)
value was used to evaluate the temperature susceptibility of bitumen. The higher the VTS, the more
susceptible the bitumen is to changes in viscosity when subjected to high temperature [20]. From the
testing results (Figure 6), it was noted that with the addition of MWCNTs, the viscosity value
has a stable increase from 0% to 2%, but with each subsequent addition of higher percentages of
MWCNTs, a viscosity increase was observed which was the highest at 120 °C. At 135 °C, the viscosities
recorded were all within an acceptable range of Superpave specifications recommended for mixing [21].
When 3.0% MWCNTs was added, the viscosity value had a significant increase.

4500
4000
3500
3000-
2500
2000
1500
10004

500

Viscosity/cp

%

0 , v i
120 135 150 165
Temperature/°C

Figure 6. Viscosity versus temperature of bitumen with different content of MWCNTs.

Figure 7 shows the Log-Log Viscosity (cp) vs. Log Temperature (R) with different contents
of MWCNTs. Table 3 shows the VTS values of the original and modified bitumen along with the
coefficient of determination (R?). It can be seen that the VTS values decreased with the increase of
MWCNTs, indicating lower temperature susceptibility of the bitumen. In view of this, MWCNTs as
an additive could improve the high temperature rutting resistance of SBS modified bitumen and
decrease temperature susceptibility.
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Figure 7. Log-Log V. (cp) versus Log T. (R) with different content of MWCNTs.

Table 3. Viscosity temperature susceptibility (VTS) of MWCNTs/SBS modified bitumen.

Content of MWCNTs/% 0 0.5 1.0 1.5 2.0 3.0
VTS —3.3642 —2.8098 —2.8135 —2.7363 —2.783 —2.4001
R? 0.9765 0.9997 0.9994 0.9992 0.9987 0.9961

3.1.3. DSR Analysis

Figures 8-10 show the result of the dynamic shear rheometer test. The complex shear modulus
describes the stiffness degree of the bitumen, and the higher the modulus, the stronger the property
to resist deformation, namely the better rutting resistance of bitumen pavement at high temperature.
From Figure 8, the complex shear modulus had a slight increase with the addition of 0% to 2.0%
MWCNTs. When 3.0% MWCNTs was added, a significant increase of 25% on average was observed
within the temperature range from 30 to 50 °C. The phase angle reflects the proportion between the
elastic component and viscous components. The smaller the phase angle, the higher the elasticity
recovery when the bitumen pavements are subjected to traffic at high temperatures [22,23]. With the
addition of MWCNTs (Figure 9), there was a decrease from 40 to 50 °C which was attributed to the
formation of a noticeable elastic network at this temperature by the SBS. When the temperature was
higher than 50 °C, the network was destroyed and the phase angle increased with higher temperature.
When the temperature was higher than 50 °C, with the addition of MWCNTs, the phase angle had
a decreasing trend in general which meant that the content of the viscous components decreased and
the content of the elastic components increased. The binder containing 1.0% and 1.5% MWCNTs did
not have obvious regularity, which may be attributed to the complex interaction between the bitumen,
SBS, and MWCNTs. When adding 3.0% MWCNTs, the variation range of the phase angle with the rise
of temperature is far less than for the original SBS modified asphalt. It could be seen that MWCNTSs
as an additive improved the deformation recovery ability of bitumen. G*/ sind versus temperature
of the bitumen with different content of MWCNTs was calculated and is shown in Figure 10. It can
be seen that the rutting factor increased to a different extent with the addition of MWCNTs which
indicated that MWCNTs as an additive improved the high temperature rutting resistance of the SBS
modified bitumen. Overall, the DSR test implies that the MWCNTs improved the high temperature
performance of the SBS modified bitumen.
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Figure 8. G* versus temperature of bitumen with different content of MWCNTs.
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Figure 9. Phase angle versus temperature curve of bitumen with different content of MWCNTs.
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Figure 10. G*/ siné versus temperature of bitumen with different content of MWCNTs.
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3.1.4. BBR Analysis

In order to evaluate the low temperature crack resistance performance of the bitumen, bending
beam rheometer (BBR) tests were conducted. SHRP showed that the BBR test had a better correlation
with low temperature crack resistance compared to the ductility test. Parameter “m” of the BBR
test was related to stress relaxation [24]. As m increased, the stress relaxation property improved.
In other words, when subjected to low temperatures, SBS modified bitumen containing MWCNTs
is expected to have a better stress relation behavior. S reflected the degree of brittleness. The higher
the S value, the lower the cracking resistance at low temperature. According to the standard [17],
SBS modified bitumen was tested at several temperatures. When the temperature fell to —16 °C,
the stiffness of the SBS modified bitumen was larger than 300 MPa, so finally —16 °C was determined
as the critical temperature to evaluate the low temperature property of the MWCNTs/SBS modified
bitumen. From Figure 11, it can be seen that with the addition of MWCNTs, the m value generally had
an increasing trend, while S slowly decreased with the addition of 0 to 1.5% of MWCNTs. The stiffness
was less than 300 MPa when 0.5% to 2.0% MWCNTs was added. When more than 1.5% MWCNTs
was added, S had a sharp increase which may result from the agglomeration of MWCNTs, improving
the stiffness of the binder. Overall, the addition of MWCNTs improved the low temperature crack
resistance of SBS modified bitumen at concentrations less than 2.0%. In addition, it also reflected that
the ductility was not the most appropriate evaluation tool of the low temperature performance of
bitumen, especially for evaluating MWCNTs/SBS modified bitumen.

0.36
340' \v/\
/"
L0.35
320+
[Li
o
é 1
% 300+ 034 c
= v
t» 280- —a— Stiffness
e ——m L0.33
260-
T r r r . 0.32
0.0 05 1.0 15 20 25 3.0
Content of MWCNTs/%

Figure 11. Creep stiffness and m from 60 s at —16 °C.

3.2. Modification Mechanism

3.2.1. Far Infrared Spectrum Analysis

From the FT-IR test (Figure 12), no new chemical functional groups were formed with the addition
of MWCNTs, and all the different concentrations of MWCNTs showed a similar trend. This meant
that the MWCNTs did not chemically react with bitumen, or that the interaction was so weak that the
FT-IR test could not detect it directly.
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Figure 12. FT-IR of original and 1.0% MWCNTs modified bitumen.

3.2.2. Bitumen Four Components Analysis

Table 4 shows the bitumen four components test. It was seen that with the addition of MWCNTs,
the contents of saturates and aromatics decreased. On the other hand, the contents of resins and
asphaltenes increased. One possible reason for this is that the MWCNTSs have a strong adsorption
capacity with organic molecules containing benzene rings, such as the aromatics and polystyrene of
SBS, through m—m intermolecular forces. In such a case, SBS would have better compatibility with
bitumen which meant that more saturates were absorbed in the network of SBS and then a stronger
structure was formed. Saturates which filtered into the network of SBS could not be washed out
by the solvent used in the bitumen four components test [25]. As a result, the percentage of light
components decreased and the percentage of heavy portions such as resins and asphaltenes increased,
respectively, which gave an increased viscosity and softening point of the bitumen. The result was in
agreement with the Brookfield viscosity and softening point test. At concentrations higher than 2.0%,
the agglomeration of MWCNTs played a major role in the bitumen and agglomerated MWCNTs lose
this specific property and thus the percentage of the bitumen four components did not change.

Table 4. Proportion of MWCNTs/SBS bitumen four components.

The Content of Components/%
The Percentage of MWCNTs/%

Saturation Aromatic Resin  Asphaltene

0 17.27 45.22 32.65 4.86
0.5 15.99 44.52 34.12 5.37
1.0 14.50 42.19 37.85 5.46
1.5 14.11 42.18 38.08 5.63
2.0 14.04 42.29 38.17 5.50
3.0 14.32 42.01 37.74 5.93

3.2.3. Thermal Analysis

The thermal analysis test was conducted to investigate the thermal decomposition pattern of the
test samples. Thermal Gravimetric analysis (TG) and Derivative Thermogravimetry analysis (DTG)
were performed to analyze the thermal stability and decomposition of different phases. Parameters
Ted, Tm, and M were used to evaluate the thermal stability of the materials, in which Teq is the
epitaxial decomposing temperature, Tr, is the temperature corresponding to the maximum mass
loss rate, and M is the final residue mass ratio [26—29]. The DTG curve was used to distinguish the
different components in bitumen. Figure 13a shows that the SBS modified bitumen with 0% and 0.5% of
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MWCNTs decomposed at an earlier time. An improvement was observed at a MWCNTs concentration
of 1.0%, and after then, only a slight improvement was observed.

Compared to the DTG curves, it was observed that there was a slight step before T, namely
in area 1 (the curve part obviously lower than other content MWCNTs/SBS modified bitumen
between 300 °C and 400 °C) in Figure 13b. The DTG from 300 to 400 °C was mainly attributed
to the decomposition and volatilization of saturates and aromatics [30]. A similar step also exists in
Figure 13b, namely 2 (the curve part slightly higher than area 1 between 300 °C and 400 °C), but was
slightly higher which indicated that the decomposition rate of the light components decreased. At 1.0%
concentration, the DTG curve became smooth and did not show the steps.

Table 5 shows the parameters T.4, Trm, and M for the six different concentrations of MWCNTs.
It was generally observed that with the addition of MWCNTs, the Teq, Tm, and My increased which
meant that the MWCNTs improved the thermal stability of the SBS modified bitumen. This better
performance should be attributed to the stronger network structure which prevented the decomposition
and volatilization of light components. As a result, the value of DTG regarding the saturates and
aromatics decreased. Thermal analysis confirmed the testing results of the bitumen four components
test analysis.

.14
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Figure 13. Thermal analysis of bitumen with different content of MWCNTs: (a) TG versus temperature;
(b) DTG versus temperature.

Table 5. The T4 (epitaxial decomposition temperature), the Tr, (temperature of the fastest decomposition
rate), and the M (final residual mass) of MWCNTs/SBS modified bitumen.

The Percentage of MWCNTs/%  Teq/°C  Tm/°C M¢/%

0 364.5 451.4 14.23
0.5 374.1 451.4 14.78
1.0 390.9 453.7 15.92
1.5 393.9 453.3 16.52
2.0 397.9 459.2 13.61
3.0 397.1 457.6 18.30

3.2.4. Fluorescence Microscopy Test

The fluorescence microscopy test was conducted to analyze the dispersion and storage stability
of PmB. SBS produces fluorescence under UV irradiation which can be used to detect the traces of
SBS. From the performance tests, we concluded that 1.0% MWCNTs was the optimum content, so SBS
modified bitumen and 1.0% MWCNTs/SBS modified bitumen was tested to determine the difference.
From Figure 14a,b, the existent morphology of SBS changed from floccule to granule and SBS has
a better dispersion in Figure 14b. The flocculent structure is one stage of SBS agglomeration. Figure 14c
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shows that a large number of SBS grains agglomerated and became clear ribbons and there were more
slight and vague ribbons in Figure 14e. In addition, the content of SBS in Figure 14d is less than that
in Figure 14f. Overall, Figure 14a,b shows that the MWCNTs improved the dispersion of SBS in the
bitumen, and Figure 14e—f indicate that the MWCNTs improved the storage stability of the SBS modified
bitumen. There may be a complex interaction between the bitumen, SBS, and MWCNTs which resisted
the agglomeration of SBS and promoted the dispersion and dissolution of the SBS in bitumen.

(a) (b)

(c) (d)

(e) ()
Figure 14. Fluorescence microscopy from x100: (a) SBS modified bitumen; (b) 1.0% MWCNTs/SBS
modified bitumen; (c) the upper 1/3 part of the tube filled with SBS modified bitumen; (d) the bottom
1/3 part of the tube filled with SBS modified bitumen; (e) the upper 1/3 part of the tube filled with 1.0%

MWCNTs/SBS modified bitumen; (f) the bottom 1/3 part of the tube filled with 1.0% MWCNTs/SBS
modified bitumen.
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A strong m—m interaction between the aromatic molecules and MWCNTs was noted from the
study, and the adsorption of carbon nanotubes on the saturated molecules was much less than that
of the organic molecules containing benzene rings [31-33]. In view of this, a conjecture about the
specific interaction between MWCNTs and SBS modified bitumen was proposed to explain why
the MWCNTs improved the performance of the SBS modified bitumen: One end of the MWCNTs
could have formed a non-covalent complex with the polystyrene of the SBS through -7 conjugates,
and the other part could also have a m-m conjugate action with aromatics. This implied that the
MWCNTs could make SBS have a better compatibility with bitumen and then more saturates and
aromatics would be filtered into the SBS network structure. As a result, a stronger network structure
consisting of SBS, light components of bitumen, and MWCNTs was formed which yielded the better
high temperature rutting resistance and low temperature crack resistance of bitumen. This explanation
is in agreement with the performance tests and the mechanism and structure analysis. According to
the above explanation, the schematic in Figure 15 was proposed.

SBS modified bitumen MWCNTSs/SBS modified bitumen
Aromatic

®
‘ Agglomerate MWCNTs
o

Polystyrene

-~ Polybutadiene

- Saturate

g MWCNTs
Figure 15. Schematic of MWCNTs/SBS modified bitumen.

4. Conclusions

In this paper, experiments were conducted according to two different approaches: one was to
investigate the effect of adding MWCNTs on the properties of SBS modified bitumen at high and
low temperatures, and the other was to explain the modification mechanism according to the specific
structure and properties of MWCNTs, as well their the interaction with SBS bitumen. Five different
percentages (0.5%, 1.0%, 1.5%, 2.0% and 3.0%) of MWCNTs were blended with SBS modified bitumen.
the following conclusions can be drawn:

1. MWCNTs as an additive had a positive effect on the performances of the SBS modified bitumen.
The optimum concentration of MWCNTs in SBS modified bitumen was determined as 1.0%.

2. The Brookfield rotational viscosity test showed that the MWCNTs as an additive improved the
high temperature susceptibility of the SBS bitumen. The DSR test showed that MWCNTs could
improve the high temperature property of the SBS modified bitumen and the BBR test indicated
that MWCNTs improved the low temperature crack resistance.

3. The IR test revealed that there is no new chemical functional groups formed by the addition
of MWCNTs. The bitumen four components test showed that MWCNTs as an additive to SBS
modified bitumen result in changes in the content of each component. The thermal analysis test
confirmed that the MWCNTs improved the thermal stability of the SBS modified bitumen and
the light components decomposed at a slower rate. In addition, the fluorescence microscopy
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test showed that the MWCNTs improved the dispersion and storage stability of SBS in bitumen.
A schematic was proposed by the strong adsorption property due to —m interaction between
MWCNTs and organic molecules that containing benzene rings, to explain why MWCNTs had
a positive effect on the SBS modified bitumen. It was suggested that MWCNTs act like a ‘bridge’;
one of its ends had a - conjugated complex with the polystyrene of SBS, and the other side
had a -7 conjugate interaction with the aromatic molecules. There was a better compatibility of
polystyrene and for that reason, more saturates and aromatics filtered into the network structure
of SBS and then a stronger network structure consisting of SBS, light components of bitumen,
and MWCNTs in the MWCNT/SBS modified bitumen was formed. The improved high and
low temperature performance was attributed to the stronger network structure. Further study is
needed to directly confirm the existence of —m interactions between the polystyrene of SBS and
the MWCNTs in bitumen.

These conclusions are only limited to the materials used in this study and they may be different

for other materials.
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