Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamideco-acrylic acid)-grafted Hollow Fe₃O₄/SiO₂ Microspheres with Surface Holes for BSA Release

Jing Zhao, Ming Zeng, Kaiqiang Zheng, Xinhua He, Minqiang Xie, Xiaoyi Fu

Figure S1. The SEM images and size distribution of Fe₃O₄ (a) and Fe₃O₄/SiO₂ (b) microspheres.

Figure S2. The SEM image of wax/Fe₃O₄/SiO₂ Pickering particles.

Figure S3. The hydrodynamic diameter of various microspheres at 28 °C (a) Fe₃O₄, Fe₃O₄/SiO₂, p-Fe₃O₄/SiO₂ microspheres, (b) P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres (Sample A1, A2, A3, A4).

Figure S4. The XRD patterns of p-Fe₃O₄/SiO₂ microspheres.

Figure S5. FTIR analysis of (**a**) BSA, (**b**) P(NIPAM-AA)/Fe₃O₄/SiO₂-BSA microspheres, (**c**) P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres.

The FTIR spectrum of BSA showed the peak with C=O (1659 cm⁻¹), N-H (1540 cm⁻¹). However, the FTIR spectrum of P(NIPAM-AA)/Fe₃O₄/SiO₂-BSA microspheres showed the peak with C=O (1645 cm⁻¹), N-H (1535 cm⁻¹). And the peak at 1170 cm⁻¹, 930 cm⁻¹ are belonged to the characteristic peak of BSA which are consistent with the peak at 1165 cm⁻¹, 920 cm⁻¹ of P(NIPAM-AA)/Fe₃O₄/SiO₂-BSA microspheres. These results suggested that BSA are absorbed in the P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres through hydrogen bonding and van der wale forces between carboxyl-carbonyl or amide-carboxyl groups. It is because that the carbonyl groups and amino groups of P(NIPAM-AA) can form hydrogen bond with the amino groups and carbonyl groups of BSA.

Figure S6. The fitting curve of BSA slow-release curve-Higuchi model.

Higuchi model analysis is often used to study drug release kinetics [1,2]. From Figure S6, it can be seen that the results of the release at 37 °C are analyzed by Higuchi mode. In 0h-8h segment, the correlation coefficient (R²) of P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres obtained by oxalic acid corrosion 0min, 15min, 30min, 45min was 0.899, 0.975,0.993, 0.989, respectively; these data suggest that the diffusion control process plays a major role in the release of BSA.

References

- 1. Zhang W, Chai Y, Xu X, et al. Rod-shaped hydroxyapatite with mesoporous structure as drug carriers for proteins. *Appl. Surf. Sci.* **2014**, *322*, 71–77.
- 2. Wu J, Jiang W, Shen Y, et al. Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for ph-sensitive controlled release of doxorubicin. *Mater. Sci. Eng. C* **2017**, *70*, 132–140.