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Abstract: Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS), were synthesized
inside a swollen sulfonated poly(ether ether ketone) membrane (sPEEK). The formation of the
Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and
microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK
membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a
testing period of three months. The size distribution of the nanoparticles was assessed, and the
sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by
AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM
experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite
in water at different pH levels, achieving a better understanding of the membrane behavior in a water
environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated.
These preliminary results suggest that the newly developed nanocomposite membranes could be
promising materials for fuel cell applications.

Keywords: gold nanoparticles; sulfonated poly(ether ether ketone) membranes; metal nanoparticles;
proton exchange membranes; atomic force microscopy; fluid cell

1. Introduction

In recent years, the preparation of composite materials has been one of the growing demands for
energy conversion and storage applications [1–3]. Among others, metal nanoparticles dispersed in
polymeric or oxide matrices are envisaged as promising candidates for catalysts or sensor interactive
materials [4–6]. In fact, the nanoscale provides a high specific surface area, favoring a better dispersion
of metal nanoparticles and an increase in their intrinsic activity [7,8]. In particular, metal nanoparticles,
and especially gold nanoparticles, combine the synthetic versatility of surface functionalization [9–11]
with their inherent ability to act as catalysts or carriers, allowing their use in a variety of applications,
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ranging from plasmonics, sensors, and energy applications [12,13], to well assessed studies in
biotechnology and nanomedicine [14–17].

A growing amount of attention in the literature has been paid to the use of nanocomposite
membranes for energy applications [18,19]. The development of polymeric membranes has rapidly
grown in recent years [20], with the general goal of obtaining tailored physical and transport properties
for a variety of applications, with a strong interest in nanostructured features [21,22]. The improvement
of mechanical properties is one of the most important objectives that can be fulfilled by introducing
a filler [23]. Nanoparticles are particularly interesting thanks to their easy surface functionalization
and high surface/volume ratio [24]. Hydrophobic and hydrophilic metal nanoparticles have been
prepared and a fine control of size, surface chemistry, and assembly has been achieved [25,26]. Several
methods for the deposition of nanoparticles (NPs) in a host membrane have been developed over the
past few decades, such as atomic layer deposition [27], an intermatrix synthesis (IMS) technique [28],
and an incorporation [29,30] and in situ sol-gel method [31]. All of these composite systems have the
aim of controlling the nanoparticles and membrane morphologies to prevent NP agglomeration and
corrosion, and to enhance their specific properties [32,33].

The poly(perfluorosulfonic) acid membrane (Nafion-117) has received much attention as a
host membrane for a variety of nanoparticles, i.e., Pt, Au, Ag, and bimetallic nanoparticles [34,35].
The interest in this type of composite membrane is due to the combination of the specific properties
of the NP and the polymer matrix, allowing a wide range of applications (fuel cells, sensors, and
actuators [36,37]). Nafion-117 represents one of the most used membranes in fuel cell applications.
However, its high cost and ecological impact, as well as its limited thermomechanical properties [38],
stimulated the research towards alternative polymeric systems. Among others, sulfonated poly
(etheretherketone) (sPEEK) membranes have been integrated into functional devices [39], thanks
to their good solvent resistance, high thermal stability, and excellent mechanical properties due to the
aromatic backbone. Sulfonated poly(etheretherketone) (sPEEK) represents a low cost alternative [40]
to Nafion-117 and takes advantage of the easy post-modification procedures for the introduction
of sulfonate end groups (–SO3H) [41,42]. Sulfonation can, in fact, be easily carried out by using
sulfuric acid on polymeric PEEK membranes [43]. Depending on the sulfonation degree, the proton
conductivity, the thermo-mechanical stability of sPEEK membranes can be tailored to fulfill the
requirements. In general, the hydrophilicity and proton conductivity [44] of the sPEEK membrane
increases with its extent of sulfonation, due to the well-assessed aggregation phenomena of sulfonic
functional groups that give rise to hydrophilic domains where the mobility of protonic charges
is optimized.

Several studies have demonstrated that a good membrane hydrophilicity and proton conductivity
are reached for a sulfonation degree in the range of 60%–80% and water uptake between 20% and
40%, with a conservation of the structural and mechanical robustness of the PEEK membranes [45,46].
Low sulfonated PEEK membranes show a high thermal and chemical stability, but, unfortunately, a
relatively low proton conductivity [47]. To solve this key issue, sPEEK membranes were used as a
matrix for hybrid/blend membranes. In this context, sPEEK membranes, decorated or imbedded with
nanofillers, were obtained [48,49] by impregnation and intercalation methods [50–52].

The combination of the easy processability of an organic polymer and the improved mechanical
and optical properties of NPs, can also be fundamental for the enhancement of the selectivity and
permeability of membranes [53], and considering this, we chose to use hydrophilic metal nanoparticles.
In fact, hydrophilic gold nanoparticles show a high stability during the colloidal phase thanks to
surface ligands and open new perspectives for their use as fillers in membrane applications. In this
work, the development of an efficient procedure for the inclusion of hydrophilic gold nanoparticles in
sPEEK polymer membranes, is presented. Gold nanoparticles functionalized with 3-mercapto propane
sulfonate (3MPS) are considered here as a model system; a proof of concept to be extended in the future
in order to optimize not only the hydration degree, but also the chemical stability and the protonic
conductivity of the proton exchange membrane for fuel cell applications.
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2. Results and Discussion

2.1. Au-3MPS@sPEEK Nanocomposite by In Situ Synthesis

The synthesis of the Au-3MPS@sPEEK nanocomposite was carried out by the impregnation of
the Au(III) precursor and 3MPS stabilizing thiol on reacidified and hydrothermally treated sPEEK
membranes. This treatment, applied on the pristine sPEEK membrane, allows the production of
a host sPEEK membrane with well-defined and swell hydrophilic domains, suitable for hosting
the precursors [54]. By adding the strong reducing agent NaBH4 to the reaction mixture, after
30 min of impregnation, a rapid color variation was observed, from yellow to brown, and the
white translucent sPEEK membranes gained a brown color upon the sorption and reduction process,
remaining unchanged upon rinsing. Isolated Au-3MPS nanoparticles were recovered from the reaction
solution mixture, demonstrating that the host sPEEK membrane impregnation was not completed
before NaBH4 addition. The immobilization process of Au-3MPS nanoparticles in the sPEEK matrix is
schematized in Figure 1; the nanocomposite showed stability over a testing period of three months.
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Figure 1. Schematization of the Au-3MPS@sPEEK nanocomposite formation.

The formation of Au-3MPS nanoparticles recovered from the reaction mixture was confirmed
using UV–visible spectral analysis (Figure 2a). The characteristic absorption peak was observed at
540 nm, due to the surface plasmon resonance of AuNPs. The DLS results showed that AuNPs have a
narrow size distribution with an average size of about 14 ± 3 nm (Figure 2b).

The Au-3MPS@sPEEK nanocomposite membrane was then characterized using Transmission
FTIR, XPS, and AFM techniques, and was compared with the native host sPEEK membranes and
Au-3MPS and free 3MPS samples. In the FTIR spectra (Figure 3 and Supporting Information section),
the absorption peaks at 1188 and 1654 cm−1 correspond to the –Ar–O–Ar– and –Ar–C(=O)–Ar–
groups, respectively, indicating that the structure of ether ketone is evident in both the sPEEK and
Au-3MPS@sPEEK samples. The absorption peak of the benzene ring at 1595 and 1472 cm−1 was
observed, together with the Ar–O–Ar and O=S=O bands at 1225 cm−1, due to the asymmetric stretching
vibration peak [55]. In the Au-3MPS@sPEEK nanocomposite, only a few shifts are envisaged with
respect to the dominant sPEEK bands, together with some characteristic stretching modes (at 1384,
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1160, and 1050 cm−1), due to the 3MPS ligand. Moreover, the absence of the stretching mode S-H in
the Au-3MPS@sPEEK sample, at about 2550 cm−1, indicates the absence of free thiol 3MPS. Therefore,
the 3MPS observed in the Au-3MPS@sPEEK nanocomposite membrane corresponds to Au-3MPS in
the membrane, and not trapped free 3MPS.Materials 2017, 10, 258 4 of 15 
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Figure 2. Characterization of Au-3MPS nanoparticles in water: (a) UV-vis spectrum; (b) DLS data.Materials 2017, 10, 258 5 of 15 
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Figure 3. FTIR Transmission spectra of the nanocomposite Au-3MPS@sPEEK (blue line) compared
with the sPEEK host membrane (black line), Au-3MPS NPs collected from the impregnation solution
(red line), and free 3MPS thiol (green line).

X-ray photoemission spectroscopy measurements were performed on Au-3MPS@sPEEK
nanocomposite membranes, in order to ascertain the successful binding of 3MPS to gold NPs in
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the membrane framework. A complete collection of XPS data, i.e., BE, FWHM, atomic ratios, and
assignments, is reported in the supplementary information. XPS data collected at S2p and Au4f core
levels confirmed the presence of AuNPs stabilized with covalently bonded 3MPS, at least in the first
layers of the membrane (XPS sampling depth is of some nanometers), and the absence of free thiol,
as already observed by the FTIR measurements (analysis characteristic of the bulk of the membrane).
As reported in Figure 4a, the S2p spectrum of Au-3MPS@sPEEK shows two spin-orbit pairs, indicative
of S atoms in two different chemical states. The first signal (S2p3/2, BE = 162.13 eV, BE: binding energy)
is associated with sulphur atoms covalently bonded to gold atoms of the AuNP’s surface [56]; the signal
at higher BE values (S2p3/2 BE = 166.24 eV) is consistent with the sulfonate moiety. The intensity ratio
between the two signals is 1/1, as expected by the proposed molecular structure. Free 3MPS molecules
would be expected to give rise to a third S2p signal with the main S2p3/2 spin-orbit component at
about 164 eV, typical of free thiol end groups (free or physisorbed molecules). Since this signal is not
observed, we can affirm with reasonable confidence that all 3MPS molecules are chemically bonded to
the gold NPs. Au4f data confirmed the chemical interaction between AuNPs and ligands; as shown in
Figure 4b, the Au4f spectrum shows different components, with a main pair of spin-orbit components
associated with metallic gold atoms in the bulk of nanoparticles (Au4f7/2 BE = 83.98 eV), and a less
intense signal at higher BE values, indicative of partially oxidized gold atoms at the NPs surface,
covalently bonded to the thiol moiety of 3MPS [57,58].Materials 2017, 10, 258 6 of 15 
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Figure 4. XPS spectra of Au-3MPS@sPEEK. (a) XPS S2p spectrum; two signals (each one composed
by two spin orbit components: S2p3/2 and S2p1/2) associated with S atoms bonded to gold atoms at
the NP surface (S2p3/2 red, S2p1/2 orange), and to sulphonate moieties (S2p3/2 blue, S2p1/2 cyan), are
observed; (b) Au4f spectrum; two signals (each one composed by two spin orbit components: Au4f7/2

and Au4f5/2) associated with metallic gold atoms at the bulk of NPs (Au4f7/2 red, Au4f5/2 orange),
and Au atoms bonded to sPEEK through sulfur (Au4f7/2 blue, Au4f5/2 cyan), are observed.
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2.2. AFM Studies

The characterization reported in the literature on sPEEK and sPEEK decorated with nanofillers,
has mainly been performed via XPS, XRD, or EDX [59–61] to investigate the composition, and by
FTIR, SEM, and TEM, to provide detailed information on the membrane surface and the inner
section [62,63]. The surface roughness is usually measured using profilometers [64,65], while few
groups have performed AFM [66–69] characterization, despite the well-established use of this
technique to characterize multi-layer systems, compare the roughness upon the addition of subsequent
charges [70], and check the homogeneous distribution of the nanofillers within the membrane.

Both Au-3MPS nanoparticles and Au-3MPS@sPEEK nanocomposite membranes were subjected
to AFM analysis, to observe their morphology and surface roughness. As a first experiment, Au-3MPS
nanoparticles deposited on a Si/SiO2 substrate were characterized and a typical image is presented in
Figure 5.Materials 2017, 10, 258 7 of 15 
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Figure 5. AFM images of Au-3MPS deposited on Si/SiO2: 1 µm × 1 µm 2D (a) and 3D (b) topography.

The Au-3MPS NPs show a regular round shape, with a maximum z-dimension (height) of about
5 nm. Considering the curvature radius of the tip used here (about 8 nm), only the z-dimension of
the observed NPs is representative of their real dimensions. Their lateral dimensions are enlarged by
the tip dimensions (always the smaller object taking an image of the larger one), by 5 nm for the NPs
height, and therefore, the real diameter is smaller than that found by DLS measurements, because in
the latter case, the solvent plays a role in the swelling of nanoparticles. In order to obtain a complete
morphological characterization, the pristine dried sPEEK membrane has been compared with the
sPEEK membrane after hydrothermal treatment and the AuNP’s embedded membrane. Figure 6a
shows the 2D and 3D topography AFM images of the pristine sPEEK membrane in air. As it is possible
to view, the pristine membrane appears extremely flat, without a special texture, and has a very low
average roughness value, i.e., 0.82 nm evaluated on a 1 µm × 1 µm area. The reacidification and
hydrothermal treatment does not seem to affect the membrane: for dried samples, the aspect remains
almost unaltered (Figure 6b), while the change in the average roughness value (now 0.50 nm on
a 1 µm × 1 µm area) is negligible. Figure 6c shows the 2D and 3D topography AFM images in air,
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obtained upon membrane embedding with NP and subsequent drying. The pictures clearly show
that, even though the roughness remains nearly unaltered (i.e., 0.98 nm evaluated on a 1 µm × 1 µm
area), the Au-3MPS@sPEEK membrane impregnated with Au-3MPS has quite a different aspect when
compared to those already discussed. In particular, the Au-3MPS@sPEEK composite membrane is
generally characterized by the presence of objects with dimensions up to 30 nm on Z-axes, which are
supposed to be aggregates of nanoparticles [71]. In order to achieve information on the presence of
Au-3MPS in the membrane, FESEM images have been acquired and a cross sectional view is reported in
the Supporting Information Section. AuNPs have been observed in the internal sections and confirmed
by EDX analysis, allowing us to assess their presence in the membrane.Materials 2017, 10, 258 8 of 15 
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Figure 6. 2D and 3D AFM images of the 1 µm × 1 µm area of the pristine sPEEK membrane (a); the
dry sPEEK membrane after reacidification and hydrothermal treatment (b) and the membrane with
Au-3MPS (c).

In order to study the behavior of the membrane in wet condition, AFM measurements were
then carried out in fluid. As is well known, treatment with H2O demonstrates the sPEEK membrane
hydrophilicity that requires fluid cell periodic refilling. AFM measurements in liquid have been
performed at both t = 0 and t = 1 h, after refilling the cell. Pictures collected just after depositing
one drop of water, show the tendency of the membrane to absorb the solvent. The main effect of the
wetting is undoubtedly the hydration of the membrane, (Figure 7) whose roughness increases up to
4.98 nm on a 1 µm × 1 µm area. Along with the hydration of the membrane, some previously observed
features disappeared, such as the presence of nanoparticles of the order of 10 nm, observed for the
dry membrane.

Finally, the effect of pH on the Au-3MPS@sPEEK membrane has been tested, by dipping the
samples at pH = 5 and pH = 2. The measurements at different pH levels showed no particular
differences. It is certain that the hydration of the membrane is not instantaneous, and that it is
reversible. In fact, after keeping the membrane wet for 1 h upon the deposition of one drop, drying,
and measuring its roughness, a maximum height of 113 nm was reached, with a roughness of 8.98 nm,
evaluated on a 1 µm × 1 µm area. On the other hand, 1 h after drying, it is possible to observe a partial
reduction of the roughness, with a value of 1.49 nm (Figure 8).
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3. Materials and Methods

3.1. Materials

All reagents and analytical grade solvents were purchased from commercial sources and used
as received, unless otherwise stated: chloroform, ethanol, methanol, hydrochloric acid, sulfuric acid,
tetrachloroauric(III) acid trihydrate (HAuCl4·3H2O), sodium borohydride (NaBH4), and 3-mercapto
propane sulfonate (3MPS). Poly(ether ether ketone) (sPEEK) commercial membranes were purchased
from Fumatech® (E-750, Bietigheim-Bissingen, Germany) with an ionic exchange capacity (IEC) of
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1.33 meq·g−1 (milli molar SO3H per gram of polymer) and a membrane thickness of about 30 µm.
Reduction reactions of Au(III) to AuNPs were carried out under Argon in deionized water.

Prior to the AuNPs synthesis, the host sPEEK membrane was prepared as follows: a strip of
polymer was divided into squares of approximately 2 cm. The polymeric membranes were immersed
in a solution of H2SO4 (96% Aldrich, Milano, Italy) (1 M) for 4 h at 60 ◦C under stirring, while
maintaining the vessel in the dark. Then, membranes were kept at 80 ◦C for three days, in deionized
water. After that, the membranes were washed three times with 100 mL of deionized H2O and were
ready to be used.

3.2. Preparation of Au-3MPS@sPEEK Nanocomposite Membranes

The whole process was performed in the dark, to avoid any photochemical modification due to
the chromophore groups of sPEEK. After the preparation (reacidification and hydrothermal treatment)
of sPEEK membranes, as reported above, the host sPEEK samples were used as a template for the
synthesis of the Au-3MPS@sPEEK composite, with an Au/3MPS molar ratio equal to 1/4. In the
following paragraph, the procedure is described. sPEEK membranes (squares of 2 cm, thickness
30 microns) were put in a two-neck flask for precursor impregnation in the host sPEEK membrane, in
the presence of deionized water as a solvent (5 mL), for 1 h. HAuCl4 (100 mg in 10 mL of deionized
water) was added, together with 3MPS (169 mg in 10 mL of deionized water), at room temperature,
by following the procedure employed in the literature [72]. After stirring for 30 min, a solution of
the reducing agent NaBH4 (94.5 mg in 5 mL was added) and the reaction mixture, was allowed to
react at room temperature. The solution rapidly changed from yellow to dark brown, and after 2 h of
continuous stirring, the brown membranes were accurately rinsed with 100 mL of deionized water
and immersed for 30 min, to remove adsorbed nanoparticles. The Au-3MPS@sPEEK nanocomposite
membranes were dried and then analyzed by AFM. The reaction mixtures containing dispersed
AuNPs, after removal of the membrane and purification through three centrifuges in deionized water
(5000 rpm for 10 min), were analyzed by UV-vis spectroscopy and DLS measurements, to measure the
dimensions of the Au-3MPS NPs grown in solution.

3.3. Characterization Methods

Transmission FTIR spectra have been recorded from deposited films by casting from the DMF
solution, by mixing the sample with solvent at room temperature for 1 h, using KRS-5 cells, with a
Bruker Vertex 70 spectrophotometer (Bruker, Milano, Italy). UV-vis spectra were run in H2O solution
by using quartz cells with a Varian Cary 100 Scan UV-vis spectrophotometer (Varian, Milano, Italy).
The size and size distribution of Au-3MPS in H2O solution have been investigated by means of a
dynamic light scattering (DLS) technique, by using a Brookhaven instrument (Brookhaven, Holtsville,
NY, USA) equipped with a 10 mW HeNe laser at a 632.8 nm wavelength, at a temperature of
25.0 ± 0.2 ◦C [73]. Correlation data have been acquired and fitted in analogy to our previous work.
X-ray photoelectron (XPS, home-made instrument) spectra were recorded using a custom designed
spectrometer, described in previous studies [74] and equipped with a non-monochromatized Mg Kα

X-ray source (1253.6 eV pass energy 25 eV, step 0.1 eV). The spectra have been acquired on sPEEK
membranes and Au-3MPS@sPEEK samples. The spectra were energy referenced to the C1s signal
of aliphatic C atoms, which had a binding energy BE pf 285.00 eV. Atomic ratios were calculated
from peak intensities using Scofield’s cross-section values and calculated λ factors were used [75].
Curve-fitting analyses of C1s, S2p, Cl2p, B1s, O1s, and Au 4f spectra were performed, using Gaussian
profiles as fitting functions, after the subtraction of a Shirley-type background. For quantitative data,
the BE values were referred to the NIST database [76].

S2p3/2,1/2 and Au4f7/2,5/2 doublets were fitted by using the same full width at half-maximum
(FWHM) for each pair of components of the same core level, a spin–orbit splitting of, respectively,
1.2 eV and 3,7 eV, and branching ratios of S2p3/2/S2p1/2 = 2/1 and Au4f7/2/Au4f5/2 = 4/3. When
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several different species were individuated in a spectrum, the same FWHM value was used for all of
the individual photoemission bands [77].

Atomic Force Microscopy (AFM) measurements have been performed in both air and fluid,
using a Veeco Multimode™ model (New York, NY, USA) equipped with a Nanoscope IIIa controller.
Measurements in air have been performed in tapping mode, to acquire topography, amplitude, and
phase data. The samples of nanoparticles were prepared by the deposition of a drop of water on
a wafer of clean Si/SiO2 with a negligible roughness, with respect to the typical dimensions of the
particles. On the other hand, the membranes were directly stacked on the sample holder, using an
epoxy resin. In fluid, measurements were collected using a Veeco glass fluid cell filled with a suitable
aqueous solution, both immediately after filling, and with increasing time. Moreover, measurements in
air were carried out on membranes that had previously stayed in contact with the solution. In this case,
a drop of water was deposited on the membranes stacked on the holder. After a fixed time, the water
was removed, the membranes were dried, and the measurement was carried out in air, as already
described. Images were recorded with a 512 × 512 pixels resolution and corrected by polynomial
background filters using the Gwyddion 2.31 software. FESEM measurements have been carried out on
a SiO2 substrate with a Auriga Zeiss instrument (resolution 1 nm, applied voltage 6–12 kV, Oberkochen,
Baden-Württemberg, Germany), on freshly deposited membranes without metallization.

A Mini Spin—Eppendorf centrifuge was used for the purification of AuNP samples (13,000 rpm),
and pH measurements were made with a CyberScan pH 600 (Eutech Instruments, Thermo Scientific™,
Landsmeer, The Netherlands). Deionized water was obtained from Zeener Power I Scholar-UV
(18.2 MΩ, Human™, Soul, Korea).

4. Conclusions

In this work, the preparation of a nanocomposite made from sPEEK membranes and gold
nanoparticles, through an in situ synthesis protocol by precursor impregnation in the host membrane,
is reported. Prior to impregnation, the pristine sPEEK membrane was nanostructured (nanophase
separation between its hydrophilic and hydrophobic domains) by an ad-hoc hydrothermal treatment,
allowing us to control the morphology of the host membrane and therefore, of the nanocomposite
membrane. The reduction of HAuCl4 in the presence of the reducing agent NaBH4, using 3MPS
thiols as a stabilizing ligand, was carried out in the presence of the sPEEK membrane. The composite
membranes have been characterized by FTIR, UV-vis, XPS, FESEM, and AFM. The characterizations
showed the presence of AuNPs with a diameter smaller than 10 nm; although, in the latter case, the
size could not be determined. In particular, AFM measurements in fluid were also performed, to study
the behavior of the membrane in conditions of hydration, which showed a strong tendency of the
membrane to swell. To conclude, the procedure has led to the preparation of composites based on
sPEEK, containing gold nanoparticles, which are potentially useful in fuel cell applications.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/3/258/s1.
Figure S1: FTIR spectra of the sPEEK membrane (green line), Au-3MPS NPs (blue line), nanocomposite
Au-3MPS@sPEEK (red line); and free 3MPS thiol (brown line). Table S1: XPS data.
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