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Abstract: The oxygen vacancy (VO) is known as the main compensation center in p-type ZnO, which
leads to the difficulty of fabricating high-quality p-type ZnO. To reduce the oxygen vacancies,
we oxidized Zn3N2 films in oxygen plasma and successfully prepared p-type ZnO:N films at
temperatures ranging from room temperature to 300 ◦C. The films were characterized by X-ray
diffraction (XRD), non-Rutherford backscattering (non-RBS) spectroscopy, X-ray photoelectron
spectroscopy, photoluminescence spectrum, and Hall Effect. The results show that the nitrogen
atoms successfully substitute the oxygen sites in the ZnO:N films. The film prepared at room
temperature exhibits the highest hole concentration of 6.22 × 1018 cm−3, and the lowest resistivity of
39.47 Ω·cm. In all ZnO:N films, the VO defects are reduced significantly. At 200 ◦C, the film holds the
lowest value of VO defects and the strongest UV emission. These results imply that oxygen plasma is
very efficient in reducing VO defects in p-type ZnO:N films, and could greatly reduce the reaction
temperature. This method is significant for the development of ZnO-based optoelectronic devices.
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1. Introduction

The broad band gap (3.37 eV at room temperature), the large exciton binding energy (60 meV
at room temperature), the amenability to wet chemical etching, the realization of high quality
single crystal, the possibility of low-temperature growth, and the transparent nature make ZnO
a great potential material in optoelectronic devices—especially in the area of invisible and flexible
electronics [1–3]. During the past few decades, flexible and transparent electronics have been an area
of active research by several companies and by the scientific community [4,5]. With this technology,
the fabrication of a wide range of innovative products will be possible, from flexible displays to
wearable electronics. The most commonly used substrate materials are polyethylene terephthalate
(PET) and polycarbonate (PC) because of their superior optical properties. As these plastic substrates
are very temperature sensitive, the suitability for low-temperature deposition is very important. So far,
ZnO could be fabricated at low temperature, and n-type ZnO growth is very mature. However, the
difficulty of preparing reproducible and low-resistivity p-type ZnO has prevented ZnO from further
development. The difficulty can arise from a variety of causes. Undoped ZnO shows intrinsic n-type
conductivity, due to the probable impurity H [6,7]. While the intrinsic defects VO (oxygen vacancies)
and Zni (interstitial zinc atoms) may not cause n-type conductivity, they will compensate the acceptor
dopants during the doping process [8]. Furthermore, the acceptor dopants generally have a low
solubility in ZnO [9]. It has been believed that the most promising dopant for p-type ZnO is N, because
of its similar radius to O. As N is not very soluble in ZnO, several groups have attempted p-type
doping of ZnO by thermally oxidizing Zn3N2 [10–12]. The results show that a high concentration of N
can be doped into ZnO through this method, and that the highest hole concentration can reach a level of
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1018 cm−3. Nevertheless, the obtained p-type ZnO films contain a high concentration of VO, resulting
in poor electrical property. In addition, the reported p-type ZnO:N films prepared by thermally
oxidizing Zn3N2 films require very high temperature, which makes it impossible in flexible electronics.
Therefore, the reduction of VO concentration is obviously significant in p-type ZnO preparation. At the
same time, searching for a low-temperature preparation method is quite meaningful.

In the photoluminescence (PL) spectra of ZnO, the broad-band emission locating in the visible
region is commonly attributed to the VO-related defects [13,14]. To reduce the intensity of this peak,
thermal annealing is usually adopted [15–17]. The mainly used annealing environment includes
vacuum, oxygen, and nitrogen. Although the concentration of VO can be reduced to a certain extent,
the required annealing temperatures are very high.

In this letter, we report a simple method to fabricate p-type ZnO:N films. By oxidizing Zn3N2

films in oxygen plasma, the p-type ZnO:N films were obtained at low temperature. As the energy
of oxygen plasma is very high, the transformation from Zn3N2 phase to ZnO phase will happen at
low temperature. Moreover, the high energy oxygen ions could access the VO sites in ZnO during the
oxidizing process. As a result, the VO defects can be significantly reduced. We have investigated the
optical property of ZnO:N films prepared at different temperatures. Through the room-temperature
photoluminescence spectra, we discovered that the oxygen plasma is quite efficient in reducing VO

defects in the ZnO:N films. Significantly, the hole concentration of film oxidized at room temperature
reaches 6.22 × 1018 cm−3, almost greater than the reported results that were achieved with a high
temperature process.

2. Materials and Methods

2.1. Zn3N2 Films Preparation

Zn3N2 samples were grown on quartz substrates by RF (radio frequency) reactive magnetron
sputtering. A Zinc disk (99.999%), Ar gas (99.999%), and N2 gas (99.999%) were used. When the
background pressure was less than 6 ×10−4 Pa, the Ar and N2 were introduced into the chamber,
both with the flow rate of 30 standard-state cubic centimeters per minute (SCCM). The sputtering
power, pressure, sputtering time, and substrate temperature were 40 W, 5 Pa, 30 min, and 200 ◦C,
respectively. Before sputtering, a 15 min pre-sputtering was performed to clean the surface of the zinc
disk. Here we have prepared two kinds of Zn3N2 films; the difference between them is the substrate
temperature—one at 200 ◦C and the other at room temperature. Then, the two kinds of Zn3N2 films
were cut into small pieces for the next oxidizing process.

2.2. Oxidizing Process

The Zn3N2 films were oxidized in a PECVD (plasma enhanced chemical vapor deposition) system.
The background vacuum was better than 2 × 10−5 mbar. The O2 gas (99.999%) was inlet with the
flow rate 9.5 SCCM. The working pressure and RF power were 400 mtorr and 100 W, respectively.
The temperatures during oxidation were varied from room temperature (RT) to 400 ◦C. The oxidation
time was set to 2 h. After oxidation, the samples were naturally cooled down to RT in the vacuum.

2.3. Measurements

X-ray diffraction (XRD) was performed to characterize the structural properties of the films
on an X’Pert PRO diffractometer system with Cu Kα radiation (λ = 1.54060 Å). The composition
and thickness of the films were measured by non-Rutherford backscattering (non-RBS) at the NEC
9SDH-2 3 MV pelletron tandem accelerator at Fudan University (details can be found in our former
report [18]). The content and local chemical states of N were investigated by high-resolution X-ray
photoelectron spectroscopy (XPS) at room temperature. The binding energy scale was calibrated
using the C 1s line at 284.8 eV. Hall-effect measurement was carried out on an ACCENT HL5500PC
Hall system using a Van der Pauw four-point configuration. Indium (In) electrodes were deposited
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on the four corners of the sample by RF magnetron sputtering at room temperature. The linear I–V
behavior of all the samples indicated a good Ohmic contact between the In electrodes and the film layer.
The photoluminescence (PL) property was measured with a He-Cd laser source with a wavelength of
325 nm at room temperature.

3. Results and Discussion

Firstly, the as-grown Zn3N2 film grown at 200 ◦C and its oxidized films were investigated.
The as-grown sample is labelled as 2-Zn3N2, and the oxidized films are labelled as 2-RT, 2-100,
2-200, 2-300, and 2-400, respectively. Figure 1 shows the XRD patterns of the Zn3N2 film labelled as
2-Zn3N2 and ZnO:N films. The Zn3N2 film shows two broad peaks at 36.76◦ and 52.98◦, respectively,
corresponding to (400) and (440) planes of Zn3N2 (JCPDS file 35-0762). After being oxidized in oxygen
plasma, the film labelled as 2-Zn3N2 completely transformed into ZnO phase, even at RT. For the
oxidized films, seven peaks emerge in the XRD patterns at 2θ = 31.80◦, 34.44◦, 36.30◦, 47.60◦, 56.63◦,
62.86◦, and 68.06◦, which are attributed to (100), (002), (101), (102), (110), (103), and (112) planes of
hexagonal wurtzite ZnO (JCPDS file 36-1451), respectively. The intensity of the ZnO (101) peak was
the strongest at RT and 100 ◦C; it then weakened as the temperature increased. On the contrary, the
intensity of ZnO (002) peak increased with the temperature and got stronger than that of the ZnO (101)
peak at 200 ◦C. In other words, the prepared ZnO films tended to a (101) preferred orientation at RT
and 100 ◦C, while to a (002) preferred orientation at temperatures higher than 100 ◦C. The growth of
c-axis-oriented ZnO films was explained in terms of the low surface free energy for the (001) plane [19].
This is commonly found at high temperature. Nguyen et al. has reported that if the deposition is
performed at non-equilibrium conditions (such as low temperature), another orientation can also be
achieved [20]. Hence, low temperature may be responsible for the (101) preferred orientation of the
2-RT and 2-100 samples.
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Figure 1. XRD patterns of as-grown 2-Zn3N2 film and ZnO:N films (labels 2-Zn3N2 and 2-RT/2-100/2-
200/2-300/2-400 means that the Zn3N2 film was grown at 200 °C and that the oxidizing temperatures 
are room temperature (RT), 100 °C, 200 °C, 300 °C, and 400 °C, respectively). 

Figure 2 shows the non-RBS spectra of the films. By simulating the data with SIMNRA 6.0 code, 
we obtain the thickness and the components of the films. For all the films, the thicknesses are about 
120 nm. The Zn3N2 film labelled as 2-Zn3N2 shows Zn/N ratio of 3:2, while the oxidized films all 
exhibit no N peak, with Zn/O ratio of 1:1. This means that the Zn3N2 and ZnO films were prepared 
successfully, and that the oxidation by oxygen plasma could totally change the Zn3N2 film into ZnO 

Figure 1. XRD patterns of as-grown 2-Zn3N2 film and ZnO:N films (labels 2-Zn3N2 and
2-RT/2-100/2-200/2-300/2-400 means that the Zn3N2 film was grown at 200 ◦C and that the oxidizing
temperatures are room temperature (RT), 100 ◦C, 200 ◦C, 300 ◦C, and 400 ◦C, respectively).

Figure 2 shows the non-RBS spectra of the films. By simulating the data with SIMNRA 6.0 code, we
obtain the thickness and the components of the films. For all the films, the thicknesses are about 120 nm.
The Zn3N2 film labelled as 2-Zn3N2 shows Zn/N ratio of 3:2, while the oxidized films all exhibit no N
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peak, with Zn/O ratio of 1:1. This means that the Zn3N2 and ZnO films were prepared successfully,
and that the oxidation by oxygen plasma could totally change the Zn3N2 film into ZnO film, even
at RT. This is the same with XRD results. In addition, we can see that the carbon contamination is
inevitable in the samples because of the ex-situ oxidation process, which was demonstrated in our
former report [18].
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associated with the characteristic N 1sπ* transition in molecular nitrogen [22]. This indicates that 
the molecular nitrogen is produced during the oxidizing process. The contents of N and NO of the 
ZnO:N films are listed in Table 1, which are obtained by simulating XPS data with Gaussian curves. 
At RT, the film contained 0.4 at % of N elements, among which 0.22 at % of N elements were existing 
as NO. As the temperature increased—except for the film oxidized at 100 °C—the total N contents in 
the ZnO:N films changed slightly, while the NO contents reduced and vanished at 400 °C. At 100 °C, 
the film had 0.23 at % of total N content—the lowest among the ZnO:N films. 

Figure 2. Non-Rutherford backscattering (non-RBS) spectra of as-grown 2-Zn3N2 film and ZnO:N films.

The XPS measurement was conducted to investigate the local chemical states of N atoms in the
as-grown Zn3N2 film labelled as 2-Zn3N2 and ZnO:N, as shown in Figure 3. Three peaks were found in
the as-grown Zn3N2 film at 395.6 eV, 397.8 eV, and 400 eV, which were assigned to Zn-N [21], N-H, and
N-N bonds [22], respectively. This agrees with our previous results [18]. After being oxidized in the
oxygen plasma, the Zn-N and N-H peaks disappeared, meaning that the film completely transformed
into ZnO, and a new peak at 398.6 eV emerged at temperatures ranging from RT to 300 ◦C. This new
peak is suggested to be NO (substitutional nitrogen in oxygen site in the ZnO crystalline) [12,23,24],
an acceptor in N-doped ZnO film. Another new peak at 400.8 eV was associated with the characteristic
N 1s→π* transition in molecular nitrogen [22]. This indicates that the molecular nitrogen is produced
during the oxidizing process. The contents of N and NO of the ZnO:N films are listed in Table 1,
which are obtained by simulating XPS data with Gaussian curves. At RT, the film contained 0.4
at % of N elements, among which 0.22 at % of N elements were existing as NO. As the temperature
increased—except for the film oxidized at 100 ◦C—the total N contents in the ZnO:N films changed
slightly, while the NO contents reduced and vanished at 400 ◦C. At 100 ◦C, the film had 0.23 at % of
total N content—the lowest among the ZnO:N films.
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Figure 3. N 1s core-level X-ray photoelectron spectroscopy (XPS) spectra of as-grown 2-Zn3N2 film 
and ZnO:N films. 
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and ZnO:N films.

The Hall-effect measurements were conducted to obtain the electricity property of the films, as
shown in Table 1. Claflin et al. mentioned that the low hole mobility makes ZnO:N susceptible to
mixed-conduction effects. Even weak light exposure can potentially make a significant impact on the
results [25]. Here, the Hall-effect measurements were conducted in the dark at room temperature.
The magnetic field was 0.35 T. The as-grown Zn3N2 film labelled as 2-Zn3N2 exhibited n-type
conduction, with carrier concentration of 1.08 × 1019 cm−3. After oxidizing in the oxygen plasma, the
conduction type turned into p-type at temperatures ranging from RT to 300 ◦C, then into n-type again
at 400 ◦C. The processing window of the p-type ZnO:N films was much lower than that by annealing
at elevated temperatures (usually higher than 400 ◦C) in oxygen ambient. This could be attributed to
the high energy of oxygen plasma. At RT, the energy of oxygen plasma was high enough to oxidize
Zn3N2 into ZnO. When the temperature rose to 400 ◦C, the oxygen plasma was able to push NO out of
O site in the ZnO crystalline. At 100 ◦C, the film exhibited the lowest hole concentration. To ensure
that the results are correct, we repeated the experiment. The results show that the hole concentration
of the sample labelled as 2-100 was 2.23 × 1016 cm−3, almost the same as the results listed in Table 1.
At RT, the film exhibited the highest hole concentration of 6.22 × 1018 cm−3, due to the highest NO

concentration. As the oxidizing temperature increased, the change of the hole concentration was
the same as the change of NO concentration. This means that the NO is the dominant factor in the
mechanism of N-doped p-type ZnO film using this method. This is because the concentration of the
oxygen vacancies (VO)—acting as the compensate center in the p-type doping ZnO—in all the ZnO:N
films were reduced efficiently. This will be discussed in detail in the part of the PL results. The carrier
concentration for the ZnO:N films as a function of oxidizing temperature (T) is shown in Figure 4.
As we discussed in the XRD results, the ZnO:N films preferred (101) plane orientation at RT and 100 ◦C,
and (002) plane orientation at 200 ◦C, 300 ◦C, and 400 ◦C. Different crystal preferential orientation
might affect the results of Hall-effect. Thus, the samples were clarified into two regions by their crystal
preferential orientation. In the (101) preferred orientation region, the carrier concentration reduced
from 6.22 × 1018 cm−3 to 1.67 × 1016 cm−3 as the temperature increased from RT to 100 ◦C. In the (002)
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preferred orientation region, the carrier concentration reached the highest value of 3.73 × 1018 cm−3 at
200 ◦C; it initially decreased as the temperature increased, then was followed by the transformation of
conduction type from p-type to n-type at 400 ◦C.

Table 1. The electricity property of the as-grown 2-Zn3N2 and oxidized ZnO:N films.

Samples N (at %) NO (at %) Resistivity
(Ω·cm)

Hall Mobility
(cm2·V−1·s−1)

Carrier Concentration
(cm−3) Type

2-Zn3N2 – – 1.56 × 10−2 37.00 −1.08 × 1019 n
2-RT 0.40 0.22 39.47 0.03 6.22 × 1018 p
2-100 0.23 0.04 1.59 × 103 0.24 1.67 × 1016 p
2-200 0.39 0.14 96.92 0.02 3.73 × 1018 p
2-300 0.43 0.07 2.57 × 102 0.15 1.60 × 1017 p
2-400 0.43 – 26.89 0.42 −5.55 × 1017 n
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Figure 5 shows the photoluminescence spectra of the ZnO:N films. In Figure 5a, the spectra are
normalized. The UV emissions of ZnO at 380 nm are quite strong to be found in all ZnO:N films.
The weak broad peaks in the visible region from 450 to 700 nm are usually attributed to oxygen vacancy
(VO) defects [13], acting as the donors in N-doped ZnO and compensating the effective N-acceptors.
Compared with our previous work, where the Zn3N2 films were oxidized in the oxygen atmosphere,
the VO defects in all films were reduced obviously, meaning that the oxygen plasma has a high enough
energy to access the VO sites in the ZnO crystal. The enlarged figure of visible region (Figure 5a) shows
the change of optical property with oxidizing temperature. The intensity of the VO peak decreased
initially and then increased when the oxidizing temperature was higher than 200 ◦C. On the contrary,
the intensity of the UV emissions of ZnO at 380 nm (shown in Figure 5b) firstly increased and then
decreased above 200 ◦C of the oxidizing temperature. That is, at 200 ◦C, the ZnO:N film maintained the
strongest UV emission and the weakest deep level emission. In addition, high oxidizing temperature
might increase the VO defects, which generally happens at temperatures higher than 200 ◦C. In our
experiments, above 200 ◦C, the VO defects increased with the increasing oxidizing temperature.
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Figure 5. (a) Normalized photoluminescence spectra of ZnO:N films. The inset shows the
enlarged photoluminescence spectra of ZnO:N films in the visual region; (b) Intensity of near-band
emission peaks.

As we mentioned above, the Zn3N2 film could be oxidized into p-type ZnO film even at RT, but the
Zn3N2 films used above were prepared at 200 ◦C. In order to study the possibility of preparing p-type
ZnO:N films at RT from beginning to end, the following experiment was performed. Using the same
method, we prepared the Zn3N2 film at RT (labeled as RT-Zn3N2), then oxidized it in oxygen plasma
atmosphere at RT (the oxidized sample is labeled as RT-RT). All the other experiment parameters
were the same as before. The XRD patterns (Figure 6) show that the crystallinity of the Zn3N2 film
deposited at RT (labelled as RT-Zn3N2) was not better than that of the Zn3N2 film deposited at 200 ◦C
(labelled as 2-Zn3N2). However, after oxidizing in the oxygen plasma at RT, the Zn3N2 film deposited
at RT also totally transformed into hexagonal wurtzite ZnO phase, with a (101) plane preferred
orientation. From the photoluminescence spectra (Figure 7), we can also see the strong UV emission
and the weak VO defects peak. The electricity property of the RT-RT sample was also measured by
Hall Effect, with resistivity of 7.67 × 104 Ω·cm and hole concentration of 1.81 × 1016 cm−3, which
are not better than that of the 2-RT sample. E. Kaminska et al. suggested that a number of factors
need to be considered in optimizing the technological procedure to obtain a high quality p-type
ZnO [26]. This includes the microstructure of Zn3N2 and its potential contamination with hydrogen,
the crystalline structure of the substrate, and the temperature and time of thermal processing. It was
also mentioned that the microstructure of Zn3N2 was sensitive to the partial pressure of the nitrogen
gas during deposition. In our experiments, the only difference between the two samples RT-RT
and 2-RT was the deposited temperature of Zn3N2—one was at room temperature, another was
at 200 ◦C. Obviously, the deposited temperature affects the microstructure of Zn3N2. To get good
microstructure of Zn3N2 at room temperature, according to above suggestion, changing the partial
pressure of the nitrogen gas during deposition might be an effective choice in further experiments.
Therefore, oxidizing Zn3N2 with oxygen plasma is an efficient method to reduce the VO in N-doped
ZnO films. In addition, the preparation of p-type ZnO:N film could be realized at low temperature,
even at RT.
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4. Conclusions

In this letter, we report a simple method to prepare p-type ZnO:N films. By oxidizing Zn3N2

films in oxygen plasma atmosphere, the p-type N doped ZnO films were obtained at low temperature.
The results show that:

(1) p-type N-doped ZnO films can be prepared by oxidizing Zn3N2 films in oxygen plasma
atmosphere. Even at room temperature, the Zn3N2 film completely transformed into hexagonal
wurtzite ZnO, with a hole concentration of 6.22 × 1018 cm−3 and a resistivity of 39.47 Ω·cm.

(2) The Zn3N2 film prepared at room temperature could also be oxidized into p-type ZnO film in
oxygen plasma atmosphere, but with a poor electrical property.

(3) The contents of NO in the ZnO:N films decreased with the increasing oxidizing temperature, but
exhibited the lowest value at 100 ◦C.
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(4) The oxidizing process in oxygen plasma could significantly reduce the VO defects in the ZnO:N
films. The film obtained at 200 ◦C had the lowest value of VO defects and the strongest UV emission.

(5) The oxidizing temperature did not always act as a positive factor in reducing the VO defects in
the preparation of ZnO:N films. When the temperature was higher than 200 ◦C, the concentration
of VO defects increased with the increasing temperature.
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