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Abstract: This review describes, in an organized manner, the recent developments in the 
elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial 
hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as 
an interesting challenge, in particular for tissue engineering applications. In this context, a large 
number of studies has been carried out in the design of hydrogels that serve as support for 
antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use 
polymers with inherent antimicrobial activity provided by functional groups contained in their 
structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides 
(AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed 
for this purpose is described in this review, considering their advantages and disadvantages. 
Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react 
to external stimuli are equally depicted in this review. 
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1. Introduction 

Hydrogels are three-dimensional networks based on the crosslinking of hydrophilic polymers 
chains. Formed either from natural or synthetic polymers, their tridimensional network is able to 
uptake a large amount of water within the structure, which confers to the material a soft consistency 
comparable to those observed in living tissues [1]. Thus, provided several characteristics, including 
the appropriate functionality, biocompatibility, mechanical properties and sterilizability, hydrogels 
are excellent candidates to be employed in biomedical applications, in particular for treatment or 
replacement of tissues or even organs [2]. These materials have been equally applied for other 
purposes including healing of chronic and traumatic wounds, surface coatings for implants, drug 
delivery and also for cell encapsulation and tissue engineering (TE) [3–7]. It is worth mentioning 
that, in order to mimic natural tissues, in addition to the chemical properties or the appropriated 
mechanical behavior, hydrogels are also required to be highly biocompatible at the cell level. For 
that purpose, the most recent approaches are attempting to finely tune both the biological and 
physical attributes of hydrogels aiming to induce specific interactions and responses from cellular 
systems [7].  
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Particularly extended is the use of hydrogels for TE purposes. In this case, the main objective is 
to generate biological tissues and organs for a variety of medical situations in which the latter 
present dysfunctions or are lost. As depicted by Place et al. [8] (shown in Figure 1), tissue 
engineering (TE) encompasses either embedding cells into a supporting structure known as a 
scaffold. These goals can be achieved using two different strategies. In the traditionally-employed 
TE, cellularized scaffolds are matured in vitro previously and then are introduced into the patient. 
This procedure helps with the vascularization and innervation of the inserted tissue. In contrast to 
this approach, in the in vivo TE approach, the scaffold is directly inserted into the patient, leaving 
the host cells to regenerate by themselves and can be carried out using two different types of 
scaffolds. On the one hand, the cells are introduced in the scaffold, before implanting it into a 
recipient. On the other hand, some other authors omitted this step and implanted the scaffold 
directly into the patient’s body. In this case, regeneration is based on the employment of native cells 
into the implant and the subsequent deposition of an extracellular matrix (ECM). A large variety of 
therapeutic targets are currently being investigated, including nervous, cardiovascular, digestive 
and endocrine, musculo-skeletal, urinary and integument tissues and organs.  

 
Figure 1. Scheme of the approaches employed for tissue engineering (TE). In traditional TE (in vitro 
TE), cellularized scaffolds are matured in vitro and then introduced into the patient. For in vivo TE, 
the scaffold is implanted directly into the patient. Reproduced with permission from [8]. 

In order to use a particular biomaterial as a TE scaffold, several considerations should be taken 
into account. According to Place et al. [8], the most relevant are to fulfill the bulk mechanical and 
structural requirements of the target tissue and to facilitate the molecular interactions with cells that 
promote tissue healing. In this context, synthetic polymers, which can be obtained by using a variety 
of polymerization techniques, are excellent candidates. More importantly, the mechanical, chemical 
and physical properties of synthetic polymers are more reproducible and can be easily modulated 
through the variation of parameters during their formation, making them more flexible than those 
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derived from natural materials, characteristics that are critical for the fabrication of 
tissue-engineering scaffolds. Polymers can be, in addition, designed to be non-toxic, inexpensive to 
develop and, also, can be produced using mild conditions, enabling their use in the presence of cells. 

While synthetic polymers are able to satisfy most of the prerequisites for their use for TE 
purposes, as will be depicted throughout this review, many of the applications in which hydrogels 
can be employed suffer from microbial infections caused by bacteria and fungi. In effect, particularly 
contamination by bacteria still remains a major issue for the use of hydrogels for tissue engineering 
and other related biomedical applications. In order to overcome this problem, many different 
alternatives to fabricate antimicrobial/antifouling hydrogels that either repel or are able to kill 
bacteria on contact with the hydrogel surface have been developed in the last few years. Several 
articles, reviews and books have been recently reported describing the synthesis, properties and uses 
of hydrogels [9–11]. 

For example, Veiga and Schneider [3] established that, in the case of wound healing, infections 
can prolong the healing process, which may lead to tissue morbidity and, in the worst case, even to 
sepsis. Equally, infections localized at the implant-tissue interface provoke implant failure. In this 
situation, the implant needs to be removed and replaced for a new one, involving another surgery 
that can produce expensive costs, painful and highly dangerous for the patient. 

In this context, hydrogels have been proposed to be an interesting alternative to fabricate 
antimicrobial materials, such as wound dressings, as wells as fillers. In fact, hydrogels have a unique 
capability to uptake larger amounts of water to facilitate the immunological activity of the cells’ 
characteristics, which is crucial in the wound healing progression [3]. 

In this review, we will discuss the preparation of hydrogels focusing on those with 
antimicrobial properties. The different methodologies to obtain hydrogels as a function of their role 
either as a carrier, or based on, or due to their inherent antimicrobial activity will be illustrated with 
selected examples. Finally, more recent strategies in which the hydrogels exhibit a response to 
environmental conditions that allow modulating the antimicrobial activity of the hydrogel will be 
equally discussed throughout this review. 

2. Strategies to Fabricate Hydrogels and Their Classification 

2.1. Fabrication via Physical or Chemical Approaches 

Two main strategies to prepare hydrogels considering the type of bonds formed between the 
polymer chains have been widely employed. On the one hand, physical hydrogels are formed with 
non-covalent crosslinks. Thus, the hydrogels can be reversibly formed or disrupted. Non-covalent 
crosslinks can be, as depicted in Figure 2, of a different nature, including hydrophobic interactions, 
hydrogen bonds, electrostatic interactions or even crystallized segments. For instance, hydrophobic 
interactions produced by the self-assembly of amphiphilic block and graft copolymers and further 
aggregation can finally lead to gelation of the compounds [12]. More importantly, the use of 
biological molecules for the preparation of physical hydrogels was incorporated later since their 
particular structures are prone to form larger aggregates by non-covalent interactions. A large 
variety of biopolymers has been bound to polymer chains enabling the formation of hydrogels by 
different interactions. As depicted in Figure 2, illustrative biomolecules employed for this purpose 
include oligonucleotide sequences, peptides with a complementary charge or heparin that binds a 
multitude of proteins.  
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Figure 2. (Left): Alternatives to obtain crosslinked hydrogels. Hydrogels can be based on permanent, 
covalent links between polymer chains or physical (reversible) crosslink bonds based on a variety of 
non-covalent interactions (from synthetic and biological origin). (Right): Examples of TE scaffolds, 
including hydrogels, fibrous, custom and porous morphologies. Reproduced with  
permission from [8].  

On the other hand, chemical hydrogels are formed by covalent crosslinks, in general by the 
chemical reaction of functionalized polymers or monomers with small molecule/polymer 
crosslinking agents [13]. Examples of these chemical reactions are shown in Figure 2. These include 
reactions between thiols and acrylate/vinyl sulfone groups [14] or amines that easily react with 
aldehydes or activated ester groups [15]. As depicted by Caló and Khutoryanskiy [16], chemical 
hydrogels are mainly prepared either by a copolymerization of a hydrophilic monomer with the 
appropriate crosslinking agent that generates strong bonds between polymer chains. As depicted in 
Figure 3, a water-soluble monomer is polymerized in the presence of a multifunctional crosslinker 
(typically a difunctional monomer) that, upon a purification step to remove residual unreacted 
monomer, leads to the final hydrogel. An alternative to this approach is depicted in Figure 3 (below). 
In this case, instead of using monomers, a preformed water-soluble polymer is crosslinked using, 
among others, γ-irradiation, X-ray, UV-light or heat. For instance, Khutoryanskiy et al. [17] 
described a method to fabricate hydrogels from water-soluble polymers (poly(methyl vinyl 
ether-alt-maleic anhydride) and poly(vinyl alcohol)) in aqueous solutions. To carry out the 
crosslinking process, they proposed the use of either thermal treatment or microwave irradiation. It 
is worth mentioning that both radiation and thermal crosslinking methods are inexpensive, safe and 
permit the elimination of the purification step.  
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Figure 3. (a) Synthesis of hydrogels by polymerization of monomers and crosslinking agent.  
(b) Synthesis of hydrogels by cross-linking of pre-polymerized water-soluble polymers. Reproduced 
with permission from [16]. 

It is worth mentioning that a third class of hydrogels has been reported combining both types, i.e., 
physical and chemical crosslinking hydrogels. These are known as dual-network hydrogels. An 
illustrative example of this type of hydrogel has been reported by Fajardo et al. [18]. As depicted in 
Figure 4, they described the formation of a novel type of hydrogel that combines chemically- and 
physically-crosslinked networks in a dual-network approach. For that purpose, chitosan (CHT) and 
chondroitin sulfate (CS) were chemically modified with glycidyl methacrylate (GMA) and  
then crosslinked. 

 

Figure 4. Scheme of dual-network hydrogel formation schematic (Step 1 is the chemical crosslinking; 
Step 2 is the physical crosslinking). Reproduced with permission from [18]. 
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2.2. Other Alternative Hydrogel Classifications 

Other classifications have been equally proposed for hydrogels attending to their characteristics 
as the type of crosslinking agent, their eventual response to external stimuli (physically-,  
chemically- or biochemically-responsive), their net charge (depending on the functional groups 
incorporated in the hydrogel structure, they can be negative, positive or neutral), their origin (either 
from natural sources or obtained following a synthetic route) or based on their degradability or the 
non-degradability of the hydrogel [4,13]. An overview of the different hydrogel classifications 
depending on their properties is provided in Figure 5. 

 
Figure 5. Classification of hydrogels based on the different properties. Reproduced with permission 
from [13]. 

3. Antimicrobial and Antifouling Hydrogels 

Bacterial infection remains one of the most serious complications for human health and may 
possibly lead to death in some severe cases. For this reason, extensive efforts have been conducted 
toward finding novel antibiotics with low toxicity to the host cell and a broad spectrum against a 
wide diversity of bacterial pathogens that do not produce bacterial resistance. Antimicrobial agents 
and peptides alone, however, usually suffer from environmental toxicity, short-term antimicrobial 
activity and proteolytic instability and degradation. To overcome such disadvantages, antimicrobial 
agents are often physically incorporated or chemically conjugated with biocompatible polymers, 
such as hydrogels, to enhance their antimicrobial efficacy and specificity, reduce their cytotoxicity, 
prolong their biostability and biocompatibility and finally promote other biomimetic 
physicochemical properties.  

Hydrogels with antimicrobial properties have been obtained using different strategies 
(described in the following sections) that can be summarized into two main methodologies. First, 
hydrogels can be employed as supports to load the antimicrobial molecules. As depicted in Table 1, 
these can be of a different nature, such as nanoparticles (typically gold or silver), antibiotics or 
antimicrobial agents. Second, the hydrogels can be designed based on materials that present 
inherent antimicrobial activity [1]. The most relevant examples of inherently antimicrobial materials 
employed to fabricate hydrogels include antimicrobial peptides, chitosan or synthetic polymers with 
antimicrobial functional groups (quaternary ammonium, N-halamines, etc.). In addition, in Section 
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6, the combination of antifouling and antimicrobial polymers to synergistically prevent bacterial 
contamination is discussed. 

Table 1. Summary of the strategies reported to fabricate antimicrobial hydrogels. Reproduced with 
permission from [13]. 

Type of Antimicrobial Gels Applications 
Referenc

es 

Loaded 
hydrogels 

antimicrobials 

Silver NPs Wound dressings and surface coatings [19–21] 
Gold NPs Wound dressings [22,23] 

Antibiotics Wound dressings and implant coatings [24–26] 
Antimicrobial agents Wound dressings and surface coatings [27–29] 

Inherently active 
hydrogels  
based on 

Peptides Wound dressings and surface coatings [30–33] 
Chitosan Wound dressings, surgical use and surface coatings [34–38]  

Synthetic polymers Surface coatings [39–41] 

4. Hydrogels Supporting Antimicrobial Agents 

This section aims to provide a thorough overview of the antimicrobial hydrogels prepared by 
encapsulation or immobilization of antimicrobial compounds incorporating a few selected examples 
of the different strategies reported.  

4.1. Incorporation of Metal Nanoparticles to Hydrogels 

Silver and gold nanoparticles (NPs) are the most extensively employed nanoparticles for 
biorelated applications. This is, at least to some extent, due to the unique antimicrobial properties 
they exhibit [42–46]. In addition to these, nanoparticles zinc oxide nanoparticles have also evidenced 
excellent antibacterial properties [43,47]. A comparative study has been reported by  
Hernández-Sierra et al. [43] in which both the bactericidal and bacteriostatic properties of silver, zinc 
oxide and gold nanoparticles were investigated over S. mutans. In spite of the good properties of the 
three nanoparticles studied, the authors evidenced a higher antimicrobial effect against S. mutans 
when using silver nanoparticles. Thus, lower concentrations than in the case of gold or zinc 
nanoparticles were required. This is an important factor that would permit reaching a reduced 
toxicity. 

Both synthetic and natural hydrogels have been employed as supports for the incorporation of 
nanoparticles [3]. For instance, synthetic hydrogels loaded with metal nanoparticles include  
poly(N-vinyl pyrrolidone) (PVP) [48], poly(vinyl alcohol) (PVA) [19] or poly(acrylamide-co-acrylic 
acid) [49]. Natural polymers, such as natural gelatin [50] and alginate [20] hydrogels, have been also 
employed to encapsulate silver nanoparticles.  

Different methodologies have been reported to incorporate nanoparticles with antibacterial 
properties within a hydrogel being the most important with respect to the following. 

4.1.1. Loading Nanoparticles onto a Preformed Hydrogel 

This strategy was reported by Thomas et al. [51] to prepare 
poly(acrylamide-co-N-vinyl-2-pyrrolidone) hydrogels loaded with silver NPs (Figure 6). They called 
this technique the breathing-in/breathing-out (BI-BO) method. The idea behind this BI-BO process 
relies on alternating changing solutions that can cause the hydrogel to swell and shrink. Therefore, 
during an initial swelling process, the NPs are diffused into the hydrogel. In a second shrinking 
process step, the particles are encapsulated into the hydrogel network. The crosslinking degree and 
the NPs’ content had a great influence on the antibacterial efficacy. Thus, the number of BI-BO cycles 
is intimately related with the antibacterial activity; in fact, an optimal bactericidal activity is reported 
after three cycles against Escherichia coli.  
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Figure 6. Encapsulation of silver nanoparticles within a hydrogel following the 
breathing-in/breathing-out (BI-BO) methodology. Reproduced with permission from [51]. 

4.1.2. Formation of the Hydrogel in the Presence of NPs 

This methodology, employed by Yu et al. [48], is based on the incorporation of nanoparticles 
into hydrogels by using freeze-thaw cycles. They described the preparation of poly(vinyl 
alcohol)/poly(N-vinyl pyrrolidone) (PVA-PVP) hydrogels bearing silver nanoparticles by using this 
approach. According to the authors’ finding, this methodology permitted the fabrication of 
hydrogels without significant aggregation of the silver nanoparticles. Furthermore, Travan et al. [52] 
took advantage of this approach to incorporate silver NPs in the presence of a bioactive 
chitosan-derived polysaccharide solution. This solution is a lactose-substituted chitosan, 
1-deoxylactit-1-yl chitosan, named “Chitlac” (depicted in Figure 7). Once the nanoparticles have 
been dispersed in the Chitlac solution, the latter was mixed with an alginate solution, thus forming 
the final hydrogel. The role of the branched polysaccharide Chitlac is crucial in the formation and 
stabilization of well-dispersed silver NPs. 

4.1.3. Fabrication of Hydrogels and Nanoparticles Simultaneously 

Fullenkamp et al. [21] employed this strategy for the fabrication of a silver-releasing 
antibacterial hydrogel. In their strategy depicted in Figure 8, the antibacterial hydrogel 
simultaneously permits the silver nanoparticle formation and gel curing. For that purpose, they 
synthesized water-soluble polyethylene glycol (PEG) polymers bearing reactive catechol moieties. 
Silver nitrate (precursor of the silver nanoparticles) oxidizes the catechol groups leading to covalent 
cross-linking. Interestingly, this oxidation and, thus, hydrogel formation occur simultaneously with 
a reduction of Ag(I). The resulting hydrogels were found to inhibit bacteria growth, without 
significantly affecting the mammalian cell viability. 

In addition, Gonzalez-Henriquez et al. [53,54] also generated in situ nanoparticles embedded 
into a hydrogel matrix acting as a container and stabilizer during the nanoparticle formation. This 
method was realized using AgNO3 as the silver source. Additionally, hydroxyl ethyl methacrylate 
monomer (HEMA), crosslinking agents diethylene glycol methacrylate (DEGDMA) and 
polyethylene glycol diacrylate (PEGDA) and a photoinitiator (Irgacure 651 or 2959) were used for 
the hydrogel synthesis. The reaction mixture was irradiated with a lamp, UV = 365 nm, forming the 
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hydrogel and the Ag+ reduction simultaneously. This procedure enhances the stability of the silver 
NPs and improves the spatial dispersion, as well. Quantitative assays show that certain types of 
hydrogel present an important biocide property, by reducing 99.9% of bacterium E. coli. 

 
Figure 7. (a,b) Transmission electron microscopy (TEM) images of silver nanoparticles embedded in 
a 1-deoxylactit-1-yl chitosan (Chitlac) solution obtained at different magnifications; (c) silver 
nanoparticles size distribution histogram based on the TEM image in (b); (d) TEM image of silver 
nanoparticles formed on the polymeric chains of Chitlac; (e) schematic representation of the 
polymeric chains of Chitlac and its interaction with Ag. Reproduced with permission from [52]. 

Finally, as a summary, it is worth mentioning that, independent of the fabrication approach 
employed (depicted above), two crucial aspects need to be considered in the preparation of 
antimicrobial hydrogels using nanoparticles. The first aspect involves the nanoparticle dispersion. 
The most extended approach to improve the nanoparticle dispersion resorts to the modification of 
the nanoparticle surface functionality and a high spatial dispersion to avoid the agglomeration of the 
metallic particles. As a result, the interactions between the hydrogel and the nanoparticles are 
improved, enhancing the interaction of the material with its surrounding environment, where the 
bacteria are located [55]. The second important aspect that requires consideration is the cytotoxicity 
associated with the nanoparticles employed. The different alternatives reported aim to reduce the 
nanoparticles cytotoxicity to mammalian cells while maintaining antimicrobial activity. Das et al. 
[56] proposed the use of the counterion of positively-charged hydrophilic hydrogelators. In 
particular, they evidenced a direct relation between the counterion of a positively-charged amino 
acid-based hydrogelator (able to change from chloride to a hydrophobic carboxylate) and the 
minimal inhibitory concentration (MIC) when tested against Gram-positive bacterial and fungal 
strains. Das et al. found that the MIC for Gram-positive B. subtilis decreased from 10.0 down to 2.0 
μg/mL when the chloride was exchanged for n-hexanoate. More interestingly, they found that the 
toxicity towards HepG2 and NIH3T3 mammalian cells also decreased to a large extent. 
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Figure 8. Molecules employed and reaction scheme for the fabrication of composite antibacterial 
hydrogels in one single step. branched catechol-derivatized poly(ethylene glycol) cPEG was used to 
form hydrogels and mono catechol-derivatized poly(ethylene glycol) mPEG-Cat was used for model 
gel permeation chromatography (GPC) studies of the reaction. Catechol reduction of Ag(I) allows for 
quinone-initiated radical coupling to catechols, as well as simultaneous silver nanoparticle 
formation. Reproduced with permission from [21]. 

4.2. Hydrogels Loaded with Antibiotics and Antimicrobial Agents 

Hydrogels, most of them having a hydrophilic nature, are able to load low molecular weight 
antibiotics and antimicrobial agents into their network. Some examples of antibiotics that have been 
incorporated within hydrogels include ciprofloxacin [25,26,57], gentamicin [58], teicoplanin [24] and 
amoxicillin [59]. Other strategies have been proposed in which the hydrogels were designed to deliver 
broadly-acting antimicrobial agents that, in contrast to antibiotics, do not develop antimicrobial 
resistance [27–29,60–64]. 

Marchesan et al. [25] used ciprofloxacin antibiotics to fabricate antimicrobial hydrogel. These 
were constructed by self-assembly of ciprofloxacin with the hydrophobic tripeptide (DLeu-Phe-Phe). 
The structures of the hydrogel components are shown in Figure 9. Interestingly, the drug is 
incorporated within the hydrogel by non-covalent interactions and provides an excellent means to 
retain the antimicrobial activity of the hydrogel over a prolonged release timescale [25,57]. 
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Figure 9. Chemical structures of both ciprofloxacin (CIP) and tripeptide DLeu-Phe-Phe; these 
structures are able to self-assemble to form a hydrogel following a pH trigger. Reproduced with 
permission from [25]. 

Antimicrobial agents such as amphotericin B (AmB) have been also incorporated into 
hydrogels. An illustrative example of this strategy was reported by Hudson et al. [29]. As shown in 
Figure 10, they prepared dextran hydrogels bearing AmB covalently anchored by the reaction 
between the amine groups present in the AmB and the aldehyde groups provided by the dextran 
molecule. Injectable systems of this type of compounds could be used as a treatment for local  
antifungal infections. 

 
Figure 10. Conjugation of amphotericin B (AmB) to oxidized dextran and the incorporation of the 
dextran-CHO-AmB into a carboxymethylcellulose (CMC)-dextran gel. Reproduced with permission 
from ref. [29]. 

5. Hydrogels with Inherent Antimicrobial Properties 

In addition to the strategies depicted above to fabricate antimicrobial hydrogels by charging the 
hydrogels with different antimicrobial molecules (drugs, antibiotics, etc.) in a non-covalently 
manner, polymeric materials with inherent antimicrobial properties have been proposed to 
overcome some of their limitations. In particular, the effective lifetime of hydrogels loaded with 
nanoparticles or antimicrobial compounds is rather limited and directly depends on the drug 
diffusion time. Herein, we will limit our discussion to three of the most extended inherent 
antimicrobial polymers employed in the elaboration of hydrogels, i.e., synthetic polymers, 
antimicrobial peptides and natural polymers, focusing on the use of chitosan. 
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5.1. Synthetic Hydrogels with Inherent Antimicrobial Properties 

As reported by Li et al. [41], there is an insistent need to further develop novel antimicrobial 
hydrogels from synthetic well-defined molecular structures and biodegradable as well as  
cost-effective materials. Further requirements include the possibility of be moldable/processable, 
particularly interesting for in situ applications. In order to fulfill these requirements, Li et al. [41] 
described an effective approach of producing charged hydrogels using noncovalent interactions, 
thus overcoming many of the issues plaguing existing antimicrobial hydrogels. They fabricated  
stimulus-responsive antimicrobial gels formed from stereocomplexation of biodegradable  
poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and a charged 
biodegradable polycarbonate triblock polymer (i.e., poly(carbonate)-b-poly(D-lactide) 
(PDLA-CPC-PDLA)) (Figure 11). The stereocomplexes were found to exist as soluble micelles at 
room temperature in aqueous solution; however, upon heating to physiological temperature  
(ca. 37 °C), gel-like materials were formed. More interestingly, this drastic change in the material 
properties is accompanied by a significant increase in antimicrobial activity against 
Gram-positive/Gram-negative bacteria, fungi and microbial biofilms. 

 
Figure 11. Chemical structures of the mixed micelle solution containing 
poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and 
poly(carbonate)-b-poly(D-lactide) (PDLA-CPC-PDLA). Schematic illustration (a) and pictures of 10% 
w/v solution at 25 °C (b) and at 37 °C (c). At 25 °C, the solution is a clear fluid, and each polymer 
forms flower-type micelles in an aqueous environment (d). Upon heating at 37 °C for 30 min, the 
solution turns into an opaque gel based on stereocomplex formation between enantiomeric pure 
polylactide segments in the micelle cores (e). Reproduced with permission from [41]. 

5.2. Hydrogels Based on Antimicrobial Peptides  

Synthetic cell-adhesive polypeptide hydrogels with inherent antibacterial activity have been 
explored to facilitate cell adhesion, proliferation and/or differentiation, in particular for wound 
healing applications. In general, antimicrobial peptides (AMPs) have a cationic net charge and 
amphiphilic structure and are, thus, able to establish interactions with the negatively-charged  
cell membrane [65]. 

Illustrative examples of employing polypeptides to fabricate antimicrobial hydrogels have been 
reported by Schneider and coworkers [31,66], Song et al. [33] or Zhou et al. [32]. For instance, in the 
work of Schneider et al., they developed a family of self-assembling β-hairpin peptides able to form 
hydrogel networks. The composition of the peptides could be varied from a lysine-rich amphiphilic 
peptide (i.e., MAX1) [32,33,67] to an arginine-rich polypeptide [68–70]. More importantly, these 
AMPs are very efficient to combat multidrug-resistant bacteria, MRSA [30]. A precise AMP 
composition (i.e., the peptide containing six arginine residues, PEP6R [31]) was reported to be highly 
efficient to eradicate bacteria, such as S. aureus, E. coli and P. aeruginosa, while remaining 
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non-cytotoxic towards mammalian cells. In contrast to Schneider, Song et al. [33] fabricated 
hydrogels using a series of polypeptides poly(lysine-co-alanine) (Lys)x(Ala)y crosslinked with 
six-arm PEG-amide succinimidyl glutarate. This approach equally permitted the variation of the 
relative amount of alanine and lysine in the compound. As a result, the authors evidenced that  
poly(Lys)60(Ala)40 showed selective antibacterial properties, i.e., they are able to kill E. coli and  
S. aureus bacteria while exhibiting superior mammalian cell adhesion and cell proliferation activities. 
Finally, Zhou et al. [32] employed epsilon-poly-L-lysine-graft methacrylamide (EPL-MA) to fabricate 
antimicrobial hydrogels. The antimicrobial activity of the EPL-MA hydrogels immobilized onto 
plastic surfaces was evaluated, and these studies established that these hydrogels are broadly active 
against bacteria and fungi, for example, C. albicans, P. aeruginosa, S. aureus, E. coli and F. solani. 

5.3. Natural Polymers with Inherent Antimicrobial Properties 

Amongst the different available natural polymers including collagen [61], chitosan is, without 
any doubt, the most extensively explored polymer for the elaboration of antimicrobial hydrogels. 
Chitosan is a biocompatible and biodegrade linear polysaccharide able that exhibits low toxicity, 
with a hydrophilic nature and with low production costs [71–73]. Moreover, since chitosan is weakly 
basic, its amino groups are readily protonated in an acidic medium, enabling the interaction with the 
bacterial cell membrane, therefore providing exceptional antimicrobial properties [37,74]. 

Chitosan has been used as the base for the elaboration of multiple antimicrobial hydrogel 
systems. Selected examples of the strategies explored using chitosan as an antibacterial are depicted 
below [74].  

5.3.1. Chitosan Immobilization at the Surface of a Particular Material 

For instance, Chen et al. [75] immobilized chitosan onto poly(N-isopropylacrylamide) 
(PNIPAAm) gel/polypropylene (PP) nonwoven composites. They first activated the surface and 
applied UV light to produce the graft polymerization of NIPAAm gel at the PP surface. In a second 
step, chitosan was anchored at the surface using the cross-linking agent, glutaraldehyde (GA). These 
hydrogels were tested against E. coli and S. aureus, displaying antibacterial activity.  

5.3.2. Chitosan Modification by Using the Amino Side Groups Present along the Main Chain 

The chemical modification of the amino side groups can be employed to quaternize them, thus 
improving the antimicrobial properties of chitosan. The approach developed by Li et al. [76] to 
synthesize antimicrobial hydrogels based on quaternized ammonium chitosan-graft-PEG methacrylate 
(qC-g-EM) with variable alkyl chain lengths using two different pathways is depicted in Figure 12. 
The authors establish that the alkyl chain length of the quaternizing agent from trimethylammonium 
(TM) to dimethyldecylammonium (DMD) plays a key role in the efficacy against Gram-positive  
S. aureus, but not against Gram-negative bacteria E. coli or P. aeruginosa.  
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Figure 12. Scheme of the synthesis for the fabrication of modified chitosan antimicrobial hydrogels. 
Trimethylammonium chitosan-g-poly(ethylene glycol) methacrylate (TMC-g-EM), 
dimethylhexylammonium chitosan-g- poly(ethylene glycol) methacrylate (DMHC-g-EM) and 
dimethyldecylammonium chitosan-g- poly(ethylene glycol) methacrylate (DMDC-g-EM) 
dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) 
methacrylate (DMDC-Q-g-EM) Reprinted with permission from [76].  

5.3.3. Encapsulation and/or Immobilization of Chitosan within the Hydrogel Structure 

Another interesting strategy to provide antimicrobial properties to inert hydrogels involves the 
immobilization of chitosan within a hydrogel. This methodology has been employed by Liu et al. 
[35], Zhao et al. [77] and Noppakundilograt et al. [78]. For instance, in the work of Liu et al., chitosan 
was immobilized onto temperature-sensitive poly(N-isopropylacrylamide/polyurethane 
(PNIPAAm/PU) hydrogels. The authors examined the antibacterial behavior of the hydrogels before 
and after grafting. They concluded that after chitosan modification, the hydrogel grafted nonwoven 
cellulose fabrics demonstrated an antibacterial activity to S. aureus and E. coli with an antibacterial 
efficiency of about 80%. 

Finally, other strategies employed chitosan as a component in the formation of polyelectrolyte 
complex hydrogels [79] or to form hydrogels by crosslinking reactions [80–82].  

6. Hydrogels with Both Antifouling and Antimicrobial Properties 

Another interesting characteristic, besides antimicrobial activity, that would synergistically 
prevent bacterial contamination is the antifouling property. Several biomedical applications need 
materials that possess low fouling capacity. In general, polymeric materials are prone to protein 
adsorption due to their hydrophobic nature. Protein fouling can occur in few seconds after 
implantation and exposure to body fluids, resulting in blood clots and subsequent thrombosis. Once 
the proteins form the topmost layer on the surface, microbes, such as bacteria and fungi, can easily 
anchor onto the surface, generating a biofilm, finally leading to severe infections. 

Several groups reported studies attempting to combine antimicrobial properties with 
antifouling behavior in order to additionally reduce the initial bacterial attachment to the  
scaffold [39,40]. An illustrative example of hydrogels combining both properties was reported by  
Liu et al. [39] who described the fabrication of hydrogels bearing intrinsically antifouling 
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polyethylene glycol (PEG)-based hydrogels combined with polycarbonate groups (polycarbonate 
containing quaternary ammonium groups, aminated polycarbonate (APC)). The synthesis of these 
hydrogels is depicted in Figure 13. Briefly, they prepared thiol-terminated block copolymers 
composed by PEG and cationic polycarbonate segments fabricated via an organocatalytic ring 
opening polymerization (ROP) at room temperature. The amount of randomly-distributed 
hydrophobic ethyl groups and quaternary ammonium groups could be thus easily varied 
(Figure13a). The cationic PEG-APC linear polymers were then turned into hydrogels by using a  
tetra-acrylate functional PEG that reacted with the thiol-containing APC. As a result, a solution of 
star-shaped PEG, which was partially conjugated with APC, was obtained, then the addition of a 
stoichiometric amount of tetra-sulfhydryl PEG results in gelation within a few minutes (Figure 13b). 
Finally, in order to mimic a catheter surface, the gel was supported on silicone rubber. It is worth 
mentioning that these hydrogels evidenced an effective synergistic antifouling and antimicrobial 
activity both against S. aureus and E. coli. 

Another example of a simultaneously antifouling and antimicrobial hydrogel was reported by 
Zhao et al. [83]. They fabricated hybrid poly(N-hydroxyethyl acrylamide) (polyHEAA)/salicylate 
(SA) hydrogels and tested them, attempting to identify their antifouling and antimicrobial 
properties separately. On the one hand, the antifouling efficacy of polyHEAA hydrogels was 
evaluated exploring the initial adhesion of proteins, cells and bacteria. On the other hand, the 
authors evaluated the antimicrobial activity of polyHEAA/SA hydrogels against both 
Gram-negative (E. coli) and Gram-positive (S. epidermidis) bacteria. They concluded that the 
polyHEAA/SA hydrogels displayed high surface resistance to protein adsorption, cell adhesion and 
bacteria attachment and also presented excellent antibacterial properties against both 
Gram-negative and Gram-positive bacteria.  

 
Figure 13. Synthetic scheme for the fabrication of (a) aminated polycarbonates (APCs); (b) PEG-APC 
hydrogel; and (c) hydrogel coating onto silicone rubber surface. Reproduced with permission from 
[39]. TEOA: triethanolamine. RS: Silicon rubber. 
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Other recent works reported by Liu et al. [39] and Cao et al. [40] reported the use of synthetic 
polymers to produce simultaneously antifouling and antimicrobial hydrogels. Liu et al. employed 
polycarbonate and poly(ethylene glycol) as hydrogel components. Cao et al. developed zwitterionic 
materials, poly(2-((2-hydroxyethyl)(2-methacryloyloxy)ethyl)(methyl) ammonio)acetate (pCBOH1) 
and poly(2-(bis(2-hydroxyethyl)(2-(methacryloyloxy)ethyl ammonio)acetate) (pDBO112), to form 
the hydrogels. These materials are, under neutral or in basic conditions, in their zwitterionic form, 
exhibiting an ultra-fouling behavior. On the contrary, in acidic conditions, they are positively 
charged and exhibit antimicrobial properties.  

7. Design of Antimicrobial Hydrogels with Stimuli-Responsive Polymers  

The concept of stimuli-responsive hydrogels refers to water-swollen, chemically- or  
physically-crosslinked compounds that can undertake large changes in volume or shape as a result 
of a slight variation of the environmental conditions [84–87]. These hydrogels have been employed 
for different purposes, including actuators [88–90], as sensors [91], or in biomedical applications, 
such as tissue engineering applications [92], or as scaffolds for cell culture [5]. 

The use of stimuli-responsive polymers has been also extended to the fabrication of 
antimicrobial hydrogels. Two main advantages have been reported in the use of stimuli-responsive 
macromolecules in the preparation of antimicrobial hydrogels. On the one hand, under certain 
conditions, the antimicrobial agent can be protected from the environment [59]. On the other hand, it 
is possible to take advantage of changes in the environment to deliver a particular antimicrobial 
agent [93]. 

Different hydrogels that respond to pH, temperature, electric fields or even combining 
responses to different stimulus have been described in the recent literature (Table 2). Hydrogels that 
respond to changes in the environmental pH have been, for example, reported by Chang et al. [59]. 
They described the fabrication of chitosan/poly-γ-glutamic acid nanoparticles incorporating 
amoxicillin to provide pH-sensitive hydrogels as efficient carriers for amoxicillin delivery. The 
prepared hydrogels allow for drug protection during transport, which is still a crucial issue when 
using antibiotics. The pH-sensitive hydrogels protect the nanoparticles from being destroyed by 
gastric acid. As a result, amoxicillin-loaded nanoparticles embedded within the hydrogel are 
protected and permitted amoxicillin interaction precisely with intercellular spaces, the site of H. 
pylori infection.  

Table 2. Summary of the most relevant stimuli-responsive antimicrobial hydrogels. 

Stimulus Polymers Employed References

pH 

Chitosan/poly(γ-glutamic acid) [59] 
Poly(acrylic acid) and poly(vinylpyrrolidone) [94,95] 
Poly(2-(bis(2-hydroxyethyl) (2-(methacryloyloxy) ethyl) ammonio) 
acetate) (pCBOH2) and poly(2-((2-hydroxyethyl)  
2-(methacryloyloxy)ethyl) (methyl) ammonio) acetate) (pCBOH1) 

[40] 

Temperature 

Poly(N-isopropylacrylamide) (PNIPAm)/quaternized 
methacrylamide (MA) [96,97] 

Quaternized chitosan and alpha, beta-glycerophosphate 
(alpha,beta-GP) [93] 

Poly(L-lactide)-bPEG)-b-poly((L-lactide) (PLLA-PEG-PLLA), 
poly(D-lactide)-bPEG)-b-poly((D-lactide) (PDLA-PEG-PDLA), and 
the cationic triblock polymer poly(D-lactide)-b-cationic 
poly(carbonate)-b-poly(D-lactide) (PDLA-CPC-PDLA) 

[41] 

Electric Field 
Polyelectrolyte poly(methyl vinyl ether-co-maleic acid) 
(PMVE/MA) crosslinked with polyethylene glycol (PEG) [63] 

Multiresponsive 
Hydrogel with monomers that respond to temperature PNIPA with 
redox-responsive poly(ferrocenylsilane) (PFS) macromolecules [98] 
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Changes in the environmental pH can induce in particular hydrogels changes in their behavior 
between antifouling and antimicrobial. A smart system with these properties was elaborated by  
Cao et al. [40]. They fabricated hydrogels based on poly(2-(bis(2-hydroxyethyl) (2-(methacryloyloxy) 
ethyl) ammonio) acetate) (pCBOH2) and poly(2-((2-hydroxyethyl) (2-(methacryloyloxy)ethyl) 
(methyl) ammonio) acetate) (pCBOH1). As depicted in Figure 14, in acidic media, these hydrogels 
become cationic and are able to bind to and kill bacteria. Interestingly, once the material has killed 
the bacteria, a change in environmental pH back to neutral or basic conditions converts the material 
to its zwitterionic form, and the dead bacteria can be now released from the hydrogel. In summary, 
these antimicrobial hydrogels are able both to kill bacteria and prevent the accumulation of dead 
bacteria at the hydrogel surface. 

Thermosensitive polymers, mainly polymers or copolymers of poly(N-isopropylacrylamide) 
(PNIPAm), have been widely used in the fabrication of thermoresponsive coatings [99–102]. In order 
to provide antibacterial properties to the thermoresponsive hydrogels, these are generally combined 
with antibacterial monomers. For instance, Chen et al. [96] and Dizman et al. [97] reported the 
fabrication of quaternized methacrylamide (MA) combined with NIPAm. At low temperature, these 
polymers were soluble, and high levels of antibacterial activity against both S. Aureus and E. coli 
were observed. This antibacterial activity is caused by the interaction of the polymer quaternary 
groups and the bacteria [96,97]. By increasing the temperature above the lower critical solution 
temperature (LCST), the polymers become insoluble, and the antimicrobial activity disappeared 
[97]. 

 
Figure 14. Fluorescence microscopy images of bacterial attachment on pCBOH1 in cationic form (a); 
pCBOH2 in cationic form (b); and poly(carboxybetaine methacrylate) pCBMA (c) hydrogels before 
hydrolysis and on pCBOH1 in zwitterionic form (d); pCBOH2 in zwitterionic form (e); and pCBMA 
(f) hydrogels after 16 h of hydrolysis in PBS. Cells with damaged cytoplasmic membrane are in red, 
and cells with intact cytoplasm membrane are in green. Reproduced with permission from [40]. 

Finally, also electrically-responsive anti-adherent hydrogels, as well as hydrogels that respond 
to more than one stimulus have been fabricated. On the one hand, the presence of ions diffusing in 
the hydrogels (known as “iontophoresis”) applying an electric field was employed by  
Fallows et al. [63] to finely tune the delivery and therefore the antimicrobial activity of a particular 
hydrogel. Finally, incorporating different sensitive polymers to more than one stimulus can 
synergistically improve the antibacterial properties of the hydrogel. An illustrative example of this 
approach was reported by Sui et al. [98] that combined in the same hydrogel monomers that respond 
to temperature, PNIPAm with redox-responsive poly(ferrocenylsilane) (PFS) macromolecules. 
Interestingly, the redox activity of the PFS chains in the hybrid hydrogels could be used to prepare 
PFS-PNIPAM-Ag composites in a facile in situ process. These composites presented strong 
antimicrobial efficiency against E. coli while maintaining a high biocompatibility with cells.  
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8. Hydrogel Toxicity 

According to the fact that several biomedical applications are described in this review, hydrogel 
toxicity must be included. This section describes important aspects that must be considered before 
choosing a particular hydrogel for a specific biomedical purpose. As a first example, studies of in 
vitro cytotoxicity of hydrogel-carbon nanotubes-chitosan (hydrogel-CNT-CH) composites on 
intestinal cells were presented by Bellingeri et al. [103]. These biomaterials are a promising system 
for drug delivery applications because this composite does not generate alterations in cellular redox 
equilibrium, toxicity or apoptosis; important characteristics to consider at the moment of designing a 
biomedical device.  

Another example are injectable thermosensitive hydrogels that provide local non-invasive 
platforms for sustained drug release, tissue engineering and cellular immunity. Dong et al. 
developed a novel self-supported thermosensitive hydrogel based on 
poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene 
glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) copolymer 
nanoparticles for locoregional paclitaxel delivery [104,105]. These studies demonstrated that the 
subcutaneously injected PECT hydrogel only provoked a mild inflammation response. Thus, when 
PECT was completely absorbed, the subcutaneous tissue would recover itself, and mature dermal 
fibrous tissue is formed. Additionally, the studies of the toxicity and in vivo biological effect 
assessments of an amphiphilic copolymer PECT nanoparticles and its self-supported hydrogel were 
evaluated by the same research group. In vitro cytotoxicity indicated that no cell cytotoxicity was 
observed when the concentration of PECT nanoparticles was up to 500 μg/mL, and also, no mutagenic 
effect and no genotoxicity were observed. In vivo intravenous injection of PECT nanoparticles 
demonstrated that the LD50 was approximately high at 2.564 g/kg compared with the control mice. 
The mice treated with daily the administration of PECT nanoparticles showed no differences in 
physical or behavioral alterations, body weight changes, biochemical and hematological parameters, 
nor organ coefficients. The in vivo chronic effect of PECT NP gel confirmed no toxic lesions to 
animals in a whole period of three months even when the dosage was high at 20 g/kg. These findings 
indicated that PECT nanoparticles and PECT NP gel were highly biocompatibility and did not 
provoke any side effects on body, which represented a new class of injectable and non-invasive 
systemic or site-specific delivery carriers [106]. 

Another interesting example to consider about toxicity is that explained by  
Bartholomay et al. [5] about mosquito-borne disease. This disease continues to remain a major threat 
to human and animal health and also arises as an impediment for socioeconomic development. 
Thus, the increasing mosquito resistance to chemical insecticides is a great public health concern. 
According to this problem, the use of nanoparticles (NPs) as a platform to deliver nucleic acid-based 
mosquitocidal molecules was developed. This research group proposed a method based on particle 
replication in non-wetting templates (PRINT) that was used as the master template fluorescently 
labeled with polyethylene glycol nanoparticles of specific sizes and charges (negative or positive). 
The biodistribution, persistence and toxicity of PRINT NPs were evaluated in vitro in mosquito cell 
culture and in vivo in Anopheles gambiae larvae. The excellent low cell and larval toxicity profiles, 
efficient internalization and widespread biodistribution make these NPs attractive candidates for 
dsRNA delivery in mosquitoes. The presence of NPs in head and ovaries may be indicators of 
contact uptake and vertical transmission capabilities, respectively. These attributes could be 
exploited to control adult, as well as larval mosquitoes [107].  

9. Conclusions 

In this manuscript, recent alternative methodologies to fabricate antimicrobial hydrogels have 
been discussed. In general, the methodologies reported up to date can be grouped into two main 
strategies. The first strategy is based on the incorporation of the antimicrobial agents (physically or 
covalently bonded) within the hydrogel. In the case of physically-bonded antimicrobial, the lifetime 
of the antimicrobial activity will be directly related to the releasing process. The second strategy 
takes advantage of the use of polymers with intrinsic antimicrobial properties to fabricate the 
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hydrogels. Polymers with inherent antimicrobial properties include, polymeric hydrogels 
constructed with cationic monomers, antimicrobial peptides or even naturally-occurring chitosan. 
The opposite charge of the cationic hydrogels related to the bacterial membrane enables the 
interaction through  
non-stereospecific mechanisms that finally lead to membrane disruption. Membrane disruption is 
another interaction mechanism different from what typically antibiotics do and prevents bacteria 
from gaining resistance while being active against current strains of multidrug-resistant bacteria.  

Another interesting aspect pointed out in this review is the possibility to precisely switch the 
antimicrobial activity depending on the environmental conditions. We have described how 
combining inherent antibacterial hydrogels with stimuli-responsive polymeric systems can precisely 
modulate the conditions in which one antimicrobial polymeric system has to be turned or remain 
otherwise inactive.  

Author Contributions: CMGH, MASV and JRH have worked together in the design and elaboration of the 
present review.  
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