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Abstract: A BiCuSeO system has been reported as a promising thermoelectric material and has
attracted great attention in the thermoelectric community since 2010. Recently, several remarkable
studies have been reported and the ZT of BiCuSeO was pushed to a higher level. It motivates us to
systematically summarize the recent reports on the BiCuSeO system. In this short review, we start
with several attempts to optimize thermoelectric properties of BiCuSeO. Then, we introduce several
opinions to explore the origins of low thermal conductivity for BiCuSeO. Several approaches to
enhance thermoelectric performance are also summarized, including modulation doping, introducing
dual-vacancies, and dual-doping, etc. At last, we propose some possible strategies for enhancing
thermoelectric performance of BiCuSeO in future research.

Keywords: BiCuSeO; thermoelectric; electrical conductivity; Seebeck coefficient; thermal conductivity

1. Introduction

Thermoelectric (TE) materials have been widely developed to provide a direct solution for
energy conversion between electricity and heat. As one of the most promising thermoelectric systems,
the BiCuSeO family was first reported in 2010 [1] and has attracted ever-increasing attention in recent
years [2–10].

BiCuSeO crystallizes in a layered ZrCuSiAs structure type with space group P4/nmm [11].
The crystal structure of BiCuSeO is formed by fluorite (Bi2O2)2+ layers and anti-fluorite (Cu2O2)2−

layers which stacking along the c-axis. (Bi2O2)2+ layers act as carrier reservoir while (Cu2O2)2− layers
are responsible for transporting carriers [1]. Pristine BiCuSeO is a p-type semiconductor, in which holes
are generated from either Cu- or Bi-vacancies which participate in transportation in the conductive
(Cu2O2)2− layers. Due to its layered structure, BiCuSeO shows anisotropic transport behaviors along
in-plane and out-plane directions for both electrical and thermal conductivity. The electrical and
the thermal transport properties along the in-plane direction outperform those along the out-plane
direction. However, the Seebeck coefficient is isotropic [7].

Compared with the state-of-the-art TE materials including lead and tin chalcogenides [12–18],
Bi2Te3-based systems [19–23], skutterudites [24–29], etc. BiCuSeO features lower-cost and non-toxic
elements and better thermal stability in the medium temperature range. Additionally, due to
the large Seebeck coefficient, low thermal conductivity and relatively low electrical conductivity,
the dimensionless thermoelectric figure-of-merit (ZT) value of the BiCuSeO system has boosted to
the maximum ZT of 1.5 [10], from the initial 0.76 for Sr-doped samples [1], in the past six years.
The obvious enhancement in ZT subverts the general opinions that thermoelectric oxides usually have
low ZT values due to poor electrical conductivity and high thermal conductivity.

Since the review paper summarized by Zhao et al. in 2014 [11], a lot of new achievements
have been obtained in BiCuSeO system, which motivate us to update these results to show the
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current progress in BiCuSeO system. In this review, we summarize the latest attempts and methods
on optimizing thermoelectric properties of BiCuSeO system, and then introduce several opinions
on the origins of low thermal conductivity. Additionally, some typically promising approaches
including modulation doping [8], dual-vacancies [9] and dual-doping [10] are summarized. In the end,
we propose some outlooks and perspectives for future research.

2. A Short Review for Various Attempts to Optimize BiCuSeO System

2.1. Enhancing Thermoelectric Properties through Doping and Compositing

It is well known that the thermal conductivity of BiCuSeO is impressively low. Thus, most recent
attention has focused on improving the electrical transport properties through various attempting
approaches. For instance, considering the carrier concentration of undoped BiCuSeO is as low as
~1 × 1018 cm−3 [11], the most general approach is to enhance the carrier concentration by doping
on Bi sites or Cu sites. Indeed, the carrier concentration was increased by alkaline earth elements
M2+ (M = Mg, Ca, Sr, and Ba) doping [1,2,4,30]. Besides these alkaline-earth elements, Ag, Na, La,
Zn, Cd, and S doping in BiCuSeO [31–38] were reported and exhibited potential performance in
medium temperature range. In addition, the compositing with high electrical conductive phases
(La0.8Sr0.2CoO3 [39], Cu2Se [40]) could successfully improve the thermoelectric properties of pristine
BiCuSeO through enhancing the electrical conductivity.

2.2. Developing Less Time-Consuming Methods

Initially, it was suggested that polycrystalline BiCuSeO compounds should be synthesized through
a multi-step solid-state reaction (SSR), which is complicated and time-consuming. Therefore, any facile
or time-saving methods are advanced for future scale-up of resultant products. Ren et al. [41] explored
the synthesis of polycrystalline Bi1−xPbxCuSeO through an ultrafast self-propagating high-temperature
synthesis (SHS) method. In addition, Yang et al. [42] adopted SHS to synthesize polycrystalline
Bi0.94Pb0.06CuSeO and further explored the thermodynamic reaction mechanism in details. It was
confirmed that the entire reaction process consists of four parts. External heating initiated two rapid
SHS reactions (2Bi + 3Se = Bi2Se3, 2Cu + Se = Cu2Se) which emitted heat and drove the other two
reactions (Bi2Se3 + 2Bi2O3 = 3Bi2SeO2, 3Bi2SeO2 + 3Cu2Se = 6BiCuSeO). Through optimizing reaction
parameters such as sample density and reaction atmosphere, etc. the ZT value could be enhanced to
1.2 at 923 K for Bi0.94Pb0.06CuSeO [43].

Although the mechanical alloying (MA) method was applied to BiCuSeO systems in 2013 [32],
it was not widely used because of the uncontrollable Bi2O3 impurity. Compared with solid-state
reaction, mechanical alloying is simple, less time-consuming, and much more convenient for large-scale
productions. Taking into account these advantages, Wu et al. systematically investigated the
mechanical alloying mechanism for BiCuSeO [33], instead of raw materials (Bi, Bi2O3, Cu, and Se)
powders used in the solid-state reaction, Bi, CuO, and Se were selected as starting powders to avoid
the Bi2O3 second phase. Encouragingly, pure single phase BiCuSeO was obtained through ball milling
at 500 rpm for 7 h. Apparently, the above results confirmed that mechanical alloying is an effective
and promising method to synthesize BiCuSeO [8,24].

2.3. Attempting to Synthesize BiCuSeO Single Crystals

In BiCuSeO systems, due to the layered structure, carrier scattering along the in-plane direction is
much smaller than that along the out-plane direction. Therefore, we can expect a much higher carrier
mobility in the single crystal than that of 22 cm2·V−1·s−1 obtained in polycrystalline BiCuSeO [11],
hence a considerable ZT value. To date, it is still a challenge to synthesize large size BiCuSeO single
crystal. Dong et al. [44] made a significant step in BiCuSeO single crystal synthesis. They successfully
synthesized BiCuSeO single crystals through a flux method at 963 K, 1003 K and 1048 K, respectively.
BiCuSeO crystals with a typical size of 2.5 × 2 × 0.05 mm3 were obtained [45]. Meanwhile, Wu et al. [46]
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synthesized Bi1−xPbxCuSeO film with high texture orientation through the pulsed laser deposition
technique on the SrTiO3 (001) substrates, a high power factor of ~1.2 mW·m−1·K−2 at 673 K was
realized. Therefore, a higher ZT can be expected in BiCuSeO single crystals. However, the challenge
still lies in obtaining sufficiently large single crystals to investigate the thermal transport properties.

Apart from various attempts to enhance thermoelectric performance mentioned above,
the interested readers are encouraged to refer to these extensive works that have been done on
BiCuSeO systems, such as ultrathin BiCuSeO nanosheets [47], elastic and thermal properties [48,49],
phonon transport [50,51], oxidation states [52], Cu vacancies [53,54], thermal stability [55,56], and the
TEM study on BiCuSO and BiCuSeO that shows that Cu deficiency also plays a role in the stability and
properties of those layered oxychalcogenides [54]. All of these studies largely enrich the understanding
of BiCuSeO systems and have a great sense for future research.

3. Exploring the Origins of Low Thermal Conductivity in BiCuSeO

The large ZT value of BiCuSeO is derived from its low thermal conductivity (κ) in temperatures
ranging from 300 K (~0.9 W·m−1·K−1) to 923 K (~0.45 W·m−1·K−1) [6]. The low thermal conductivity
of BiCuSeO system is supposed to originate from its strong crystal anharmonicity (larger Grüneisen
parameter, γ ~1.5) [11], weak chemical bond (Young’s modulus, E ~78.8 GPa at 300 K) [3], and low
Debye temperature (ΘD ~243 K) [11]. Thus, any further detailed investigations on its thermal
conductivity mechanism will help readers to clarify the low thermal transport behaviors. Here, we
introduce several of the latest studies that may reveal the origins of low thermal conductivity for BiCuSeO.

3.1. Low Thermal Conductivity Due to In-Layer/Interlayer Anharmonic Vibrations

Ding et al. [57] systematically studied the vibration modes of BiCuSeO and proved that the
anharmonic vibrations and structural scattering of phonons are partially caused by in-layer and
interlayer off-phase vibration modes. Apart from this, the calculated Grüneisen parameters indicate
that Bi is the source of strong crystal anharmonicity.

Figure 1 shows the thermal conductivity of BiCuSeO. Given a defect-free BiCuSeO crystal, both
calculated values and experimental values are almost fitted at high temperatures. However, at low
temperatures, the difference between two lines is very significant. To explain the origin of this
difference, it is necessary to analyze the phonon spectrum and the power spectrum (PS) of velocity
autocorrelation function (VAF) for BiCuSeO. Through analyzing the vibration modes of each branch
and studying the atomic motions, an unexpected movement was found. The Cu-Se atom layer vibrates
synchronously and the Bi-O atom layer vibrates with a different phase. This discovery directly indicates
the existence of interlayer interaction.

Materials 2017, 10, 198  3 of 16 

 

realized. Therefore, a higher ZT can be expected in BiCuSeO single crystals. However, the challenge 
still lies in obtaining sufficiently large single crystals to investigate the thermal transport properties. 

Apart from various attempts to enhance thermoelectric performance mentioned above, the 
interested readers are encouraged to refer to these extensive works that have been done on BiCuSeO 
systems, such as ultrathin BiCuSeO nanosheets [47], elastic and thermal properties [48,49], phonon 
transport [50,51], oxidation states [52], Cu vacancies [53,54], thermal stability [55,56], and the TEM 
study on BiCuSO and BiCuSeO that shows that Cu deficiency also plays a role in the stability and 
properties of those layered oxychalcogenides [54]. All of these studies largely enrich the 
understanding of BiCuSeO systems and have a great sense for future research. 

3. Exploring the Origins of Low Thermal Conductivity in BiCuSeO 

The large ZT value of BiCuSeO is derived from its low thermal conductivity (κ) in temperatures 
ranging from 300 K (~0.9 W·m−1·K−1) to 923 K (~0.45 W·m−1·K−1) [6]. The low thermal conductivity of 
BiCuSeO system is supposed to originate from its strong crystal anharmonicity (larger Grüneisen 
parameter, γ ~ 1.5) [11], weak chemical bond (Young’s modulus, E ~ 78.8 GPa at 300 K) [3], and low 
Debye temperature (ΘD ~ 243 K) [11]. Thus, any further detailed investigations on its thermal 
conductivity mechanism will help readers to clarify the low thermal transport behaviors. Here,  
we introduce several of the latest studies that may reveal the origins of low thermal conductivity  
for BiCuSeO. 

3.1. Low Thermal Conductivity Due to In-Layer/Interlayer Anharmonic Vibrations 

Ding et al. [57] systematically studied the vibration modes of BiCuSeO and proved that the 
anharmonic vibrations and structural scattering of phonons are partially caused by in-layer and 
interlayer off-phase vibration modes. Apart from this, the calculated Grüneisen parameters indicate 
that Bi is the source of strong crystal anharmonicity. 

Figure 1 shows the thermal conductivity of BiCuSeO. Given a defect-free BiCuSeO crystal, both 
calculated values and experimental values are almost fitted at high temperatures. However, at low 
temperatures, the difference between two lines is very significant. To explain the origin of this 
difference, it is necessary to analyze the phonon spectrum and the power spectrum (PS) of velocity 
autocorrelation function (VAF) for BiCuSeO. Through analyzing the vibration modes of each branch 
and studying the atomic motions, an unexpected movement was found. The Cu-Se atom layer 
vibrates synchronously and the Bi-O atom layer vibrates with a different phase. This discovery 
directly indicates the existence of interlayer interaction. 

 
Figure 1. Calculated thermal conductivity. The black squares represent the calculated total thermal 
conductivity, and the red circles represent the experimental data. Reproduced with permission from 
Reference [57]. Copyright 2015, IOP Publishing. 

Figure 2 shows the calculated power spectrum (PS) of the velocity autocorrelation function 
(VAF). From the PS, the frequencies of different atomic motions are determined. As shown in Figure 2a, 
if the vibration frequencies of Bi and Se are synchronous, their peaks in the PS of self-VAF will 
appear at the same frequencies in the cross-VAF spectrum [57]. It is readily seen from the Figure 2a 

Figure 1. Calculated thermal conductivity. The black squares represent the calculated total thermal
conductivity, and the red circles represent the experimental data. Reproduced with permission from
Reference [57]. Copyright 2015, IOP Publishing.

Figure 2 shows the calculated power spectrum (PS) of the velocity autocorrelation function (VAF).
From the PS, the frequencies of different atomic motions are determined. As shown in Figure 2a, if the
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vibration frequencies of Bi and Se are synchronous, their peaks in the PS of self-VAF will appear at the
same frequencies in the cross-VAF spectrum [57]. It is readily seen from the Figure 2a that the negative
peaks in the PS of Bi/Se at 0.37 and 0.84 do not exist in the PS of Bi or Se. This means that the vibration
frequencies between Bi and Se are different, and proves the existence of interlayer off-phase interaction
by comparing with the above results. Similar to that shown in Figure 2a, negative peaks in the PS of
Cu/Se can be found at 0.47 and 0.75 THz in Figure 2b, confirming the in-layer interaction between Cu
and Se.
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Figure 2. Power spectrum of the self-and cross-VAF. (a) Power spectrum of self- and cross-VAF of Bi
and Se. Blue and beige lines represent Bi and Se self-VAF, respectively. The Bi/Se cross-VAF shows with
purple line; (b) Power spectrum of self- and cross-VAF of Cu and Se. Brown and purple lines represent
Cu and Se self-VAF, respectively. The Cu/Se cross-VAF is represented yellow line. Reproduced with
permission from Reference [46]. Copyright 2015, IOP Publishing.

The mode Grüneisen parameters were calculated by quasi-harmonic approximation. As shown in
Figure 3, at low frequency (<2.5 THz), due to the strong interaction between acoustic phonons and
optical phonons, acoustic phonons can be significantly scattered by the phonon–phonon Umklapp
processes. At middle frequency (2.5–6 THz), the mode Grüneisen parameters from approximately
2 to 2.5 are contributed by the heavy element Bi around the G and Z points. Considering that the
O is light and the O–O bonds are mainly involved to the Grüneisen parameters below 1, the large
mode Grüneisen parameters above 6THz are actually related to Bi–O bonds. Thus, the viewpoint that
large Grüneisen parameter of BiCuSeO almost entirely related to heavy Bi was confirmed by their
calculations. Overall, the low thermal conductivity was confirmed to derive from the in-layer and
interlayer off-phase vibration modes and heavy Bi.
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Figure 3. Mode Grüneisen parameters of BiCuSeO along the high symmetry path Z-A-M-G-Z-R-A.
The mode Grüneisen parameters of acoustic branches are shown with red squares, black circles are
related to the frequencies between 2.5 and 6 THz, and the phonon modes of O above 6 THz are shown
with blue diamonds. Reproduced with permission from Reference [46]. Copyright 2015 IOP Publishing.

3.2. Heavy Bi Is a Predominant Factor That Causes Low Thermal Conductivity

Saha [58] carried out the first-principles density functional theory (DFT) calculation to compare
the lattice dynamics, phonon dispersion, and Mode Grüneisen dispersion between BiCuSeO and
LaCuSeO. It was found that the better thermal insulator of BiCuSeO than that of LaCuSeO is likely
due to the mass difference between Bi and La. Figure 4 shows the calculated phonon dispersion
and DOS of (a) BiCuSeO and (b) LaCuSeO along the high-symmetry lines of the Brillouin zone.
For the low-frequency modes, because of the same structure and stable interatomic force (IF) constants,
the mode frequency difference of BiCuSeO and LaCuSeO can be described by the mass difference.
Figure 4c puts the calculated phonon dispersion of BiCuSeO and LaCuSeO into one picture for a direct
comparison. In Figure 4d, it can be seen that the red solid lines and the blue dashed lines fit very well
in the low-frequency acoustic region, which means the difference between BiCuSeO and LaCuSeO at
low-frequency acoustic phonons mode is caused by atomic mass discrepancies between Bi and La.
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Figure 4. Red line and blue line in (a,b) represent the calculated phonon dispersion of BiCuSeO and
LaCuSeO along the high-symmetry lines of the Brillouin zone; (c) Calculated phonon dispersion
curves of BiCuSeO (red) and LaCuSeO (blue) for a direct comparison; (d) Red solid lines represent the
normalized phonon dispersion data of BiCuSeO (a), while the blue dashed lines represent the calculated
original phonon dispersion data of LaCuSeO. Reproduced with permission from Reference [47].
Copyright 2015, The American Physical Society.
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Figure 5a shows the atomic displacement patterns for the lowest-frequency optical (LFO) mode
of BiCuSeO (Eu (IR,TO1) ~53 cm−1) and LaCuSeO (Eg (R,1) ~62 cm−1). The larger displacement
in heavy Bi atoms is observed, which leads to higher anharmonic effects. Figure 5b shows the
mode Grüneisen dispersion of above lowest-frequency optical (LFO), longitudinal acoustic (LA), and
transverse acoustic (TA) modes in BiCuSeO and LaCuSeO. Because LFO mode Eu (IR,TO1) in BiCuSeO
behaves as a quasi-acoustic mode [58], the acoustic modes can be hybridized more strongly in BiCuSeO
than in LaCuSeO. It can lead to an extensive acoustic-optical phonon scattering and then low thermal
conductivity. Overall, the same structure as they are, heavy Bi outperforms La in reducing the thermal
conductivity (κ). It illustrates the contribution of the heavy Bi element to the low thermal conductivity
in BiCuSeO. In 2016, Saha et al. [48] used first-principle calculations to continuously explore the origins
of low thermal conductivity of BiCuSeO. Compared with LaCuSeO, they found that BiCuSeO has
a lower shear modulus, lower Young’s modulus, lower acoustic velocity, lower Debye temperature,
and larger Grüneisen parameter.
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from Cu atoms and partly from Bi atoms. Through first principle calculation and in-situ neutron 
diffraction experiments, a low-energy vibrational mode of Cu in BiCuSeO was unveiled. Powder 
neutron diffraction data on BiCuMO (M = S, Se, Te) revealed the atomic displacement parameter 
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illustrates that Cu possesses a stronger local mobility. 

Figure 5. (a) Atomic displacement patterns Eu (IR,TO1) ~53 cm−1 and Eg (R,1) ~62 cm−1 for
the respective lowest-frequency optical (LFO) mode in BiCuSeO (left) and in LaCuSeO (right),
arrows represent the atomic movement directions; (b) Mode Grüneisen dispersion of the above LFO
mode (blue) in comparison to that of the longitudinal acoustic (red) and transverse acoustic (green)
movement in BiCuSeO (left) and in LaCuSeO (right), respectively. Reproduced with permission from
Reference [47]. Copyright 2015, The American Physical Society.

3.3. Dose Cu Matter in Low Thermal Conductivity?

Vaqueiro et al. [59] believe the origins of low thermal conductivity of BiCuSeO mostly comes
from Cu atoms and partly from Bi atoms. Through first principle calculation and in-situ neutron
diffraction experiments, a low-energy vibrational mode of Cu in BiCuSeO was unveiled. Powder
neutron diffraction data on BiCuMO (M = S, Se, Te) revealed the atomic displacement parameter (ADP)
among the atoms. As shown in Figure 6, in all the three samples (BiCuMO, M = S, Se, Te), the ADP for
Cu is persistently larger than those for other elements in the whole temperature range. It illustrates
that Cu possesses a stronger local mobility.
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Phonon vibrations for BiCuSeO were also calculated in order to explore the origins of the low
thermal conductivity. As shown in Figure 7, the total vibrational DOS of BiCuSeO is projected on each
element. At low frequency, the VDOS of Cu is much higher than that of Bi, which indicates that the
Cu has a greater effect on total vibration than Bi for BiCuSeO. Meanwhile, through calculating the
mode-resolved Grüneisen parameter projected onto the atoms, Cu and chalcogen atoms were found to
contribute more to the large total Grüneisen parameter. The obtained conclusions are determined by
the following three comparisons: (1) The Cu–Se bond distance (2.5143 Å [59]) in BiCuSeO is longer than
that in CuGaSe2 (2.385 Å [60]) in the case of the same tetrahedral coordination for Cu; (2) The Einstein
temperature ΘE for Cu and for the rattler atom of skutterudite, LaFe4Sb12 [61] is comparable; (3) The
Cu–Se bond is soft and there is no suitable path for Cu mobility in layered structure. The Cu rattling
mode [59] in BiCuSeO derived from the weak Cu–Se bonding was put forward. In summary, it can be
seen that the presence of a localized low-energy vibrational mode on the Cu [59] contributes a great
deal to the low thermal conductivity of BiCuSeO.
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Generally, the contribution of high-frequency optical phonons to total lattice thermal conductivity
is so small that it can be ignored. However, in the BiCuSeO system, Shao et al. [51] found that
high-frequency (above 213 cm−1) optical phonons contributed more than one-third to the lattice
thermal conductivity through first-principles calculations. Kumar et al. obtained a similar result that
optical phonons can dramatically reduce lattice thermal conductivity κlat by a first principle phonon
analysis [62]. Both reports pointed out that the contribution of optical phonons is considerable and
should not be ignored, the results provide a promising route for further clarifying the origins of low
thermal conductivity of BiCuSeO.

3.4. Microstructures Investigations on Heavy Ba-Doped BiCuSeO

Extensive experiments confirmed that alkaline-earth metals doping is effective to enhance the
thermoelectric performance of Bi1−xMxCuSeO (M = Mg, Ca, Sr, Ba) [1,2,4,6,30,63,64], among them the
high-performance doped BiCuSeO systems exhibit the extremely low thermal conductivity. However,
trying to explain origins of low thermal conductivity via investigating on the microstructures of
these alkaline-earth-metal doped BiCuSeO remain largely unexplored. Feng et al. investigated the
microstructures of Bi0.875Ba0.125CuSeO using scanning transmission electron microscopy (STEM) [65],
and found a ubiquitous nano-scale BaSeO3 second phase in BiCuSeO matrix which played a positive
role for further reduction of the thermal conductivity. The solubility limit of Ba in BiCuSeO was
found to be less than 5% [65]. However, the highest ZT value was obtained in Bi0.875Ba0.125CuSeO,
where as high as 12.5% Ba was dissolved in the matrix. The visual observation of the second phase
BaSeO3 through STEM was a reasonable explanation of low thermal conductivity. As shown in
Figure 8c, the dark precipitates are BaSeO3 which widely exist in the Bi0.875Ba0.125CuSeO, but there are
no precipitates in Bi0.95Ba0.05CuSeO.
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Figure 8. Low-magnification micrographs of (a) BiCuSeO in TEM mode; (b) Bi0.95Ba0.05CuSeO in STEM
mode and (c) Bi0.875Ba0.125CuSeO in STEM mode; (d) Grains of Bi0.875Ba0.125CuSeO. Reproduced with
permission from Reference [65]. Copyright 2016, Elsevier Science.

Benefitting from the all-scale phonons scattering from the interface of the layered structure, the
Ba-Bi point defects and the BaSeO3 second phase, the lattice thermal conductivity of Bi0.875Ba0.125CuSeO
is lower than that of pristine BiCuSeO and Bi0.95Ba0.05CuSeO in the entire temperature range, as shown
in Figure 9.
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4. Typical Examples to Enhance Thermoelectric Performance of BiCuSeO

4.1. Enhancing Electrical Conductivity by Modulation Doping

The electrical conductivity is determined by carrier concentration (n) and carrier mobility (µ).
On the one hand, heavy doping can improve the carrier concentration significantly. On the other hand,
the excessive dopants decrease the carrier mobility obviously because of the intensive ionized impurity
scattering [66]. Therefore, the methods that enlarge the carrier mobility and maintain the carrier
concentration can be expected to enhance the electrical transport properties. Pei et al. [8] proposed
the utilization of 3D modulation doping in the synthesis of BiCuSeO. Even though modulation
doping indeed works in a 2D material, however, further clarification is needed to confirm it exists
in a 3D system. Figure 10a presents the pristine BiCuSeO which possesses relatively high carrier
mobility (~22 cm2·V−1·s−1) and low carrier concentration (~1.1 × 1018 cm−3) [11]. In contrast,
Figure 10c presents the uniformly heavy Ba-doped Bi0.875Ba0.125CuSeO with high carrier concentration
(~1.2 × 1021 cm−3) and low carrier mobility (~2.1 cm2·V−1) [2] due to large ionized impurity
scattering. Figure 10b presents the proposed mechanism of 3D modulation doping which is actually a
two-phase composite with undoped BiCuSeO and heavy-doped Bi0.875Ba0.125CuSeO each accounting
for 50 percent. Meanwhile, the Fermi level of modulation doping is higher than that of uniformly
doping and lower than that of the undoped sample. There is a proceeding that holes flow from doped
phase to undoped phase due to the successively small difference of chemical potential. Thus, the heavy
doped phase sustains the high carrier concentration while the undoped phase provides a path that is
easy to conduct, and both of these are responsible for the high electrical conductivity.
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Figure 10. Three-dimensional schematic showing the band structures and Fermi energy levels
for (a) the pristine BiCuSeO; (b) modulation doped Bi0.875Ba0.125CuSeO (50% BiCuSeO + 50%
Bi0.75Ba0.25CuSeO); and (c) uniformly doped Bi0.875Ba0.125CuSeO. Reproduced (adapted) with
permission from Reference [8]. Copyright 2014, American Chemical Society.

Figure 11 shows the thermoelectric properties of modulation doped Bi0.875Ba0.125CuSeO, undoped
BiCuSeO, uniformly doped Bi0.875Ba0.125CuSeO and heavily doped Bi0.75Ba0.25CuSeO. Benefited
from the high electrical concentration and mobility, the electrical conductivity of modulation
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doped Bi0.875Ba0.125CuSeO is higher than that of both undoped BiCuSeO and uniformly doped
Bi0.875Ba0.125CuSeO at 300–923 K, as shown in Figure 11a. Besides, due to the relatively high Seebeck
coefficient, the power factor of the modulation doped sample is much higher than the other three
samples and reaches approximately 10 µW·cm−1·K−2 at 923 K, as shown in Figure 11b,c. Due to the
high power factor and relatively low thermal conductivity (Figure 11d), the ZT value (Figure 11f) of
the modulation doped sample has a great improvement, and the highest ZT ~1.4 is achieved at 923 K.
These results indicate that the 3D modulation doping provides an effective method to improve the
thermoelectric performance and affords an alternative reference for other thermoelectric systems.
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Figure 11. Thermoelectric properties of pristine BiCuSeO, uniformly doped Bi0.875Ba0.125CuSeO,
modulation doping, and heavily Ba doped Bi0.75Ba0.25CuSeO. (a) The electrical conductivity; (b) the
Seebeck coefficient; (c) the power factor; (d) total thermal conductivity; (e) lattice thermal conductivity;
and (f) the figure of merit ZT. Reproduced (adapted) with permission from Reference [8]. Copyright
2014, American Chemical Society.

4.2. Improving ZT Value of BiCuSeO by Synergetic Approaches

4.2.1. Pb/Ca Dual-Doping

Lan et al. reported the electrical conductivity could be obviously enhanced through Pb doping
at the Bi site. Besides, the Seebeck coefficient remains at a high level due to the increased effective
mass. Both the higher electrical conductivity and comparable Seebeck coefficient lead to a larger power
factor of Pb than that of other dopants [43]. Meanwhile, the Ca doping could reduce the lattice thermal
conductivity effectively because of the large mass difference between Bi and Ca [6]. Therefore, Pb/Ca
dual-doping simultaneously realized enhancing power factor and reducing thermal conductivity.

Liu et al. [10] introduced an all-scale structural optimization strategy, which is realized by
dual-doped Ca and Pb at the Bi site to effectively enhance electrical conductivity and maintain
Seebeck coefficient. Additionally, the dual-doping simultaneously optimized the microstructures
at the atomic scale, nanoscale, and mesoscale, which could effectively reduce thermal conductivity.
For the atomic scale, substitutions of Bi with Pb increased the carrier concentration and introduced
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point defects. For nanoscale and mesoscale, CaO2 nanoclusters and Bi-rich quantum dots besides the
grain boundaries offset the increase of electrical conductivity originating from the increased carrier
concentration. The novel dual-doping combined the advantages of these two dopants and achieved
extremely good outcome as expected.

Figure 12 shows the effects of Pb/Ca dual-doping through comparing the best dual-doped
Bi0.88Ca0.06Pb0.06CuSeO [10] with single doping Bi0.925Ca0.75CuSeO [6] and Bi0.94Pb0.06CuSeO [43]
in TE properties. As shown in Figure 12a, the electrical conductivity of dual-doped
Bi0.88Ca0.06Pb0.06CuSeO is much higher than that of Bi0.925Ca0.075CuSeO while slightly higher than that
of Bi0.94Pb0.06CuSeO, which indicated in the positive role of Pb in regulating the electrical conductivity
in the dual-doping. Meanwhile, due to a slightly difference in Seebeck coefficient (Figure 12b),
the power factor (Figure 12c) of Bi0.88Ca0.06Pb0.06CuSeO is larger than that of Bi0.925Ca0.075CuSeO in
all temperature ranges. The power factor of Bi0.88Ca0.06Pb0.06CuSeO below 700 K is comparable to
Bi0.94Pb0.06CuSeO. While in a higher temperature range, the power factor of Bi0.88Ca0.06Pb0.06CuSeO
is larger because of its higher Seebeck coefficient (Figure 12b). In addition, both the lattice thermal
conductivity and the total thermal conductivity of Bi0.88Ca0.06Pb0.06CuSeO above 500 K are slightly
lower than those of Bi0.94Pb0.06CuSeO (Figure 12d,e), which could be attributed to the all scale structural
phonon scattering. Overall, the ZT value of dual-doped Bi0.88Ca0.06Pb0.06CuSeO reached a record high
1.5 at 873 K (Figure 12f).

Materials 2017, 10, 198  11 of 16 

 

the atomic scale, substitutions of Bi with Pb increased the carrier concentration and introduced point 
defects. For nanoscale and mesoscale, CaO2 nanoclusters and Bi-rich quantum dots besides the grain 
boundaries offset the increase of electrical conductivity originating from the increased carrier 
concentration. The novel dual-doping combined the advantages of these two dopants and achieved 
extremely good outcome as expected.  

Figure 12 shows the effects of Pb/Ca dual-doping through comparing the best dual-doped 
Bi0.88Ca0.06Pb0.06CuSeO [10] with single doping Bi0.925Ca0.75CuSeO [6] and Bi0.94Pb0.06CuSeO [43] in TE 
properties. As shown in Figure 12a, the electrical conductivity of dual-doped Bi0.88Ca0.06Pb0.06CuSeO 
is much higher than that of Bi0.925Ca0.075CuSeO while slightly higher than that of Bi0.94Pb0.06CuSeO, 
which indicated in the positive role of Pb in regulating the electrical conductivity in the dual-doping. 
Meanwhile, due to a slightly difference in Seebeck coefficient (Figure 12b), the power factor  
(Figure 12c) of Bi0.88Ca0.06Pb0.06CuSeO is larger than that of Bi0.925Ca0.075CuSeO in all temperature 
ranges. The power factor of Bi0.88Ca0.06Pb0.06CuSeO below 700 K is comparable to Bi0.94Pb0.06CuSeO. 
While in a higher temperature range, the power factor of Bi0.88Ca0.06Pb0.06CuSeO is larger because of 
its higher Seebeck coefficient (Figure 12b). In addition, both the lattice thermal conductivity and the 
total thermal conductivity of Bi0.88Ca0.06Pb0.06CuSeO above 500 K are slightly lower than those of 
Bi0.94Pb0.06CuSeO (Figure 12d,e), which could be attributed to the all scale structural phonon 
scattering. Overall, the ZT value of dual-doped Bi0.88Ca0.06Pb0.06CuSeO reached a record high 1.5 at 
873 K (Figure 12f). 

 
Figure 12. Thermoelectric properties of Pb and Ca dual-doping, Ca single doped (Bi0.925Ca0.075CuSeO) 
and Pb (Bi0.94Pb0.06CuSeO) single doped samples (a) the electrical conductivity; (b) the Seebeck 
coefficient; (c) the power factor; (d) total thermal conductivity; (e) lattice thermal conductivity; and 
(f) the figure of merit ZT. Reproduced with permission from Reference [10]. Copyright 2016, Wiley. 
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or holes. The introduction of the dual vacancies can reduce the thermal conductivity and improve 
the electrical conductivity at the same time. The reason is that when Cu vacancies and Bi vacancies 

Figure 12. Thermoelectric properties of Pb and Ca dual-doping, Ca single doped (Bi0.925Ca0.075CuSeO)
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and (f) the figure of merit ZT. Reproduced with permission from Reference [10]. Copyright 2016, Wiley.

4.2.2. Bi/Cu Dual Vacancies

Li et al. [9] confirmed the existence of the inter-layer charge transmission mechanism between
Bi vacancies and Cu vacancies through positron annihilation spectrometry (PAS). Served as the
phonons scattering centers, vacancies in the lattice can reduce the thermal conductivity efficiently.
However, vacancies also adversely affect the electrical conductivity due to the reception of electrons
or holes. The introduction of the dual vacancies can reduce the thermal conductivity and improve
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the electrical conductivity at the same time. The reason is that when Cu vacancies and Bi vacancies
are presented simultaneously, holes around the Bi vacancies’ centers will be transferred to the Cu
vacancies’ centers. Because of the (Cu2Se2)2− layers where Cu vacancies located being responsible
for the carrier transmission in BiCuSeO, the increasing hole concentration can effectively enhance
the electrical conductivity. Theoretically, the negatively charged centers of positive vacancies can
annihilate positrons. As shown in Figure 13 b,c, the positrons are mostly trapped at the Bi vacancies and
Cu vacancies in Bi0.975CuSeO and BiCu0.975SeO, respectively, while positrons are mostly distributed
around Bi vacancies in Bi/Cu dual vacancy BiCuSeO (Figure 13d).
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The projection of the positron density distribution proves the existence of carrier transmission
from Bi vacancies to Cu vacancies in Bi/Cu dual vacancies BiCuSeO. It is easy to understand why
the electrical conductivity of the dual vacancy sample is larger than that of monovacancy samples
(Figure 14a). In addition, benefiting from the strong vacancy scattering in the whole temperature range
(Figure 14e), the total thermal conductivity of dual vacancies sample is lower (Figure 14c) than that of
monovacancy samples (Figure 14d). Hence, the ZT value of dual vacancy Bi0.975Cu0.975SeO is higher
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in a relatively high ZT of 0.84 was reached at 750 K for the dual vacancy sample (Figure 14f).
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5. Summery and Perspective

In this review, we introduced the latest achievements and progress in BiCuSeO system, including
enhancing thermoelectric properties through doping and compositing, developing less time-consuming
methods, attempting to synthesize single crystals, exploring the origins of low thermal conductivity,
and typical examples to enhance thermoelectric performance of BiCuSeO systems. Aside from
the progress mentioned above, there is still room left for further focusing, such as the synthesis
of BiCuSeO single crystal and a high performance n-type BiCuSeO, all of these are eagerly expected in
the BiCuSeO system.
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