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Abstract: In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was
applied to normal and heat-treated rails made of 60 kgK steel to enhance the wear resistance of the
wheel-rail interaction. The hardness and compressive residual stress values of the untreated and
UNSM-treated rails were measured by the Brinell hardness tester and X-ray diffraction technique,
respectively. It was found, according to the measurement results, that the hardness was increased
by about 20% and 8%, whereas the compressive residual stress was induced by about 52% and 62%
for the UNSM-treated normal and heat-treated rails, respectively. The UNSM-treated normal rail
showed a slightly higher hardness than the heat-treated rail. The wear resistance of rails with respect
to rotating speed and rolling time was assessed using a rolling contact wear (RCW) tester under dry
conditions. The RCW test results revealed that the wear of the UNSM-treated rails was enhanced in
comparison with those of the untreated rails. Also, the wear amount of the rails was increased with
increasing the rotation speed. The UNSM-treated normal rail exhibited the highest wear resistance
with respect to the rotation speed. The wear mechanisms of the rails are also discussed based on
microscopic images of the worn out surfaces.

Keywords: 60 kgK rail material; hardness; compressive residual stress; wear resistance; UNSM 5

1. Introduction

A key part of reducing railroad costs and improving safety is through better management of wheel
and rail profiles to extend life, reduce vehicle and track maintenance, and improve vehicle stability.
The increased energy dissipated at the wheel-rail interaction from wheel/rail profile mismatch and the
friction/wear directly affects the fuel required to haul a train. Twenty fields of wheel-rail interface
research, among more than thousands of studies, were sorted and discussed concisely [1]. The wear
and fatigue life of wheel-rail interactions depend greatly on properties such as contact stress, surface
hardness, and compressive residual stress, which in turn are controlled by the wheel-rail microstructure
and the way they interact [2]. This interaction also affects fuel consumption, derailment risk, and
vehicle stability [3]. Most of the damage on the rail is caused by rolling contact wear (RCW) and
rolling contact fatigue (RCF) since train wheels and rails are always in contact with dynamic motion
in addition to environmental influences. Once the rail surface is damaged, the wheel-rail profile is
mismatched and wear is accelerated by friction [4]. The rail surface condition becomes worse to cause
failure at the weak points. Before the micro-cracks initiated at the weak points grow over the designed
threshold criteria, the rail surface should be inspected and repaired.

There have been many studies on rail damage and maintenance in order to secure safety on
the railway [5,6]. The wear resistance of the rail-wheel interface was studied earlier using a tin disk
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testing method, which is a simple way to evaluate the wear characteristics of materials [7]. It has been
also reported earlier that the wear rate of the rail-wheel interface can be reduced with an increase
in hardness [8]. In addition to the wear behavior, the fatigue strength of rail materials has been
studied by many scholars. For example, Brunel et al. investigated the fatigue behavior of railway
steels including steel grade and sliding condition effects by using a rolling contact fatigue testing
machine [9]. They concluded that the classification of the material grades and sliding conditions can
be selected by the RCF test method. Moreover, surface and heat treatment methods can improve the
wear and fatigue behaviors of the rail-wheel interface. The wear behavior of bainitic rail-wheel steels
was investigated using a wear tester under reciprocating dry sliding conditions by Sharma et al. [10].
They found that the bainitic steels exhibited a better wear resistance compared to the existing pearlitic
and ferritic-pearlitic steels due to the presence of a typical bainitic morphology. Also, the influence of
laser dispersed treatment (LDT) on RCW and RCF behaviors of railway wheel steel was investigated
by Zeng et al. [11]. It was found that the LDT effectively improved both the wear resistance and RCF
behavior of the railway wheel steel due to the formed fine martensite and retained austenite.

The surface of the rail head is open to foreign objects, vibration, slip, friction and stress. Thus, the
rail surface is hardened by heat treatment at the critical sites. The heat treatment of the rail head is often
applied to strengthen the surface of the rail in use under severe conditions, but there is still ongoing
demand to increase the wear resistance and rolling contact fatigue strength. Moreover, the friction
and wear behavior is central to understanding and optimizing the wheel-rail interaction due to the
vehicle dynamics and traction at braking [12]. Also, deformation generated under contact stress may
lead to surface and sub-surface shear stresses that increase rolling resistance and, more importantly,
contribute to decreased wear resistance and deteriorated fatigue [13]. No ideal material that does not
wear and or suffer from fatigue for railway and wheel applications has been found yet.

Therefore, there is a need to increase the mechanical properties of both rails and wheels in
order to improve the wear and to extend the fatigue life. Molyneux-Berry et al. investigated the
effects of wheel-rail contact conditions on the microstructure and hardness of railway wheels [14].
They concluded that the microstructure and hardness have a significant influence on the wheel-rail
contact conditions. Wang et al. also reported on the friction, wear and surface damage behavior of
rails and wheels with different hardnesses [15]. It was found that the hardness of the wheel had no
effect on the rolling friction coefficient of the wheel-rail interaction, but the wear volume decreased
with increasing the hardness of the wheel. Hence, it can be concluded that the surface hardness
and microstructure play an important role in determining the friction, wear and surface damage of
rail-wheel interactions. Hence, the objective of this study is to improve the wear and to extend the
fatigue life of wheel-rail interactions and to investigate the possibility of replacing the heat treatment
process with a UNSM treatment process. The present study was performed to investigate the effect
of surface layer modifications on hardness, the compressive residual stress, and the wear and rolling
contact fatigue performances of two types of rails: one was a normal rail and the other one was a
heat-treated rail.

2. Materials and Methods

2.1. Specimen Preparation

In this study, a couple of normal and heat-treated rails made of 60 kgK material were provided
by a Korean rail manufacturing company [16]. The rail was heat treated at a temperature of 800 ◦C
by induction heating and quenched in water to get sorbate from austenite structure, which resulted
in increase of hardness and wear resistance. The chemical composition of 60 kgK rail steel is listed
in Table 1. The 60 kgK rail is usually used for high speed train and high passing tonnage railways
like metro and main intercity lines. This rail was designed to satisfy the local standard and weights
60 kg per meter. The specimens with dimensions of 25 mm in diameter and 4 mm in thickness were cut
from those rails for the wear tests. Prior to the UNSM treatment and wear tests, the specimens were
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polished by SiC sandpapers in order to keep the identical surface roughness for each specimen. The
specimens were cleaned with a mixture of ethanol and deionized water for 10 min using an ultrasonic
bath to remove the particles and impurities from the surface of the specimens.

Table 1. The chemical composition of 60 kgK rail steels in (wt %).

Rails C Si Mn P S Fe

Normal 0.72 0.34 0.80 0.025 0.025
BalanceHeat-treated 0.80 0.35 1.00 0.030 0.020

2.2. UNSM Treatment Process

The UNSM technique has received much attention due to its versatility in improving several
properties such as mechanical, tribological and fatigue of metallic materials by the application of
severe plastic deformation (SPD) at the surface and sub-surface by striking the specimen surface up
to 20,000 times per second with the hard balls made of tungsten carbide (WC) ball. These strikes can
be considered as a micro-cold-forging. In this UNSM treatment process, not only the static load (Pst),
but also the dynamic load (Pdy = Pst sin 2π ft) is exerted to the surface of the specimen, where Pst

is the static load, f is the frequency and t is the time. Some of the specimens were polished, while
the others were treated by a UNSM treatment process under the optimized treatment parameters as
listed in Table 2. The optimum treatment parameters were determined according to the surface quality
and hardness measurement results. These parameters allow to control the mechanical properties and
the thickness of plastically deformed layers along with grain size. A set-up of the newly designed
UNSM device can be seen in Figure 1. Such mechanical contact produces severe plastic and elastic
deformation in the metal surface layer, which induces deep compressive residual stress and refines
the grain size to increase the surface hardness. The UNSM technique is effective in increasing surface
hardness, compressive residual stress and refining grain size and thus increase wear resistance and
rolling contact fatigue strength. So the UNSM can be applied not only to strengthen new rail, but also
to restore the damaged rail to equal or even better in wear and rolling contact performance. More
details of the UNSM treatment process can be found in our previous studies [17–20].
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radially applied dead load. This portable device can be brought to the field and applied to the rail. 
Two different views are shown as: (a) Side view; (b) 3D view of a portable UNSM treatment device. 

  

Figure 1. An assembly of the newly designed portable UNSM treatment device for railway application.
It has an electronic system that can coordinate the treatment area by two electronic motors which
moves along the LN guide. The impact load of the treatment can be controlled by radially applied
dead load. This portable device can be brought to the field and applied to the rail. Two different views
are shown as: (a) Side view; (b) 3D view of a portable UNSM treatment device.
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Table 2. Optimized UNSM treatment parameters for 60 kgK rail steel.

Frequency,
kHz

Amplitude,
µm

Speed,
mm/min

Impact
Load, N

Feed-Rate,
mm

Ball Diameter,
mm

Ball
Material

20 30 3000 40 0.07 2.38 WC

2.3. Rolling Contact Wear and Rolling Contact Fatigue Tests

Rail wear is affected by several factors such as rail material property, track layout and geometry,
curve diameter, axle loads in addition to train speed and maintenance, etc. [21]. The friction and wear
behavior of the specimens was assessed according to ASTM G99 standard using a ball-on-disk tester
under dry conditions. The wear resistance of the rails with respect to rotating speed and rolling time
was assessed using a rolling contact wear (RCW) tester under the conditions as listed in Table 3. The
rolling contact fatigue (RCF) tests were performed on the normal and UNSM-treated normal specimens
with a counter surface of Si3N4 ceramic ball with a diameter of 7.14 mm in dry conditions as listed in
Table 4. The fatigue limit of the specimens was determined by a vibration sensor where it halts the
machine when the vibration value reaches a certain value.

Table 3. RCW test conditions.

Load, N Rolling Speed, rpm Rolling Time, h Condition

50
500

1 dry1000
1500

Table 4. RCF test conditions.

Contact Stress, GPa Rolling Time, h Rolling Speed, rpm Condition

2.5
12, 24 1000 dry

3.0

2.4. Specimen Analysis and Measurement Details

The changes in the surface properties were measured to estimate the effect of UNSM with
respect to surface hardness and compressive residual stress in the surface layer. The hardness and
compressive residual stress values of the untreated and UNSM-treated rails were measured by the
Brinell hardness tester (Mitutoyo MVK-E3, Mitutoyo, Chiba, Japan) at a load of 300 gf with a dwell
time of 10 s and non-destructive X-ray diffraction technique (Proto iXRD-portable, Oldcastle, ON,
Canada) respectively. The surface roughness and wear profiles were obtained using a two-dimensional
(2D) surface profilometer (Mitutoyo SJ-210, Mitutoyo). The wear rate of the specimens after wear
tests was quantified based on the wear track profiles. The worn out and damaged surfaces were
characterized using a scanning electron microscopy (SEM, SNE-3000M, SEC Inc., Suwon, Korea) and
an energy dispersive X-ray spectroscopy (EDX, Quantax XFlash 6, Bruker, Billerica, MA, USA).

3. Results

3.1. Hardness and Compressive Residual Stress

Figure 2a shows the comparison in surface hardness for the normal and heat-treated specimens
before and after the UNSM treatment process. It can be seen that the UNSM treatment process
increased the hardness from 284 to 356 HB, and 351 to 378 HB for the both the normal and heat-treated
specimens, respectively. As is obvious, the increase in surface hardness was more noticeable with the
normal rail in comparison to the heat-treated rail. The hardness of the heat-treated rail was a bit higher
even before the UNSM treatment process compared to that of the UNSM-treated normal rail. The
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increase in hardness after the UNSM treatment may be explained following the Hall-Petch relationship,
where the hardness of a material depends on the grain size. After the UNSM treatment, the coarse
grains of the material were refined into nano-scale grains [22]. A review on the effect of rail hardness
on wheel-rail interactions was reported earlier by Lewis et al. [23], where it was shown that it has a
significant effect on the performance of wheel-rail interactions. A comparison in compressive residual
stress of the normal and heat-treated specimens before and after the UNSM treatment process is shown
in Figure 2b. It can be also seen that the compressive residual stress was induced up to −624 and
−576 MPa for the normal and heat-treated specimens after the UNSM treatment process, respectively.
The surface compressive residual stress measured before the UNSM treatment was probably affected
by the cutting and machining process of the specimens since, in general, the surface layer is deformed
by contact with cutting tools. It is obvious that the UNSM treatment process successfully induced
a compressive residual stress in the surface layer. It is well known that the possible reasons for
increasing compressive residual stress are the reduction of the grain size [24] and the increase of the
lattice distortion [25] caused by residual stresses or dislocations. Grain boundaries, dislocations, and
other atomic-level microstructural defects have been experimentally proven to effectively accelerate
the diffusion of interstitial atoms. As a result, the increased hardness and induced compressive
residual stress after the UNSM treatment process may be attributed to a kind of hardening effect by
a WC ball tip hitting the rail surface through the ultrasonic system at a high frequency of 20 kHz
and to the refinement of coarse grains into nano-sized grains. The increase in the hardness of the
normal rail was due to the compressive residual stress developed in the surface layer by the UNSM
treatment. However, in the case of the heat-treated rail, the metal texture was changed by the heat
treatment, which contributed to increasing the surface hardness compared to the normal rail. It was
reported earlier that nanocrystallization and grain size refinement by the UNSM treatment process are
responsible for the increase in the mechanical properties including compressive residual stress [26,27].
It was reported in our previous study on wear and chattering characteristics of rail materials that
the presence of a modified top surface layer along with a plastically deformed layer of normal and
heat-treated specimens by UNSM treatment with a thickness of about 80 and 40 µm was observed [20].
The mechanical properties of layers formed by severe plastic deformation (SPD), in which a very
large plastic strain is imposed on a bulk process in order to refine the coarse grains into nano-sized
grains, tend to be higher than those of non-deformed layers. Moreover, the mechanism of grain size
refinement after the UNSM treatment can be explained in the following procedures: (i) dislocation
accumulation; (ii) the formation of subgrain boundaries; (iii) some dislocations are annihilated at
subgrain boundaries to increase the misorientation angels; (iv) finally, balance is established between
the generation of dislocations by SPD and the absorption of dislocations at grain boundaries [28].
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3.2. RCW and RCF properties

Figure 3 shows the friction behavior of the normal, heat-treated and UNSM-treated normal
specimens with respect to the rotating speed. It was found that the friction coefficient of the
UNSM-treated normal specimens was lower in comparison with the normal and heat-treated
specimens. The influence of the rotating speed on the friction coefficient was similar for all the
specimens, where the friction coefficient was increased with increasing the rotating speed from 500
to 1500 rpm. This behavior may be associated with the formation of wear particles at the contact
interface at higher speeds being greater, which can generate a vibration during rolling, and also with
the complete removal of the interfacial layer (wear debris and their oxides) formed during the wear
process [29]. The actual contact interface depends on the number of factors such as the size and
shape of the nominal contact area, contact pressure distribution, real contact area, etc. [30]. Moreover,
the lower friction coefficient of the UNSM-treated normal specimens compared to the normal and
heat-treated specimens may be attributed to the increase in hardness and the reduction in surface
roughness [18].

Figure 4 shows the comparison in the wear rate of the normal, heat-treated and UNSM-treated
normal specimens with respect to the rotating speed. The wear rate was increased with increasing
the rotating speed for the all specimens. The wear resistance of the UNSM-treated normal rail was
the best in the range of all the rotating speeds used for the test. The difference in the wear rate was
increased with increasing the test rotating speed between the heat-treated and the UNSM-treated
normal rails, where the wear rate of the heat-treated specimen at a speed of 1500 rpm was found
to be the greatest compared to the wear rate of the UNSM-treated specimen obtained at a speed of
1500 rpm. Ding et al. investigated the effects of the rotating speed on the rolling wear and damage
of the wheel/rail materials [31]. They reported that rolling wear loss was increased for the wheel,
whereas it was decreased for the rail specimen. The obtained results are in good agreement with the
results shown in Figure 4, where the wear rate was increased with increasing the rotating speed. In
addition, in the wear debris generated from the tests with respect to the rotating speed, the shape of the
wear debris (not shown here) was in a plate-like form with sizes of about 20–25, 15–20 and 10–15 µm
in length for normal, heat-treated and UNSM-treated normal specimens. The size of the plate-like
debris decreased with increasing the rotational speed for the all specimens. The UNSM-treated normal
rail showed a slightly higher surface hardness than that of the heat-treated rail, as shown in Figure 2a.
The compressive residual stress in the surface layer was greater for the UNSM-treated normal rail than
in the heat-treated rail, even if the differences in the surface hardness of both rail specimens were not
great. It was likely to cause the difference in the wear rate with the rotating test speed. The results
revealed that the wear resistance of the UNSM-treated specimens was enhanced due to the increased
hardness and the induced compressive residual stress at the top surface layer.
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Figure 3. Comparison in friction coefficient of the normal (a) heat-treated and (b) UNSM-treated
normal (c) specimens with respect to rotating speed.

As shown in Figure 5, the wear tests were also performed with respect to testing time. The
UNSM-treated normal rail also showed a better wear resistance than the heat-treated rail in the testing
times of 12 and 24 h. However, the UNSM-treated heat-treated rail showed the best wear resistance
as shown in Figure 5. The wear amount of the normal rail was greatly increased with increasing the
testing time from 12 to 24 h compared to the cases of the heat-treated or UNSM-treated rails. Both heat
treatment and UNSM treatment were found to be beneficial in protecting the rail from wear, even if
the UNSM treatment contributed to the wear resistance of the rail more than the heat treatment in the
test conditions.
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RCF failure is one of the defects that are often observed on the rail and it is not caused by
metallurgical defects, manufacturing faults or wrong treatment of the train operation. It originates
from the weak points or fatigue cracks on or near the rail surface [32]. Such defects appear in the shape
of the gauge corner crack, squat and shell. The rails are in frequent contact with train wheels which
results in a great deal of stress and deformation on the rail. The physical process to determine RCF
growth is crack initiation and propagation. The RCF can lead to crack initiation in the rail and finally
causes very dangerous catastrophic failure if the defect is not inspected at the right time.

It was found based on the RCF test conditions listed Table 4 that the normal rail specimen fails
at 478,000 cycles at a contact pressure of 2.5 GPa. The lifetime of the UNSM-treated normal rail was
extended by 40.0% with 669,000 cycles to failure at a contact pressure of 2.5 GPa. The fatigue life of the
normal rail was 416,000 cycles at a contact pressure of 3.0 GPa and it increased to 651,000 cycles after
UNSM treatment at a contact pressure of 3.0 GPa. As a result, the fatigue lifetime of the normal rail
specimen was extended by about 57% after the UNSM treatment. The fatigue lifetime of the normal
rail specimen was decreased by about 13%, from 478,000 to 416,000 cycles, with increasing the contact
pressure from 2.5 to 3.0 GPa, while the fatigue lifetime of the UNSM-treated normal rail specimen
was decreased by 2.7%, from 669,000 to 651,000 cycles, for the test time of 24 h. As summarized
in Table 5, the UNSM technique effectively reduced the development of RCF at a relatively higher
contact pressure in the rails. Figure 6 shows the cycles to failure with respect to the hardness of the
normal and UNSM-treated normal specimens at contact pressures of 2.5 and 3.0 GPa. One can see
that the cycles to failure of the UNSM-treated normal specimens at both contact pressures were found
to be longer than those of the normal specimens. In addition, the cycles to failure of the specimens
reduced with increasing the contact pressure, as shown in Figure 6. It is common knowledge that
one of the most effective methods of extending the fatigue lifetime is to induce compressive residual
stress on the surface of the material [33,34]. Hence, the highly induced compressive residual stress by
the UNSM treatment process was mainly responsible for the extension of the fatigue lifetime for the
UNSM-treated rail specimens.

Table 5. Comparison of cycles to failure of the normal and UNSM-treated normal rail specimens
obtained by RCF tests with respect to contact stress.

Contact Stress,
GPa

Cycles to Failure

Normal Normal UNSM-Treated

2.5 478,000 669,000
3.0 416,000 651,000
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Figure 7 shows the SEM images of the fractured surfaces of the normal and normal UNSM-treated
specimens which failed at 478,000 and 669,000 cycles at a contact pressure of 2.5 GPa, respectively.
Obviously, the surface damage morphology of the normal specimen differs from that of the normal
UNSM-treated specimen. It is obvious that the damage characteristic of the specimens is closely
related to the wear regimes. In addition, it can be seen that the fracture of the normal specimen
is significant compared to the UNSM-treated normal specimen, whereas the surface damage is
considerably significant as well and the oxidation wear dominates. As indicated by the arrows
in Figure 7a, some huge wear debris/particles and oxidative layers are visible on the fractured surface
of the normal specimen, where neither wear debris/particles nor an oxidative layer were observed
on the fractured surface of the UNSM-treated normal specimen, as shown in Figure 7b. The chemical
state of the worn surfaces was investigated by EDX (not shown here), where the oxidation wear was
dominant for the normal specimen at 2.5 GPa. However, no oxidation was found for the UNSM-treated
normal specimen at 2.5 GPa, or the normal and UNSM-treated normal specimens at 3.0 GPa, where
a Fe element peak was found to be dominant. By increasing the contact pressure, some cracks and
delamination can be observed on the surface of the normal specimen, as shown by the arrows in
Figure 8. Moreover, the damaged surface became rougher with increasing the contact pressure with
obvious peeling damage. The surface of the normal specimen was dominated by the combination of
fatigue cracks and adhesive wear, as shown in Figure 8a. The wear mechanism for the UNSM-treated
specimens was found to be adhesive wear, as shown in Figure 8b. As a result of fatigue, those cracked
zones led to serious spalling of damaged specimens and usually there was visible fatigue cracking in
the sub-surface. As the wear became severe at a high contact pressure, the fatigue damage transformed
from slight damage to oxidation to spalling and fatigue cracks [11], where the cracks caused by RCF
have their origins beneath the surface and may be attributed to the superposition of the maximum
sub-surface shear stress over local defects and damages. The induced high compressive residual
stress by the UNSM treatment process in the surface layer may withstand the sub-surface shear stress,
resulting in extending the fatigue life of rails. The influence of the increased hardness and induced
compressive residual stress on the damage at the wheel-rail interaction can be diminished by the
UNSM treatment process.
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The rail surface was hardened by UNSM as confirmed by the hardness, the wear and the RCF
tests. However, when the hardened rail is in contact with the normal wheel, it is expected that the
wear rate of the wheel can be increased. In general, it is a well-established fact that increasing the
wear resistance of a material on one side of the wheel-rail interaction interface will result in a decrease
in the wear resistance on the other side of the wheel-rail interaction [35]. Moreover, it was reported
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earlier that increasing the rail steel grade did not change the wear resistance of wheel [36]. The wear
resistance of the rail increased with increasing the rail grade, but the wear of the wheel was not
influenced. Therefore, the application of the UNSM treatment process to both sides of the wheel-rail
interaction needs to be considered as a future study direction in order to shed light on the improvement
or deterioration of friction, wear and fatigue properties of the wheel-rail interaction. In addition, an
understanding in the wear mechanisms and fatigue failure modes of the specimens is needed to
emphasize the role of the UNSM treatment process for rail applications.Materials 2017, 10, 188 10 of 12 
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4. Conclusions

The surface layer of the normal and heat-treated rails was hardened by the UNSM treatment
process. The compressive residual stress was also induced in the surface layer by severe plastic
deformation generated by the UNSM treatment process. The heat treatment of the rail was good
enough to improve the wear resistance, but the effect of the UNSM treatment process was revealed to
be greater than that of heat treatment on the wear resistance. The wear amount of the heat-treated
rail was found to be greater than that of the UNSM-treated rail with increasing the rotating speed.
The RCF lifetime of the rail was extended after the UNSM treatment process. The fatigue lifetime of
the rail specimens was reduced with increasing the contact pressure, but the ratio was reduced by
the UNSM treatment process. The surface damage and fatigue lifetime of the wheel-rail interaction
play a fundamental role in determining the reliability and performance of the whole wheel-rail system.
Hence, it is expected, according to the obtained results, that the wear and fatigue of the wheel-rail
interaction may be improved with the application of the UNSM treatment process since the harder
material provides a benefit in reducing whole-system maintenance and repairing costs. Dynamic tests,
which can simulate a similar condition to the real wheel-rail interface, need to be performed in order
to apply this treatment to a real field.
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