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Abstract: Concrete is a complex heterogeneous material, and thus, it is important to
develop numerical modeling methods to enhance the prediction accuracy of the fracture
mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary
state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to
pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates,
interfacial transition zones, air voids and cementitious matrix is characterized as particle points
in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform
probability distributions, while a statistical study is provided to comprise the effect of random
distributions of constituent materials. In obtaining the steady-state response, an incremental and
iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage
patterns are compared with available experimental and finite element analysis (FEA) results. Although
the proposed model uses much simpler material damage models and discretization schemes, the
load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement
is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is
conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of
the proposed mesoscale model.

Keywords: multiphase concrete; mesh free; fracture analysis; state-based peridynamics; non-ordinary
model

1. Introduction

Concrete is the most widely-used construction material, and therefore, it is important to
understand its fracture mechanism. Many studies consider concrete as a homogeneous material
at the macroscopic scale. This assumption often results in inaccurate predictions of crack paths and
load carrying capacity because concrete is a heterogeneous material. At the mesoscale, concrete is
composed of four phases: coarse aggregate, air void, paste and the interfacial transition zone (ITZ),
which exists between the coarse aggregate and paste. Mesoscale modeling is inevitable because
the heterogeneity of concrete material is reflected at this scale and enhances the prediction of the
fracture mechanism and macroscale behavior. As such, there has been increasing interest in mesoscopic
material modeling to better characterize the fracture behavior in concrete.

Numerical simulations are an effective and practical alternative to experimental studies for
investigating fracture in heterogeneous materials, such as concrete. Furthermore, analytical methods
provide a useful tool for optimizing concrete mixtures by studying the effect of constituent material
properties and variables, such as aggregate size, shape, surface texture, grading and volume fraction at
the mesoscale. The use of imaging technology enables the determination of mesoscale particle size and
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location. The most recent imaging techniques include X-ray computed tomography scanning [1–3] to
provide two- and three-dimensional mesoscopic aggregate and air void distributions.

1.1. Mesoscale Modeling

Mesoscale modeling using such imaging technology significantly enhances the accuracy of
damage predictions. However, the application is not always practical. Two numerical alternative
approaches exist utilizing a parameterization, which involves analytically generating heterogeneity: (1) by
explicitly modeling different phases [4–6]; and (2) implicitly creating random fields, satisfying certain
correlation functions [7–9]. In the direct explicit modeling approach, aggregates and air voids are randomly
positioned within a specimen based on their sizes and gradation until the volumetric fraction is met.

The “take-and-place” method [4,5] has been widely used among several available techniques to
numerically generate mesoscopic heterogeneous material phases. In this method, the coarse aggregate
is randomly positioned within a domain. When an aggregate intersects with existing aggregates,
the position is re-sampled. The maximum aggregate volume fraction that can be achieved by this
method is approximately 60% [10]. Mier and van Vliet [11] developed the “random particle drop”
method in order to achieve a higher aggregate volume fraction.

1.2. Analysis Methods Available for Fracture Modeling

Several models are available in the literature for fracture analysis of concrete members.
Most popular models are based on the finite element method (FEM) [3,6,12–15], the discrete element
method (DEM) [16,17] and lattice modeling methods [18–23]. The majority of fracture analysis models
utilize the FEM, where for instance, failure is represented by inserting a zero-thickness cohesive
interface element between homogeneous concrete elements. In this cohesive zone method (CZM),
cohesive elements are surface elements that are placed along the element boundaries. Therefore, crack
growth is mesh dependent because it occurs only between finite elements where cohesive elements
are present. Furthermore, crack paths are highly sensitive to mesh alignment and/or refinement,
particularly when they are unknown or unspecified a priori [3,6,13].

When strong discontinuities exist, advanced finite element methods, such as the extended finite
element method (XFEM) [12,14], are used. The concept of XFEM was introduced as a technique
that models crack initiation and growth within the realm of the FEM without mesh refinement.
Local enrichment functions, with additional degrees of freedom, are included in the standard finite
element approximation. Typically, the discontinuous displacement enrichment method is used to
capture the displacement discontinuity across a crack and around a crack tip. Although XFEM has
been successfully used to predict fracture in heterogeneous materials, an external criterion is needed
to predict crack growth [12]. Major disadvantages of this method include significantly increased
computational expense and complex enrichment functions, which make implementation difficult.
Wavelet spectral finite element (WSFE) analysis and its implementation in Abaqus (WSFE-based UEL),
developed by Khalili et al. [24,25], are among the novel FE methods in order to reduce the
computational expense of finite element analyses.

In the discrete method, discrete elements (or particles) interact by means of contact forces. In the
lattice modeling approach, a continuum is represented by a network of discrete elements. Schlangen
and Van Mier [19] proposed a mesoscale model for simulating fracture in heterogeneous brittle
materials utilizing the discrete modeling approach. Schlangen and Garboczi [21] studied the effect of
lattice element type, mesh orientation and fracture criteria on the accuracy of fracture prediction.

While discrete and lattice modeling methods provide promising tools for fracture analysis of
concrete at the mesoscale, characterizing parameters that define interactions among various phases in
a heterogeneous material demands extra effort. Peridynamics is a non-local method first introduced by
Silling [26]. The peridynamic method is well suited for modeling solid bodies with discontinuities. The
solution algorithm is more robust than that of the finite element method because partial differential
equations used in the classical solid mechanics are replaced by spatial integral equations (a sum of
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bond forces), which are also defined at discontinuities, such as cracks. Crack initiation and propagation
are inherently represented by defining a bond relationship between particles using a constitutive
model. Furthermore, the bond relationship between dissimilar material phases is inherently integrated
in the peridynamic method.

Two methods are primarily used: bond-based peridynamics (BBPD) [26,27] and micro-polar
peridynamics (MPPD) [28,29]. BBPD and MPPD assume that the bond force developed between
material particle points is similar to those in a truss and a beam element, respectively. Therefore,
these two methods resemble a lattice modeling approach. In addition to the similarity in defining
the bond forces, peridynamics distinctly provide a set of material particles, whereas a continuum
is discretized using a network of discrete elements in the lattice modeling method. Each material
particle in peridynamics represents an infinitesimal volume and has its mass lumped at the center. The
material continuity is provided by a “force-field” generated between particles.

In the bond-based peridynamics, independent interactions of a pair of material points were
represented by a central-pairwise force. This assumption restricted BBPD to a Poisson’s ratio of 1/4 in
three-dimensional models [27,30]. Although, MPPD addressed this issue by introducing rotational
degrees of freedom into the bond-based peridynamic model [28], it was difficult to represent all
aspects of material response, particularly when a collective response among material particle bonds
was involved (e.g., a volume change). To avoid this type of restriction, a generalized peridynamic
formulation, so-called non-ordinary state-based peridynamics (NOSBPD), was introduced. The main
goal of NOSBPD was to allow interactions among the bonds [31]. Therefore, the collective deformation
of the bonds around a material point defines the response of the point [32]. In NOSBPD, each bond
between two material points is capable of carrying loads in all directions, which allows characterizing
materials with any thermodynamically-admissible Poisson’s ratio [32–34]. Furthermore, the NOSBPD
is capable of representing genuine material behaviors, such as a volume or shear angle change.
Furthermore, the force state is represented by the classical stress and strain tensors, which enable the
use of constitutive and damage models from the classical mechanics theory.

1.3. Summary of Work Presented in the Remaining Sections

This study includes a proposed mesoscale modeling approach in which heterogeneous concrete
material is represented by four phases in the NOSBPD framework. A statistical approach is used to
generate more realistic coarse aggregate size and distribution and to provide statistically-significant
analysis results with a reasonable computational cost. Furthermore, crack or damage patterns are studied
for varying particle spacing, aggregate volume fraction and air void content. Finally, the accuracy of the
proposed model is compared with available experimental and analytical (or FEM) results.

1.4. Novel Aspects of the Research

The novel aspects of this study include, but are not limited to: (a) damage (e.g., crack initiation and
propagation) inherently characterized by the peridynamic analysis framework; (b) promising potential
for developing into a multiscale coupling approach with the FEM and, thus, for practical modeling
applications; (c) a practical parametric design, including varying aggregate/air void distributions and
material dense packing, available for material engineers; (d) enhancement in predicting the mesoscopic
fracture mechanism in cementitious composites.

2. Proposed Mesoscale Concrete Model

In the majority of available studies, concrete is considered as a homogeneous material for
simplicity. However, this assumption yields results that are inaccurate in predicting crack paths and
load carrying capacity because concrete is a complex heterogeneous material. Its heterogeneity plays
an important role in fracture analysis. Therefore, it is proposed that a two-dimensional mesoscopic
model be used herein to account for the heterogeneity, whereas a microscopic model is feasible at the
expense of additional computational resources in order to represent micro-structural inhomogeneity.
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2.1. Mesoscopic Constituent Materials

Concrete is mainly composed of two phases at the mesoscale: coarse aggregate and paste.
In addition, a third phase exists in the interface between the coarse aggregate and paste. Each of
these three phases is heterogeneous in its composition. Proportions and characteristics of each
phase vary with mixture composition. In the proposed mesoscale model, concrete is considered
a heterogeneous material consisting of four phases to account for porosity: the coarse aggregate,
air void, cementitious paste and the interfacial transition zone (ITZ), which exists between the
coarse aggregates and cementitious matrix. In mesoscale modeling, the paste represents a mixture
of microscale fine aggregates, cementitious hydration products, such as calcium-silicate-hydrate and
calcium hydroxide, and water. Each phase is described below.

Cementitious matrix: A cementitious matrix itself at the microscale is a heterogeneous material that
consists of fine aggregates, hardened cement paste with embedded pores. In the numerical mesoscale
studies, cementitious matrix is assumed to be homogenous. The homogenized properties of the matrix are
dependent on various factors, including cementitious type and content, water-cement ratio, compaction,
which controls the amount of pores, and environmental conditions during the hardening process [35].

Coarse aggregate: Mechanical properties of concrete mixtures are highly affected by coarse
aggregate material (limestone or granite), source, size, gradation, shape (river gravel or crushed gravel),
texture and distribution. Most normal strength concrete mixtures are composed of 40%–50% coarse
aggregates by volume and 60%–80% when combined with fine aggregates [36].

Interfacial transition zone (ITZ): The interfacial region is formed between the coarse aggregates
and hydrated cement paste and yields the weakest link in cementitious composites due to higher
concentrations of soluble calcium hydroxide in the region [35]. The properties of composites are often
governed by the nature of this interface layer. This highly heterogeneous region with a thickness
between 20 and 100 µm plays an essential role in the macroscopic behavior of concrete structures.
Many experimental studies are devoted to characterizing the homogeneous mechanical properties of
this ITZ. The results indicate that micro-cracks are mostly initiated from this region and that increased
aggregate volume/size is associated with reduced tensile strength due to increased ITZ area [37,38].

Air void: Mesoscopic air voids are distributed throughout the cement paste and could lower the
compressive strength of the concrete.

Figure 1 shows a schematic of four phases in a two-dimensional mesoscale concrete model.
Figure 2 shows the position and distribution of the coarse aggregates and air voids in selected
numerical specimens. In this figure, Pagg and Ppore represent the aggregate volume fraction and
porosity, respectively. Figure 3 shows the gradation of the coarse aggregate for varying aggregate
volume fractions described in the following section.

Figure 1. Schematic of mesoscale multiphase model subjected to tension.
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Pagg = 20%, Ppore = 2% Pagg = 30%, Ppore = 2% Pagg = 40%, Ppore = 2% Pagg = 50%, Ppore = 2%

Pagg = 40%, Ppore = 0% Pagg = 40%, Ppore = 2% Pagg = 40%, Ppore = 4% Pagg = 40%, Ppore = 6%

Figure 2. Numerical specimens with varying aggregate volume fraction and porosity.

(a) (b)

(c) (d)

Figure 3. Aggregate gradations achieved by simulation versus the Fuller curve. (a) Pagg = 20%;
(b) Pagg = 30%; (c) Pagg = 40%; (d) Pagg = 50%.
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2.2. Distribution of Constituent Materials into Multi-Phases

Coarse aggregate: A random particle selection procedure is used in creating a mesoscale
model. This particle placement approach, the so-called “take-and-place method” [4], is adopted
in the proposed model to locate aggregates within an element domain. The aggregate shape is assumed
circular, although other shapes such as angular are feasible and have been used in other mesoscale
analyses [4,39]. Regardless, a grading curve must be provided to determine the volumetric ratio of
the coarse aggregate and gradation. The Fuller curve is used in this study as it is widely employed to
generate the optimum density and strength of concrete mixtures [19,36].

Equation (1) determines the cumulative percentage of aggregate passing a sieve with an aperture
size of d, where dmax is the maximum size of aggregate to be used, and the constant m = 0.45− 0.7
determines the shape of the grading curve. Equation (2) gives the total area of aggregates, Aagg, within
the grading segment of [di, di+1], where Amodel is the total area of a numerical model and dmin is the
minimum aggregate size:

P(d) = 100(
d

dmax
)m (1)

Aagg[di, di+1] =
P(di+1)− P(di)

P(dmax)− P(dmin)
Pagg Amodel (2)

Beginning with the largest segment, the following procedure is used to determine the aggregate
size and location in a given domain for each grading segment:

1. Determine the total area of the coarse aggregate, Aagg, with the aggregate size between di and
di+1, using Equation (1).

2. Generate a random number, which defines the aggregate diameter, d, within the segment
[di, di+1]. The aggregate diameter, d, is obtained by d = di + η(di+1 − di), where η is a
variable selected from a uniform distribution of numbers between zero and one by using the
“RANDOM_NUMBER”command in FORTRAN.

3. Generate two sets of random numbers to define the location of current aggregate. Two numbers
are selected from a uniform distribution, with equal probability for all values, of the random
variables between zero and one.

4. Check the placement of aggregate: Two conditions must be met to position the aggregate.
First, the aggregate must be located within the analytical specimen boundary with a minimum
clearance distance from the specimen boundary, γ1. There must be no overlapping area between
current aggregate and previously-placed aggregate, if any. A minimum distance of γ2 between
the two aggregates must be considered. These two conditions assure that the current aggregate is
reasonably surrounded by the cementitious matrix. For the coarse aggregate distribution, 0.1d
and 0.1(d + d′)/2 are used for γ1 and γ2, respectively. d is the diameter of the current aggregate
being positioned, and d′ is the diameter of previously-positioned aggregate.

5. Repeat the random placement in Steps 2–3 until the conditions in Step 4 are satisfied.
6. Determine the total area of generated aggregates, A′agg, in this segment, and find the remaining

aggregate area by subtracting A′agg from the total aggregate area, Aagg, determined in Step 1.
7. Repeat Steps 2–6 until the remaining area is no longer available to generate additional aggregate

in the grading segment.

Air voids: Once the generation and placement of the coarse aggregates is complete, the same
procedure is used to create air voids ranging between 2 and 4 mm in diameter.

ITZ: A thin layer ranging between 20 and 100 µm must be selected to represent the interface of
coarse aggregate and paste. In this study, it is reasonable to select a single layer of particles surrounding
coarse aggregates because the particle spacing studied herein is greater than 100 µm. With this simple
assumption, ITZ and its associated damage is dependent on the particle spacing, although it is possible
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to use a smaller particle spacing in the ITZ. Therefore, it is essential to complete a convergence study
to determine the particle size appropriate for characterizing the fracture mechanism in ITZ.

Cementitious matrix: The remaining particle points are used to form the cementitious matrix.

2.3. Formulation of the Proposed Analysis Framework

The kinematics of the peridynamics for a two-dimensional body is illustrated in Figure 4.
A particle located at position x interacts with its surrounding particles within an area of influence,
the so-called “horizon”, where δ is the horizon size. It is important to recognize the position
vector-state, X〈x′ − x〉 = ξ = x′ − x. It is also referred to as the “bond” between two particles, x and
x′, and represents the relative position in the undeformed body, B0. The deformation vector-state,
Y〈x′ − x〉 = ξ+ η = y′ − y, maps the bond, X〈x′ − x〉, in the deformed body, B, where η = u′ − u is
the relative displacement of particles, x and x′.

Figure 4. Kinematics of state-based peridynamics.

In the NOSBPD [32], the steady-state equilibrium equations for the particle, x, are given in
Equation (3), where b is the body force applied on the particles, x, and dVx′ is the volume of the particle
x′. The force vector-state, T, is obtained by Equation (4), where ω (ξ) denotes a constant weight
function and ξ = |ξ| = |x′ − x|. The stress tensor, σ, is the first Piola–Kirchhoff stress, and the shape
factor, K, at particle x is defined by Equation (5). The symbol ⊗ denotes the tensor product.∫

Hx

(
T[x]〈x′ − x〉 − T[x′]〈x− x′〉

)
dVx′ + b (x) = 0 (3)

T[x]〈x′ − x〉 = ω (ξ)σ ·K−1 ·
(
x′ − x

)
(4)

K (x) =
∫
Hx
ω (ξ) [

(
x′ − x

)
⊗
(
x′ − x

)
]dVx′ (5)

A nonlocal approximation of the deformation gradient tensor, F, is defined by Silling et al. [32] to
formulate the classical continuum mechanics’ constitutive equations in peridynamics:

F (x) = [
∫
Hx
ω (ξ) [

(
y′ − y

)
⊗
(
x′ − x

)
]dVx′ ] ·K−1 (6)

The small strain tensor for isotropic elastic materials is determined by ε = 1/2(F + FT)− I,
where the stress is obtained by σ = Cε; C is the isotropic elastic moduli matrix; and I is the
identity matrix.

In the proposed approach, a higher-order polynomial approximation is used for the deformation
gradient tensor in order to successfully suppress an instability problem found in NOSBPD [33,40].
Furthermore, an incremental and iterative solver is used to obtain the steady-state solutions. That is,
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the dynamic relaxation (DR) method is adopted to iteratively obtain solutions for a displacement
increment, ∆u. This iteration is necessary because the model oscillates about the equilibrium position
until the size of the displacement vector for all particles becomes smaller than the dynamic relaxation
threshold, ε [41,42]. This type of dynamic relaxation method determines steady-state solutions for
a dynamic system by introducing fictitious mass and damping matrices and is particularly effective
for solving highly nonlinear problems, including geometric and material nonlinearities.

There are several studies [33,43] that correlate the particle spacing, h, and horizon size, δ, to the
rate of convergence in solutions. The vast majority of findings suggests that it is most effective when
the horizon size is about three-times the particle spacing (i.e., δ ≈ 3h) [44,45]. In this study, δ = 3.1h is
selected. Therefore, the particle spacing size, h, is the only variable that can affect the discretization
size of a mesoscale model in this study.

2.4. Determination of Statistically-Significant Sample Size

One hundred samples are generated using the procedure described in Section 2.2 in order to study
a statistically-significant numerical sample size. Two criteria are mainly used to determine the sample
size: (1) average stress convergence and (2) average peak stress convergence.

3. Analysis of a Concrete Specimen in Tension

3.1. Description of a Numerical Model

A two-dimensional mesoscale representative model is studied to demonstrate the capabilities of
the proposed method. Figure 1 shows a schematic of the numerical specimen and its loading condition.
The specimen geometry and loading condition are selected because both experimental and analytical
results are presented by Wang et al. [5], and thus, the analysis results can be verified by the cohesive
FEM results and validated against experimental results. A quadrilateral discretization scheme is used
to distribute material points needed for peridynamics analysis. The particle points generated within
the air voids are removed from the analysis model as described in Section 2.2. Table 1 provides the
gradation of the coarse aggregate obtained from Wang et al. [5].

Table 1. Gradation of the coarse aggregate [5].

Sieve size (mm) 19.00 12.70 9.50 4.75 2.36

Total percentage passing (%) 100 97 61 10 1.4

3.2. Material Models

An isotropic damage model is used to describe the stress-strain relationships of constituent
materials. Table 2 provides the material properties used for the analysis. The material softening due to
micro-cracking is introduced in the material constitutive model using a damage variable, D, as shown
in Equation (7):

σ = (1− D)Cε (7)

Table 2. Material properties [5]. ITZ, interfacial transition zone.

Constituent Young’s Modulus, E (MPa) Poisson’s Ratio, ν Fracture Energy, G f (N/mm)

Aggregate 70,000 0.2 -
Mortar 25,000 0.2 0.06

ITZ 25,000 0.2 0.03
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The damage variable, D, ranges from 0–1 for undamaged and fully-damaged materials,
respectively, and is determined by Equation (8), where εeq is the equivalent strain determined by
Equation (9), on the basis of the modified von Mises equivalent strain; ε0 = ft/E; ft is the tensile
strength; fc is the compressive strength; k = fc/ ft and is assumed as 10. E is Young’s modulus; ε f is
the parameter affecting the slope of the softening branch; and ε f = 0.02 is used in this study. This value
is selected by comparing the analysis results obtained by the proposed peridynamic and finite element
methods. That is, for each mesh size studied herein, a range of ε f is considered for defining the
softening curve. It is concluded that the mesh size has an insignificant effect on the parameter, ε f ,
when generating the PD analysis results that agree with the finite element analysis results. It is also
concluded that the PD analysis results are insensitive for ε f ranging between 0.019 and 0.021 and best
agree with the FEA results when ε f of 0.02 is used.

D =

 0 : εeq < ε0

1− ε0
εeq

e
− εeq−ε0

ε f −ε0 : ε0 ≤ εeq
(8)

εeq =
k− 1

2k (1− 2ν)
I1 +

1
2k

√√√√ (k− 1)2

(1− 2ν)2 I2
1 +

6k

(1 + ν)2 J2 (9)

In determining the equivalent strain in Equation (9), I1 = tr(ε) and J2 = tr(ε.ε)− 1
3 tr2(ε) are

the invariants of the strain tensor. The bond breakage procedure proposed by Tupec et al. [44] is
used in this study. In their approach, a bond breakage criterion is applied to a pair of the particles,
x and x′. The weight function, used to define the bond between two points, x and x′, is replaced with
the following weight function:

ω̂ = ω (ξ)ωD
(

D, D′
)

(10)

In Equation (10),ω (ξ) is the radially-symmetric weight function, which quantifies the reduced
degree of interaction as a function of the distance away from the material points. ωD (D, D′) is zero
if one of the particles is fully damaged; otherwise, it is one. D and D′ is the damage parameter for x
and x′, respectively. Since Equation (8) does not yield one, the damage variable, D, is assumed as one
(D = 1) if D calculated by Equation (8) is greater than 0.99. This value is the critical damage threshold,
Dcr, selected for this study.

In the peridynamic theory, the damage is associated with the bond breakage. In this study, the state
of material damage is described by a single parameter, D, at each material point (see Equation (8)).
Therefore, it is required to define a bond breakage criterion between a pair of particles, x and x′, based
on their damage parameters, D and D′, respectively. Therefore, the damage parameters, D and D′,
are applied to compute the bond breakage threshold at two separate particle points, which belong to
two material components, respectively. For example, the parameters are used to define the threshold
force at the two particle points, which belong to a coarse aggregate and a cementations concrete matrix,
respectively. It is important to note that the two damage parameters are also used to represent the
damage between two particles from the same material (e.g., a coarse aggregate).

4. Analysis Results and Discussion of the Results

The analysis results indicate that the proposed mesoscale mesh-free approach combined with
a simple material damage model is capable of characterizing the fracture behavior of the concrete
specimen subjected to pure tension.

4.1. Effect of Particle Spacing and Convergence

In peridynamics, particle spacing and the horizon size are studied to determine the extent of
discretization and convergence, whereas the mesh size is varied in the FEM. The specimen subjected
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to pure tension is discretized with three particle spacings, h: 1/2, 1/3 and 1/4 mm, as illustrated
in Figure 5. For each discretization size, 100 heterogeneous models are sampled and analyzed, and
the results are presented in Figure 6. The following solver parameters remain unchanged for this
discretization study: ∆u = 5× 10−4 mm and ε = 10−7.

(a) (b) (c)

Figure 5. Numerical specimens with varying particle spacing, h. (a) h = 1/2 mm; (b) h = 1/3 mm;
(c) h = 1/4 mm.
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Figure 6. Tensile stress versus applied displacement for varying particle spacing. (a) h = 1/2 mm;
(b) h = 1/3 mm; (c) h = 1/4 mm.
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Figure 6 presents the applied displacement versus corresponding tensile stress computed
from the mesoscale models for varying particle spacing, h. In the 100 heterogeneous samples, the
stress-displacement relationship is highly nonlinear and always includes the linear-elastic and softening
parts, regardless of the particle spacing size. However, the residual stresses deviate more from the
mean curve for h = 1/2 mm (see Figure 6a) than those determined when h = 1/3 and 1/4 mm are
used (see Figure 6b,c). Furthermore, it is clear from Figure 7a that the stress converges when the
particle spacing of 1/3 mm or smaller is used. Figure 7b indicates that the mean peak stress converges
when 70 or more samples are generated for the studied particle spacing. Figure 8 illustrates the
crack pattern developed for each discretization scheme while aggregate location and position in the
specimen remains unchanged. For h = 1/2 mm, the damaged area in Figure 8a is more extensive than
those observed in Figure 8b,c, which is anticipated because the horizon size increases as the particle
spacing increases (δ = 3h) in the proposed model. The damage patterns for h = 1/3 and 1/4 mm
are comparable.

In the aggregate placement procedure, a clearance distance from the specimen boundary is given to
prevent cracks from initiating at the interface exposed to the surface. Therefore, in the results presented
in Figure 8, the interface transition zone is not intended to be exposed to the bounding surface.
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Figure 7. Effect of discretization on: (a) mean stress-displacement curves; and (b) sample number with
reference to mean peak stress.

(a) (b) (c)

Figure 8. Effect of particle spacing size on crack pattern. (a) h = 1/2 mm; (b) h = 1/3 mm; (c)
h = 1/4 mm.

While the stress and damage pattern are effective indicators for convergence, the computational
cost is another important factor in determining the particle spacing (or discretization size). Figure 9
shows the effect of particle size on the relative simulation time. It is scaled with respect to the simulation
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time needed for the specimen with h = 1/3 mm. The analyses are completed using parallel computing
and four processors on a UNIX cluster. The model with the particle size of 1/2 mm is four-times
faster than that with h = 1/3 mm, while the computational time decreases by a factor of 2.3 when the
mesoscale model is discretized with h = 1/3 mm, when compared to the model with h = 1/4 mm.
Therefore, based on stress convergence, damage patterns and the relative computational cost for the
remaining study, mesoscale models are generated with the particle spacing of 1/3 mm and sample
size of 100.

Figure 9. Effect of discretization on simulation time.

4.2. Effect of Loading Increment and Dynamic Relaxation Threshold

To obtain the implicit solutions for a quasi-static peridynamic equilibrium equation (Equation (3)),
an incremental and iterative method is developed. For a displacement state of δu, the dynamic
relaxation method is adopted to iteratively update the displacement field, u, until ||δu|| < ε, where ε
is a small numerical cut-off. Therefore, the steady-state solver parameters include the displacement
loading increment, ∆u, and dynamic relaxation threshold, ε. The effect of these two parameters on the
accuracy and convergence of the analysis results is studied. Three displacement loading increments,
∆u, of 5× 10−3 mm, 5× 10−4 mm, and 5× 10−5 mm, are considered with a fixed value of ε = 10−7.
As shown in Figure 10a, the stress results converge when ∆u of 5× 10−4 mm or smaller is used.

(a) (b)

Figure 10. Effect of (a) the displacement loading increment and (b) the dynamic relaxation threshold
on the mean stress curve.

The effect of the dynamic relaxation (DR) threshold, ε, on the analysis results is investigated.
Three values of 10−6, 10−7 and 10−8 are considered for εwith a fixed ∆u = 5× 10−4 mm. The stress
appears to converge when ε becomes 10−7 or smaller. Furthermore, the effect of these two variables on
the relative simulation time is shown in Figure 11a,b, respectively. It is observed that the simulation
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time is highly (by a factor of six) affected by the change in the displacement loading increment, whereas
the simulation time increases by 40%–50% when the dynamic relaxation threshold increases by a factor of
ten.

(a) (b)

Figure 11. The effect of (a) the displacement loading increment and (b) the dynamic relaxation threshold
on the simulation time.

4.3. Comparison with Available Finite Element Analysis Results

Based on the convergence study presented in Sections 4.1 and 4.2, the mesoscale model is analyzed
with the following two parameters: ∆u of 5× 10−4 mm and ε of 10−7, in conjunction with the particle
spacing of 1/3 mm and sample size of 100. The analysis results are compared with the cohesive FEM
results produced by Wang et al. [5] as shown in Figure 12.

Figure 12 indicates that the mesoscale model analyzed in the proposed peridynamics analysis
framework yields similar results to the two-dimensional FEA results. This result is remarkable because
Wang et al. [5] used multiple levels of mesh refinement and complex damage models to obtain the FEM
results, whereas the proposed mesoscale model including four phases is relatively simple to generate,
and the bonds between material particles are defined by simple damage models (see Section 3.2).
The experimental results [46] are provided in Figure 12 as a point of reference and are discussed in
Section 6.

Figure 12. Comparison with experimental and available FEM results.

5. Sensitivity Study

This section includes the sensitivity analysis capability of the proposed mesoscale model.
Two variables, aggregate volume and porosity, are considered to study the effect of the variables
on the stress results, although no experimental results are available to validate such analysis.
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5.1. Effect of Aggregate Volume Fraction

Four coarse aggregate volume fractions, Pagg, of 20%, 30%, 40% and 50% are studied with
a constant porosity, Ppore = 2%. For each of the four cases, 100 samples are studied to best represent the
heterogeneous material phases. Figure 13a provides the stress-displacement relationship. The initial
slope increases in the linear elastic region as the aggregate volume increases; however, the peak stress
decreases due to increased ITZ resulting from increased aggregate volume, where the tensile strength
is significantly lower than other materials. For the parameters studied herein, it is concluded that the
peak load carrying capacity is reduced by increased aggregate volume. In general, the load carrying
capacity may or may not increase [47–49], depending on the mix-design of cement paste and aggregate
type selected.

(a)
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Figure 13. Effect of (a) aggregate volume fraction, Pagg, and (b) porosity, Ppore, on the mean stress
curve.

5.2. Effect of Porosity

Porosity, Ppore, of 2%, 4% and 6% is considered to study the effect of air void content on the
stress-displacement relationship. For each of the contents studied, 100 samples are analyzed with
a constant coarse aggregate volume fraction, Pagg = 40%. Both the linear elastic modulus and peak
load decrease as the porosity increases as shown in Figure 13b.

5.3. Comparison with the FEM Results and Damage Patterns

Figure 14 shows a comparison of the sensitivity study results from the proposed mesoscale
approach and FEM. The results are in good agreement despite the fact that considerably different
analysis methods and material models are used in the mesoscale model. Figures 15–21 present selected
samples showing the crack patterns from the 100 samples used in the sensitive study. Seven selected
cases corresponding to the four coarse aggregate volume fractions and four air contents are presented
in the figures. It is concluded from this sensitivity study that the damage pattern is highly dependent
on the distribution of the coarse aggregate and air voids and that one or two discrete cracks develop
in the tensile specimen. It is also concluded from the proposed mesoscale model that the air voids
and ITZs play an essential role in defining a crack path, which is not surprising, because they are the
two weakest elements in the multiphase materials.

In Figures 15–21, microscopic cracks, represented by damaged points in this model and thus
invisible in these figures, originate from the interface zone. The weakest area involves increased
numbers of air voids and interface zones. These micro-scale cracks coalesce, and the resulting mesoscale
crack, which is visible in these figures, grows into the boundaries. As observed in the crack patterns,
positioning an air void close to the surface does not always warrant a crack initiation.



Materials 2017, 10, 162 15 of 21

(a) (b)

Figure 14. Mean peak stress for varying (a) aggregate volume fraction, Pagg, and (b) porosity, Ppore.

#1 #2 #3 #4

#5 #6 #7 #8

Figure 15. Crack pattern for selected specimens with Ppore = 2% and Pagg = 20%.

#1 #2 #3 #4

#5 #6 #7 #8

Figure 16. Crack pattern for selected specimens with Ppore = 2% and Pagg = 30%.



Materials 2017, 10, 162 16 of 21

#1 #2 #3 #4

#5 #6 #7 #8

Figure 17. Crack pattern for selected specimens with Ppore = 2% and Pagg = 40%.

#1 #2 #3 #4

#5 #6 #7 #8

Figure 18. Crack pattern for selected specimens with Ppore = 2% and Pagg = 50%.

#1 #2 #3 #4

#5 #6 #7 #8

Figure 19. Crack pattern for selected specimens with Ppore = 0% and Pagg = 40%.
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#1 #2 #3 #4

#5 #6 #7 #8

Figure 20. Crack pattern for selected specimens with Ppore = 4% and Pagg = 40%.

#1 #2 #3 #4

#5 #6 #7 #8

Figure 21. Crack pattern for selected specimens with Ppore = 6% and Pagg = 40%.

6. Discussion

The stress-displacement curves agree well with available two-dimensional FEM results with
the following limitations: (1) the numerical model includes the two-dimensional planar fracture
assumption; (2) statistically-determined aggregate/air void distributions, which are physically
different from the experimental specimen. Therefore, the experimental comparison only has qualitative
meaning. The accuracy of the analysis is quantified by a comparison with the two-dimensional FEM
results of Wang et al. [5]. It is also important to note that no damage is assumed to occur between the
material points in an aggregate. This is attributed to a simple elastic material model used to represent
the aggregate material. Therefore, in this model, cracks are not able to go through the aggregates
because the elastic strength of aggregate is higher than that of the cement paste.

Mesoscale modeling of cementitious composites is challenging due to heterogeneous material
constituents and the highly complex cracking mechanism. While the proposed approach builds
a distinct framework for fracture analysis of concrete specimens, future work includes the
implementation of the following features and tools for:

1. Studying the influence of particle shape and surface texture of the coarse aggregate.
2. Refinement in particle spacing and/or horizon size in ITZs to reduce the computational time

while providing accuracy.
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3. Enhancing material models and damaged parameters for complex loading conditions, such
as shear.

4. Extending the proposed analysis approach to three-dimensional (3D) models in which, for
instance, non-planar (or 3D) fracture surfaces are characterized.

5. Advanced computational techniques to optimize computational expense.

While the proposed mesoscale model is well suited to predict the fracture mechanism, comprising
bond failure and crack initiation/propagation at the mesoscale, practical applications of this model
may involve developing a successful coupling approach using both mesoscale and finite element
modeling methods, in which concrete structures are practically characterized by finite elements. For the
proposed approach to be pragmatic, the finite element model will need to be selectively refined using
the multiscale coupling approach discussed in Section 1.4, which characterizes the mesoscale damage
in a selected region.

7. Conclusions

The macroscale description of fracture behavior in cementitious composites is highly dependent on
the heterogeneous constituent materials at a mesoscopic level. Therefore, it is important to characterize
such a fracture mechanism in mesoscopic materials by using effective numerical techniques. In this
study, it is found that mesoscale modeling of concrete members in a non-ordinary peridynamics
analysis framework is highly effective for fracture analysis. The stress-displacement curves agree well
with available experimental results and FEM results. The simple two-dimensional mesoscale model
generated in peridynamics is well suited to understand the effect of gradation, aggregate distribution
and proportions of constituent materials, as well as to predict the fracture mechanism, comprising
bond failure and crack initiation/propagation at the mesoscale. The following conclusions are made
by examining the results of this analytical study:

1. The results indicate that particle spacing affects the stress convergence, as well as crack patterns.
For the tensile loading condition considered herein, the particle spacing of 1/3 mm provides the
most effective discretization with a reasonable computational effort.

2. The results of the mesoscale analysis show that the simulation time is sensitive to the displacement
loading increment used for dynamic relaxation. Based on the analysis results reported in
this paper, the optimal displacement increment and DR threshold is 5× 10−4 mm and 10−7,
respectively, for tensile loading.

3. By means of interfacial transition zones (ITZs) characterized in the proposed mesoscale model,
it is capable of reflecting the effect of varying coarse aggregate volume fractions on the load
carrying capacity.

4. It is concluded that the strength reduction due to increased air content is reflected in the proposed
model, by removing particle points from the areas of voids.

5. Finally, in the proposed mesoscale peridynamics analysis, it is possible to identify a
statistically-significant sample size for reasonably representing coarse aggregate gradation and
distribution and to predict the fracture mechanism in concrete specimens.
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