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Abstract: Diseases in articular cartilages have affected millions of people globally. Although the
biochemical and cellular composition of articular cartilages is relatively simple, there is a limitation
in the self-repair ability of the cartilage. Therefore, developing strategies for cartilage repair is very
important. Here, we report on a new liquid resin preparation process of water-based polyurethane
based photosensitive materials with hyaluronic acid with application of the materials for 3D printed
customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics
the mechanical properties of articular cartilages. It is suitable for culturing human Wharton’s jelly
mesenchymal stem cells (hWJMSCs) and the cells in this case showed an excellent chondrogenic
differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in
customized tissue engineering and also facilitate the development of cartilage tissue engineering.
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1. Introduction

Cartilage reconstruction is an important topic in regenerative medicine [1–7]. Because of the
avascularity of articular cartilage, the limited proliferation of mature chondrocytes and less migration
of chondrocytes surrounded by the extracellular matrix, the regeneration of articular cartilage is
considered difficult in comparison to other tissue [2]. Many approaches such as microfracture,
abrasion arthroplasty, osteochondral autologous transfer, and autologous chondrocyte implantation
have been applied for cartilage reconstruction. Microfracture is suitable for small cartilage injuries.
Brasion arthroplasty may cause thermal necrosis. The recipients of allogenic cartilages may suffer body
reactions and infections. Besides, autografts have problems related to limited availability. Therefore,
there is still no ideal and perfect approach for the reconstruction of critical articular cartilage defects
and there are many problems that need to be resolved [8].

Currently, three-dimensional (3D) printing is considered an effective and high potential technology
to revolutionize the field of regenerative medicine and tissue engineering. Previous studies
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also reported 3D printing as being a useful method to fabricate scaffolds for cartilage tissue
engineering [9,10]. In 2012, Xu et al. [9] used a novel multi-head deposition system to fabricate
hybrid scaffolds for cartilage tissue engineering applications. In 2014, Hung et al. [10] established
a water-based platform technology for 3D-printed cartilage scaffold fabrication with liquid-frozen
deposition manufacturing (LFDM). In 2015, Markstedt’s group [11] constructed 3D cartilage scaffolds
with a bio-ink composed of nanofibrillated cellulose and alginate by electromagnetic jet technology.
Although their studies demonstrated 3D printing can provide a solution for cartilage tissue engineering,
the mechanical properties of the printed scaffolds were weaker than natural articular cartilage and the
printing resolution needed to be improved.

3D printing supplies a lot of advantages for medical applications, containing high precision,
fast fabrication and customized production. Many 3D printing methods including fused deposition
manufacturing (FDM) [12], LFDM [13], selective laser sintering (SLS) [14,15], power bed and inkjet
head 3D printing (PIP) [16], stereolithography (SLA) [17], and digital light processing (DLP) [18] have
been applied for tissue engineering scaffold fabrication. Although FDM and LFDM technologies can
provide a low manufacturing cost and a simple manufacturing process, the resolution is limited on a
Z-axis. The problems of SLS and PIP technologies are the large amounts of waste production. SLA and
DLP have higher vertical resolution [19] than other 3D printing technologies, but most light-curable
polymers are dissolved in organic solvents which have low biocompatibility [20]. Therefore, researchers
have focused on the development of light-curable and highly biocompatible materials for SLA and
DLP in recent years [21–23], such as poly(ε-caprolactone)-based materials, poly(d,l-lactide) resins,
and poly(ethylene glycol)/poly(d,l-lactide)-based resins.

An ideal scaffold for tissue engineering is biocompatible and biodegradable and owns a desired
tissue shape and porous structure for providing a nutrient and metabolic transporting pathway.
DLP technology can satisfy the requirements of printing 3D scaffolds which have specific shape
and porous structure, however the materials for DLP technology are the key to decide if the
printed scaffolds are biocompatible and biodegradable. Biodegradable materials can be gradually
degraded by biologic fluid in vivo or by microorganisms in the environment [24]. Previous studies
reported tissue engineering scaffolds can be fabricated by biodegradable materials including
poly(ε-caprolactone) (PCL), polylactic acid (PLA), polyglycolic acid (PGA), and polylactic-co-glycolic
acid (PLGA) [25]. However, the compressive strength and Young’s modulus of these materials
are not similar to living tissues and some of these materials often need to be dissolved in highly
toxic solvents [26,27]. Biostable polyurethanes are considered to have good biocompatibility and
mechanical properties for long term medical implants including vascular grafts and cardiac pacemakers.
Polyurethanes are generally synthesized through polycondensation reaction of di-isocyanates with
amines and/alcohols [28]. In this study, polyurethanes containing aliphatic polyesters which allow for
biodegradation were applied. Besides, the polyurethanes are water-based light-cured polyurethanes
which could be applied in DLP technology and have good biocompatibility.

Water-based 3D printing of photosensitive materials for customized cartilage tissue engineering
with DLP technology was developed in this study. Water-based light-cured polyurethane is a non-toxic
and environmentally friendly material, but it has not yet been applied in DLP technology for 3D
printing. Here, we report a new liquid resin preparation process for water-based polyurethane based
photosensitive materials with hyaluronic acid (HA) which has been reported to promote cartilage
repair, with application of the materials for 3D printed customized cartilage scaffolds. The scaffold has
high biocompatibility and is one that closely mimics the mechanical properties of articular cartilages.
Furthermore, it can be designed by three-dimensional reconstruction and is similar to the shape of
the cartilage defect of the recipient site in order to provide the most effective way for cartilage tissue
reconstruction, as well as also facilitating longer term the development of cartilage tissue engineering.
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2. Results and Discussion

2.1. Fabrication of Customized Scaffolds

Organic solvents such as DMF (dimethylformamide) are involved in traditional polyurethane (PU)
polymerization to regulate PU viscosity to make PU coating easier. In order to substitute traditional
solvent-based PU which uses volatile organic compounds (VOC), water-based PU have been developed
in recent years [29]. Although water-based light-cured PU is a non-toxic and environmentally friendly
material, it has been used for coating previously but was not applied in DLP and SLA technologies
for 3D printing directly. During the curing process, the water in water-based light-cured PU resins
must be removed by heat or short wave infrared. Besides, the water-based light-cured PU resins often
present a solidified or over-sticky state after water removal.

The viscosity of the materials for DLP based 3D printers is a key factor which can affect the
printing resolution and printing results [30]. Here, we report a new liquid resin preparation process for
water-based polyurethane based photosensitive materials (Figure 1A). The water-based polyurethanes
were heated and stirred at high speed to remove the water, and then hydroxyethylmethacrylate
(HEMA) to adjust the viscosity and photoinitiators for light curing were added. There is no significant
difference in the Raman spectra of the water-based polyurethanes between the with or without water
removing processes (Figure 1B,C). Besides, scaffolds with various shapes were fabricated by DLP
technology to confirm the printing resolution and customized potential of the materials (Figure 1D,E).
The designed lattice widths in the 4 × 4 and 3 × 3 porous lattice structures were 0.5 and 0.3 mm
(Figure 1E). The average lattice widths in the printed porous lattice structures were 0.517 and 0.306 mm,
respectively. The percent errors of the printed lattice width were lower than 4% compared to the
original design. These results indicated our materials can be printed out in the shape of the design and
have customized potential.
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Figure 1. (A) The schematics of the manufacturing process of the water-based polyurethane based
photosensitive materials; The Raman spectra of the (B) water-based light-cured polyurethanes
and (C) water-based thermoplastic polyurethanes with or without water removal processes;
(D) The images of the printed scaffolds; (E) The images of the designed (left) and printed (right)
porous lattice structures.
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2.2. Characterization of Water-Based Light-Cured PU/TPU Specimens

Water-based polyurethanes are of different types, such as water-based light-cured polyurethanes,
water-based thermoplastic polyurethanes, and water-based thermosetting polyurethanes. In this study,
the water-based light-cured polyurethane and the water-based thermoplastic polyurethane were mixed
and heated together to remove water and to form hybrid materials. By using different proportions of
the water-based light-cured PU and the water-based thermoplastic polyurethane, the hybrid specimens
showed different hardness and different Young’s modulus values (Figure 2A,B). When increasing the
concentration of the water-based TPU, the hardness and Young’s modulus decreased significantly.
The Young’s modulus of the articular cartilage according to previous studies is about 24 MPa [31].
When adding specific proportions of the water-based TPU, the physical properties of the materials
were similar to articular cartilage. Although previous reports [10,32] have also developed 3D printing
materials to fabricate the tissue-engineered cartilage constructs, their compressive strength and Young’s
modulus were much lower than natural articular cartilage. In addition, the cell viability of hWJMSCs
cultured on the water-based polyurethane based composites with 0% or 50% of the water-based TPU
for one and three days was evaluated (Figure 2C). The hWJMSCs cultured on 0% or 50% water-based
thermoplastic polyurethane composites had similar or higher cell viability compared with the normal
tissue culture plates (Control). In 2012, Chu et al. [33] also reported that the attachment and migration
of WJMSCs can be promoted by PU. These results demonstrated the polyurethane based composites
have high biocompatibility.
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Figure 2. The physical properties and cell viability of water-based polyurethane (PU) based
photosensitive materials with different proportions of the water-based thermoplastic polyurethane.
(A) Shore hardness values and (B) Young’s modulus of the water-based polyurethane based composites
compared with articular cartilage; (C) Cell viability of hWJMSCs cultured on the water-based
polyurethane based composites with 0% or 50% of the water-based thermoplastic polyurethane for
1 and 3 days. Values in (A–C) represent mean and SD (n = 3).

2.3. Characterization of Water-Based Light-Cured PU/HA Scaffolds

HA is an important component of articular cartilage. It can link aggrecan molecules to large
proteoglycans and be a lubricant in joints [34]. Previous studies reported that HA can facilitate cell
migration and viability [35] and may promote the chondrogenic differentiation of mesenchymal stem
cells (MSCs) [36,37]. In 2016, Gobbi’s group showed that HA based scaffolds with activated bone
marrow-derived MSCs can provide better effects of cartilage reconstruction than microfracture and
lead to successful medium-term outcomes [38]. Therefore, the HA based scaffolds with stem cells may
provide great potential for the development of cartilage repair.

In this study, HA was added in the water based polyurethane composites to fabricate water-based
light-cured PU/HA 3D hybrid scaffolds by DLP technology. Figure 3A shows the Raman spectra of the
PU/HA hybrid scaffolds with different HA concentrations. The Raman spectra of the PU/HA hybrid
scaffolds with different HA concentrations were very similar. When increasing the HA concentration,
the height of the 1413 cm−1 band increased slightly. The width of the 1413 cm−1 band, related to the
symmetrical vibration of the COO− group of the glucuronate residue, was used to identify HA [39].
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The Young’s modulus and diametral tensile strength (DTS) values of the PU/HA hybrid scaffolds
are shown in Figure 3B,C. The Young’s modulus and DTS values had significant increases in the
strength in the scaffolds with HA. We suggest that the added HA could react with PU to form a
tighter chemical structure. In addition, the Raman spectra of the PU/HA hybrid scaffolds showed
that the height of the 882 cm−1 band of the scaffolds with HA decreased slightly compared to the
scaffolds without HA (Figure 3A) and the peak at 882 cm−1 was attributed to C–C–O vibrations of
PU. These results indicated that HA may interact with PU to cause the height of the 882 cm−1 band to
decrease and to lead the scaffold strength to increase.
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concentration; The (B) Young’s modulus and (C) diametral tensile strength values of the PU/HA
hybrid scaffolds.

Figure 4A shows the degradation results of the PU/HA hybrid scaffolds for 7, 14, 21, and 28 days
in phosphate buffered saline (PBS) at 37 ◦C. The degradation results of all the scaffolds were almost
the same. All PU/HA hybrid scaffolds displayed a rapid initial weight loss in 7 days. After 28 days,
the weight loss measured for all PU/HA hybrid scaffolds was about 94.5%. In 2011, Tan’s group
reported HA-HA hydrogels showed a fast weight loss and fully degraded in 10 days [40]. However,
the degradation results of the scaffolds with or without HA were almost the same in our study.
We suggest that the amount of HA added was too low to allow the degradation rate to be affected.
Although polyurethanes containing aliphatic polyesters are biodegradable materials, the PU/HA
hybrid scaffolds exhibited slow degradation rates before 28 days. A previous report [41] pointed out
that the scaffold degradation was correlated to the chemical design of the original polymer and slow
degradation rates of aliphatic polyesters before 30 days were also observed. The Young’s modulus
values of the PU/HA hybrid scaffolds were also evaluated after 28 days (Figure 4B). The Young’s
modulus of the scaffolds with HA decreased slightly after 28 days, but the Young’s modulus of the
scaffolds without HA increased slightly. Figure 4C shows the images of the PU/HA hybrid scaffolds
after compressing tests. All the PU/HA hybrid scaffolds without degradation tests only presented
deformation after compressing, but the phenomenon of fragmentation was caused in the scaffolds
containing 0%–1% HA with 28-day degradation tests. It is noteworthy that the PU/HA hybrid scaffolds
with 2% HA only presented the phenomenon of deformation after compressing. The SEM images of
28-day degradation tests showed that the phenomenon of crack formation reduced gradually with
increasing HA concentration (Figure 4D). These results indicate that the addition of HA can prevent
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crack formation of scaffolds during the degradation process and may facilitate stable degradation of
the scaffolds.
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2.4. Adhesion, Proliferation and Chondrogenic Differentiation of Cells Cultured on Water-Based Light-Cured
PU/HA Scaffolds

The cell morphology of WJMSCs cultured on the PU/HA hybrid scaffolds for 4 h and 3 days
were examined by the SEM images (Figure 5). The cells on the all PU/HA hybrid scaffolds for 4 h
displayed flat and presented intact, well-defined morphology. This result demonstrated that the
cells can adhere on the scaffolds very well and that the scaffolds might provide a good adhesion
environment for the cells. Besides, the SEM images of the cells on all the PU/HA hybrid scaffolds for
3 days showed that the cells still presented good cell morphology and the number of cells increased.
The cell proliferation of WJMSCs and chondrocytes cultured on the PU/HA hybrid scaffolds was
evaluated by the PrestoBlue® assay (Figure 6). In addition, the fluorescent images showed the WJMSCs
covered all the PU/HA hybrid scaffolds after 5 days incubation (Figure 7). These results indicated that
cells incubated on PU/HA hybrid scaffolds can have good proliferation ability and the scaffolds have
good biocompatibility.
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In order to investigate the chondrogenic differentiation effect of the scaffolds, the fluorescent and
Alcian blue staining images and the glycosaminoglycan (GAG) contents of the micromass cultures
of WJMSCs cultured on the PU/HA hybrid scaffolds for 1 day were evaluated (Figure 8A–C).
The fluorescent images showed that the phenomenon of cell aggregation increased as the HA
concentration increased. Besides, the color of the Alcian blue staining ranged from light to
deep blue and the GAG contents increased as the HA concentration increased. Furthermore,
the immunofluorescence staining images (Figure 8D) showed that the WJMSCs cultured on the
PU/HA hybrid scaffolds with 2% HA and without adding chondrogenic differentiation medium can
express collagen type II and cartilage homeoprotein 1 (CART1) which are the markers of chondrogenic
differentiation. These results indicated that the PU/HA hybrid scaffolds containing higher HA
concentration might stimulate chondrogenic differentiation. In 2015, Nalluri’s group [42] reported that
hydrophilic polyurethanes can show a biphasic structure and present a gel-like architecture to provide
a compatible synthetic matrix for chondrogenic differentiation of MSCs. In 2016, Huang’s group
showed that the GAG secretion by chondrocytes in water-based polyurethane 3D printed scaffolds
was greater than that in PLGA scaffolds [10]. Although they also used water-based polyurethane to
manufacture 3D printed scaffolds, their scaffolds were fabricated by LFDM technology which has
lower printing resolution. Besides, Yoo et al. [43] and Fan et al. [44] reported the PLGA scaffolds
containing hyaluronic acid presented greater chondrogenic differentiation ability. These previous
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results indicated hydrophilic polyurethanes have the potential to promote chondrogenic differentiation
and the chondrogenic differentiation ability can be improved by adding hyaluronic acid; similar to our
results. In this study, we provided a new liquid resin preparation process of water-based polyurethane
based photosensitive materials with HA for DLP technology, so that the printing resolution was
higher than the previous study [10] and the printed 3D scaffolds also have good biocompatibility
and promote chondrogenic differentiation. Furthermore, several reports [45–47] show shape memory
polymers fabricated with 3D printing technology bring about the possibility to realize 4D printing.
The polyurethanes are also shape memory polymers and have the potential for 4D printing. Therefore,
we also expect to develop 4D printing in the future on the basis of our current research for cartilage
tissue engineering.
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Figure 8. The (A) fluorescent and (B) Alcian blue staining images and the (C) GAG contents
of the micromass cultures of WJMSCs cultured on PU/HA hybrid scaffolds for 1 day; (D) The
immunofluorescence staining images of nuclei (blue), COL2A1 (red) and CART1 (green) for the
micromass cultures of WJMSCs cultured on PU/HA hybrid scaffolds with 2% HA for 1 day.

3. Materials and Methods

3.1. The Preparation of Water-Based Polyurethane Based Composites

Water-based light-cured polyurethanes (LUX 260) and water-based thermoplastic polyurethanes
(U 2101) were purchased from Alberdingk Boley, Krefeld, Germany. Different proportions of the
water-based thermoplastic polyurethanes (Liquid, Solid Content 50%) were added to the water-based
light-cured polyurethanes (Liquid, Solid Content 40%). The hybrid materials containing 0%, 10%, 20%,
30%, 40% or 50% water-based thermoplastic polyurethanes were heated at 130 ◦C and stirred at high
speed for 1.5 h to remove the water. Amounts of 1.5% 2,4,6-trimethylbenzoyl-diphenyl-phosphineoxide
(TPO) photoininitiators (Ciba, Switzerland) and 0%, 0.5%, 1% or 2% 1900 kD HA (Suvenyl,
Chugai Pharmaceutical, Tokyo, Japan) were dissolved in 2-Hydroxylethyl methacrylate (HEMA)
(Sigma-Aldrich, St. Louis, MO, USA), and then were added to the light curing waterbone polyurethane
composites to mix at 70 ◦C for 3D printing.
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3.2. Graft Fabrication

All test objects and scaffolds were designed through SolidWorks (Dassault Systemes SolidWorks
Corp., Waltham, MA, USA) and fabricated by a MiiCraft high resolution home DLP 3D printer (Young
Optics Inc., Hsinchu, Taiwan). The mode of fabrication was blue light digital stereolithography to
cure individual 100 µm layers of at 20 s exposure. For mechanical properties of the water-based
light-cured PU/TPU specimens, the samples were printed with thickness of 3 mm and a diameter
of 6 mm. In addition, the water-based light-cured PU/HA scaffolds were printed with thickness of
3 mm, a diameter of 6 mm and four rectangular holes (1 mm × 1 mm × 3 mm). The uncured materials
were washed off and the scaffolds were post-cured under UV light, yielding the fully cured scaffolds.
The cured scaffolds were washed again for 3D cell culture.

3.3. Printing Accuracy Analysis

Photographs of the structures were taken using a digital microscope with a pixel size of
0.265 × 0.265 mm2. Horizontal and vertical profiles were then acquired from the photographs to
identify the edges of the holes. The width of each hole in the structures was calculated as the pixel
distance between the edges of the hole times the pixel size. The designed lattice widths in the 4 × 4
and 3 × 3 porous lattice structures were 0.5 and 0.3 mm. The mean lattice width was calculated by
averaging the width of all holes and was compared with the original design.

3.4. Mechanical Properties

The hardness of the water-based polyurethane based composites was determined by the shore
hardness tester (Teclock Corp., Nagano, Japan). The mechanical properties were examined using an
EZ-Test machine (Shimadzu, Kyoto, Japan) with a 500 N load cell at a loading rate of 1 mm/min.
Young’s modulus was calculated from the linear region in stress-strain curve using a theoretical model.

3.5. Raman Spectroscopy

Raman spectra were collected by a portable i-Raman system (B&W Tek, Newark, DE, USA) with
an accessional software BwRam1.1 (B&W Tek, Newark, DE, USA). The same spectral region chosen for
the standard normal variant (SNV) transformation is needed [48] with differences of focus depth or
sample volume.

3.6. Degradation In Vitro

The degradation of the PU/HA hybrid scaffolds was examined in phosphate buffered saline
(PBS) at 37 ◦C for 7, 14, 21, and 28 days. The remaining weight of the scaffolds was calculated by the
following equation: remaining weight (%) = Wf/Wi × 100% [49]. Wi was the initial weight of the
scaffolds. Wf was the weight of the scaffolds which were rinsed with distilled deionized water and
dried after the 7-, 14-, 21-, or 28-day degradation test.

3.7. Cell Viability

Approximately 10 thousand WJMSCs and chondrocytes were directly seeded over each scaffold
for 1 and 3 days. Cell cultures were maintained at 37 ◦C in a 5% CO2 atmosphere. The cell viability
was determined by the PrestoBlue® (Invitrogen, Grand Island, NY, USA) assay. The values of the
absorbance were examined in a multi-well spectrophotometer (Hitachi, Tokyo, Japan) at 570 nm with
a reference wavelength of 600 nm.

3.8. Cell Morphology

After 4 h and 3 days of cell culture, the scaffolds with WJMSCs were washed with cold PBS and
fixed by 1.5% glutaraldehyde (Sigma-Aldrich, St. Louis, MO, USA). After 2 h, the scaffolds were
dehydrated through a graded ethanol series for 20 min at each concentration and dried with liquid
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CO2 by a critical point dryer device (LADD 28000, LADD, Williston, VT, USA). The dried scaffolds
were mounted on stubs, coated with gold particles, and examined by scanning electron microscopy
(JEOL JSM-7401F, Tokyo, Japan).

3.9. Fluorescent Images

The stable enhanced green fluorescent protein (EGFP) WJMSCs which were established by the
Retro-XTM Universal Packaging System (Clontech Laboratories Inc., Mountain View, CA, USA) were
cultured on the PU/HA hybrid scaffolds. After 1 and 5 days, the scaffolds with the stable cells were
washed with PBS and the fluorescent images were investigated by a Zeiss Axioskop2 fluorescent
microscope (Carl Zeiss, Thornwood, NY, USA).

3.10. Micromass Culture

The micromass culture technique was modified from Ahrens’s group [50]. The cell solution
of 1.6 × 107 viable cells/mL was prepared. Droplets of 5-µL of cell solution were seeded to
generate micromass cultures on the scaffolds for fluorescent images, Alcian blue staining and analysis,
and immunofluorescence staining.

3.11. Alcian Blue Staining and Analysis

The hWJMSCs were grown on the PU/HA hybrid scaffolds and without adding chondrogenic
differentiation medium. After 24 h, the scaffolds with hWJMSCs were fixed with 4% formaldehyde,
sulfuric acid for 30 min, and then stained with 10 mg/mL Alcian blue solution for 3 h. The Alcian
blue staining images were obtained by a Zeiss Axioskop2 microscope (Carl Zeiss, Thornwood,
NY, USA). Besides, the GAG-Alcian blue complexes can be dissociated and dissolved in a 4 M
guanidine-HCl/propanol mixture after staining. The values of the absorbance were examined in a
multi-well spectrophotometer (Hitachi, Tokyo, Japan) at 600 nm.

3.12. Immunofluorescence Staining

The hWJMSCs were grown on the PU/HA hybrid scaffolds with 2% HA and without
adding chondrogenic differentiation medium. After 24 h, the scaffolds with hWJMSCs were fixed,
and immunostained with anti-COL2A1 (rabbit), anti-CART1 (mouse), and then with anti-rabbit
conjugated tetramethylrhodamine (TRITC), anti-mouse conjugated fluorescein isothiocyanate (FITC)
and with 4′,6-diamidino-2-phenylindole (DAPI). Immunofluorescence images were examined by using
a white light laser confocal microscope Leica TCS SP8 X (Leica Microsystems, Heidelberg, Germany).

4. Conclusions

We report new water-based 3D printing photosensitive materials with HA, applied for
the development of 3D printed scaffolds for cartilage tissue engineering with DLP technology.
The materials bring out important advantages such as non-toxic, high printing resolution, good
cytocompatibility, and environmentally friendly. Besides, the 3D printed scaffolds can facilitate cell
adhesion, proliferation, and chondrogenic differentiation. Furthermore, the development may be
applied for customized cartilage tissue reconstruction in the future (Figure 9).
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computerized tomographic (CT) images of the articular cartilage defects are applied to enable the 
design of the printed scaffolds and three-dimensional reconstruction. The customized porous 
scaffolds which are similar to the shape of the cartilage defect of the recipient site are designed and 
printed with water-based light-cured PU/HA hybrid materials by DLP technology. Furthermore, the 
targeted cells are cultured on the printed PU/HA hybrid scaffolds. After tissue maturation, the 
cartilage tissues can be used in implantation for cartilage repair. 
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