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Abstract: Olivine-type LiMnPO4/C nanorods were successfully synthesized in a chloride/ethylene
glycol-based deep eutectic solvent (DES) at 130 ◦C for 4 h under atmospheric pressure.
As-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy
(SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared
spectroscopy (FTIR) and electrochemical tests. The prepared LiMnPO4/C nanorods were coated
with a thin carbon layer (approximately 3 nm thick) on the surface and had a length of 100–150 nm
and a diameter of 40–55 nm. The prepared rod-like LiMnPO4/C delivered a discharge capacity of
128 mAh·g−1 with a capacity retention ratio of approximately 93% after 100 cycles at 1 C. Even at
5 C, it still had a discharge capacity of 106 mAh·g−1, thus exhibiting good rate performance and
cycle stability. These results demonstrate that the chloride/ethylene glycol-based deep eutectic
solvents (DES) can act as a new crystal-face inhibitor to adjust the oriented growth and morphology
of LiMnPO4. Furthermore, deep eutectic solvents provide a new approach in which to control the size
and morphology of the particles, which has a wide application in the synthesis of electrode materials
with special morphology.
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1. Introduction

Lithium ion batteries (LIBs) have been considered as the most promising power sources for
modern electronic devices due to their long cycle life, high energy density and good safety [1–3].
The cathode material is an important part of LIBs and plays a critical role in determining their
performance [4,5]. Thus, many types of cathode materials have been investigated to improve the
performance of LIBs. Since the pioneering work of Goodenough and co-workers [6], LiMPO4 (M = Fe,
Ni, Mn, Co) with an olivine-type structure has received intensive attention over the past decades [7–9].
Among the known olivine-type materials, LiMnPO4 has been investigated as a promising cathode
material for the next generation of LIBs due to its optimal redox potential (4.1 V vs. Li+/Li), giving
an energy density that is approximately 20% larger than that of LiFePO4 and is compatible with
most liquid electrolytes presently used in LIBs [4,6,10–12]. However, LiMnPO4 suffers from slow
lithium ion diffusion (10−15 cm·s−1) and poor electronic conductivity (10−10 cm·s−1), due to the
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heavy polarized holes localized on the Mn3+ sites and the interfacial strain that exists between the
LiMnPO4 and MnPO4 phases during charge/discharge processes [13–15]. In order to overcome these
drawbacks, three approaches have been adopted: (1) reducing the particle size and controlling the
morphology [16–18]; (2) coating a conductive layer on the surface of LiMnPO4 [19–22]; and (3) doping
with cations [23–26].

According to previous literature [10,27–29], nanoparticles and nanostructures are beneficial in
increasing capacity, as they can effectively shorten the diffusion length of the Li-ion and electron. Therefore,
many approaches have been carried out to prepare LiMnPO4/C with nano-size and nanostructure [30–32].
In these adopted approaches, hydrothermal/solvothermal methods have attracted particular attention
owing to the controllable synthesis of LiMnPO4/C with a special morphology [2,20,21,33–35]. Therefore,
various special morphologies such as nanoplates [16,21,36]; nanorods [10,33,35]; nanosheets [18,37];
flower-like nanostructures [34,38]; hemoglobin [39]; and wedges [40] were prepared using the
hydrothermal/solvothermal method to enhance the electrochemical performance of LiMnPO4. LiMnPO4

nanoplates were synthesized using an ethylene glycol (EG)-assisted solvothermal approach and delivered
a discharge capacity of 92 mAh·g−1 at 0.5 C [32]. LiMnPO4 nanorods were prepared via a facile
solvothermal approach, and exhibited a high capacity of 110 mAh·g−1 at 10 C [35]. In summary, the use
of hydrothermal/solvothermal methods made it easy to control the morphology and size of LiMnPO4

particles. However, hydrothermal/solvothermal methods require the cumbersome use of autoclaves
and high temperature, which limits their practical application. Recently, the ionothermal method based
on ionic liquids (ILs) has been adopted to overcome the drawbacks of the hydrothermal/solvothermal
methods, as ILs have low vapor pressure and excellent solvating properties and thus the use of autoclaves
can be avoided [41–43]. For instance, Barpanda et al. [44] synthesized nanostructure LiMnPO4 via an
ionothermal route, and the prepared sample exhibited a reversible capacity of 95 mAh·g−1 at 1/20 C with
good cycling stability. However, the application of the ionothermal method failed to become popular due
to limitations such as poor biodegradability, toxicity and high cost [45,46].

Since the term deep eutectic solvents (DESs) was first coined by Abbott et al. [47,48], they have
been investigated as a sustainable media in which to overcome the limitations of ILs [46]. Compared
with traditional ILs, DESs can be readily formed by mixing quaternary ammonium or phosphonium
salt with a metal salt or hydrogen bond donor (HBD), such as amide, acid or alcohol under
simple operational conditions [49,50]. Taking choline chloride/alcohols-based DESs as an example,
the formation mechanism of choline chloride and hydrogen bond in DESs is presented in Figure 1 [51].
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Figure 1. Schematic illustration of the formation mechanism of choline chloride and hydrogen bond in
deep eutectic solvents (DESs).

DESs share most of the same characteristics as ILs, such as negligible vapor pressure, tenability
and wide electrochemical potential windows [47,48]. However, DESs have some unique advantages
such as nontoxicity and low cost, and they are biodegradable; and easily are prepared [46]. The freezing
point of these DESs even can be reduced to a lower temperature than that of ILs due to their low
lattice energy [52]. Thus, DESs have widespread applications in the fields of chemistry, including
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synthesis [46], metal deposition [53,54], nanomaterials [55], gas adsorption [56], analysis [57] and
electrochemistry [58]. For example, sulfonamide-based deep eutectic electrolytes display significantly
higher transport numbers than organic carbonates electrolyte solutions such as LiPF6 [59]. Similarly,
Lesch et al. [60] reported that the LiTFSI/urea based deep eutectic electrolyte with high urea
concentrations can significantly increase ionic diffusivities and lithium transference numbers. Zinc has
been successfully electrodeposited in choline chloride/urea and choline chloride/ethylene glycol deep
eutectic solvents, respectively [61], with the morphology of zinc coatings obviously changed in those
different choline chloride-based DESs due to their different physical properties. These results indicate
that DESs are a potential media that can be used in the synthesis of numerous materials. However,
the synthesis of nanostructure LiMnPO4 in DESs has not yet been reported.

In this paper, we prepared LiMnPO4/C nanorods in a chloride/ethylene glycol-based deep
eutectic solvent (DES) under atmospheric pressure and investigated the electrochemical properties of
the prepared sample. The results of this work show that DES can be used as a new structure-directing
agent to prepare LiMnPO4 with a special rod-like morphology.

2. Experimental Methodology

2.1. Sample Synthesis

LiMnPO4/C nanorods were prepared using H3PO4 (85% P2O5), MnSO4·H2O and LiOH·H2O
as the raw materials and chloride/ethylene glycol-based DES as the solvent and reaction medium.
All chemicals were analytical grade reagents from Sinopharm Chemical Reagent Co. Ltd. (Beijing, China)
without further purification. During the synthesis processes, the mole ratio of Li:Mn:P was 3:1:1.
The DES was prepared by mixing ethylene glycol and choline chloride with a mole ratio of 2:1 at
80 ◦C for 30 min to form a colorless liquid [46]. First, a MnSO4 saturated solution and H3PO4 were
dissolved in DES. Next, a LiOH saturated solution was added dropwise into the DES (containing
MnSO4 and H3PO4) to form a yellowish-brown precursor suspension, where the concentration of
Mn2+ was controlled at 0.2 mol·L−1. The yellowish-brown suspension was then heated at 130 ◦C for
4 h with the heating rate of 3 ◦C·min−1 under atmospheric pressure to obtain a whitish suspension.
After centrifuging the whitish suspension with ethanol and deionized water several times, whitish
LiMnPO4 (LMP) powders were obtained. In order to improve the conductivity and crystallization of
the sample, the collected LMP powders were dispersed in a sucrose solution with a weight ratio of
7.5:2.5 for LMP: sucrose, and the obtained LMP/sucrose suspension was dried with a spray dryer to
obtain a dried LMP/sucrose mixture powder. The conditions of the spray drying are as follows: air inlet
temperature was 200 ◦C, air inlet volume was 3 m3·min−1, feed rate was 1.2 L·h−1, the diameter of
nozzle was 0.5 mm, and the solid content is 50 g·L−1. The LMP/sucrose mixture powder was heated at
300 ◦C for 1 h and then sintered at 600 ◦C for 5 h with the heating rate of 5 ◦C·min−1 under N2 flow in
a tube furnace. Finally, LiMnPO4/C (LMP/C) was obtained upon cooling to room temperature.

In order to study the effects of chloride and ethylene glycol, a second LiMnPO4/C sample was
synthesized using only ethylene glycol as the solvent with other synthetic conditions kept unchanged.

2.2. Characterization

X-ray diffraction (XRD) measurements were tested on a X’Pert PRO equipment and used a Cu
Kα radiation source (λ = 0.154060 nm) with a scan range of 10◦ to 80◦ and a scan step of 0.0065◦

and 10 wt % standard silicon powder was added to correct the test instrument error. The power
morphology was observed using scanning electron microscopy (SEM) in a Hitachi S-4800 instrument
(Hitachi, Ltd., Tokyo, Japan) with an accelerating voltage of 3.0 KV and working distance of 4.5 mm;
and transmission electron microscope (TEM) in a Tecnai G2 F20 apparatus (FEI Corporation, Hillsboro,
OR, USA). The carbon content of the final product was obtained with a Thermo Scientific Flash
2000 elemental analyzer (Thermo Scientific Corporation, Warminster, MA, USA) with a carrier gas
velocity of 140 mL·min−1; oven temperature of 65 ◦C; oxygen injection time of 5 s and a running time
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of 720 s. Raman spectroscopy was undertaken by a Renishaw (Renishaw, London, UK) in Via Reflex
with a 785 nm wavelength laser. The Fourier Transform Infrared Spectrum (FT-IR) was tested using a
Thermo Nicolet IS50 spectrometer (Thermo Scientific Corporation, Warminster, MA, USA).

2.3. Electrochemical Measurements

The prepared LiMnPO4/C, acetylene black and a poly (vinylidene fluoride) (PVDF, HSV900,
(MTI Corporation, Shenzhen, China) binder sample were mixed with a weight ratio of 80:15:5 in
N-methyl-2-pyrrolidone (Xilong Chemical Co., Ltd., Guangzhou, China). The slurry was painted onto
an aluminum foil current collector with a thickness of 100 µm and dried overnight in a vacuum at
120 ◦C. The working electrodes were obtained after punching with a diameter of 14 mm, and the
surface density of the active material was approximately 1.5 mg·cm−2.

The charge/discharge behaviors of the prepared LiMnPO4/C were tested using CR2032 coin-type
cells assembled in an argon-filled glove box. Lithium foil was used as the counter electrode,
Celegard® 2300 as the separator and 1 mol·L–1 LiPF6/(EC + DEC 1:1 by volume) as the electrolyte.
Charge/discharge experiments were carried out on a CT-3008 battery testing system (Neware
Technology Limited, Shenzhen, China) at different C rates between 2.5 and 4.5 V (vs. Li/Li+)
at room temperature (25 ◦C), where a 1 C rate was 170 mAh·g−1. Current densities and specific
capacities were calculated based on the mass of the LiMnPO4/C of the electrode. A three-electrode
cell (Lithium Battery Cell 990-00344, Gamry Instruments, Warminster, PA, USA) was assembled and
used for cycle voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements.
CV tests were performed at scan rates ranging from 0.1–0.4 mV·s−1 between 2.5–4.5 V under
25 ◦C. EIS measurements were carried out using a Gamry PCI4/750 electrochemical workstation
(Gamry Instruments, Warminster, PA, USA) with an AC voltage of 5 mV amplitude and a frequency
range from 100 kHz to 0.001 Hz. During the CV and EIS experiments, the electrode containing the
prepared LiMnPO4/C was used as the working electrode and Li was used as both the counter and
reference electrode.

3. Results and Discussion

3.1. Material Identification

XRD and FTIR were used to analyze the crystalline structure and chemical composition of the
precursor obtained from the yellowish-brown precursor suspension, LMP and LMP/C. The diffraction
peaks of the precursor shown in Figure 2a may be ascribed to Mn(H2PO4)2 (PDF# 41-0001) and
Mn2P4O12·H2O (PDF# 50-0384). It is obvious that a lack of LiMnPO4 diffraction peaks and other
lithium compounds can be observed in Figure 2a, suggesting that LiMnPO4 cannot be formed by
mixing the raw materials in DES at room temperature. The XRD patterns of LMP and LMP/C are
given in Figure 2b. The Si peak in Figure 2b is in accordance with the standard silicon powder used to
correct for instrumentation error during the XRD tests. The peaks shown in Figure 2b can be perfectly
indexed to the orthorhombic structure LiMnPO4 with a Pnmb space group (PDF# 74-0375), indicating
that LiMnPO4 can be obtained by heating the yellowish-brown precursor suspension at 130 ◦C for 4 h
in DES. The reaction temperature and time used for DES synthesis are much lower than those used
in the hydrothermal/solvothermal [27,37–39,62] and ionothermal processes [63,64]. The strong and
sharp diffraction peaks in Figure 2b demonstrate that both the LiMnPO4 and LiMnPO4/C samples
were well crystallized.
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Figure 2. X-ray diffraction (XRD) pattern of (a) precursor; and (b) LiMnPO4 (LMP) and LiMnPO4/C (LMP/C).

The lattice parameters of LMP and LMP/C are listed in Table 1. The values of the cell volume (V)
and the lengths (a, b and c) of both samples are close to those in previous studies [65,66]. The values of
the lattice parameters of LMP are close to those of LMP/C, indicating that the annealing process has
little influence on the lattice parameters. Moreover, the carbon content of LiMnPO4/C determined by
the CHNS/O elemental analyzer is 9.0 wt %, and no detectable reflections corresponding to carbon are
visible in Figure 2b due to its amorphous structure.

Table 1. Lattice parameters of the prepared LMP and LMP/C.

Sample a (Å) b (Å) c (Å) V (Å3)

LMP 10.4437 6.0980 4.7424 302.0
LMP/C 10.4439 6.1021 4.7430 302.3

Figure 3 presents the FTIR spectra of the precursor, LMP and LMP/C. According to previous
literature [22,67,68], the internal vibrations of LMP/C consisted mainly of four parts [66]: (1) the
bands between 1000 cm−1 and 1150 cm−1,which can be attributed to the anti-symmetric stretching
P–O vibrations of the PO4

3− anion mode (v3); (2) the band around 980 cm−1, which is related to the
symmetric PO4

3− stretching P–O vibration mode (v1); (3) the bands ranging from 650 cm−1 to 550 cm−1

can be ascribed to the anti-symmetric bending O–P–O mode (v4); and (4) the band at 457 cm−1 can be
associated with the symmetric bending mode (v2). In addition, the band at 420 cm−1 may arise from
vibrations of the Mn–O groups [41,67]. The FTIR spectra seen in Figure 3, shows that the precursor
contains three type of bands: (1) the band at 576 cm−1, which is associated with O–P–O groups; (2) the
bands ranging from 980 cm−1 to 1135 cm−1, which are related to the P–O groups; and (3) the band at
950 cm−1 can be ascribed to H–O groups. However, no obvious Li–O characteristic band was observed
in the FT-IR spectra of the precursor. The reason for this may be due to the fact that the insoluble solids
were MnH2P3O16 and Mn2P4O12·H2O and that lithium exists in the form of soluble lithium compounds
when the raw materials are mixed in DES at room temperature. After undergoing centrifugation
several times, the soluble lithium compounds were left in the solution so that the precursor solid
did not contain any lithium compounds. As seen in Figure 3, the LMP and LMP/C have similar
FT-IR spectra. However, the intensity of bands of LMP/C was obviously stronger than that of LMP,
indicating that the crystallinity of LiMnPO4 can be further improved during heat-treatment processes
at high temperature [22].
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Figure 3. Fourier transform infrared spectroscopy (FTIR) spectra of precursor LMP and LMP/C.

SEM and TEM were conducted to identify the change of morphology and size during the synthesis
processes. The SEM and TEM images in Figure 4a,b indicate that the precursor powders had no special
morphology. From Figure 4c,d, it can be clearly seen that the LiMnPO4 particles prepared in DES at
130 ◦C for 4 h exhibited a rod structure with a length of around 80–110 nm and a diameter of around
30–50 nm, which was similar to the nanorods prepared by the EG-assisted solvothermal m. As seen
in Figure 4e,f, as-prepared LiMnPO4/C maintained the rod-like form (approximately 100–150 nm
in length and 40–55 nm in diameter), suggesting that the rod-like structure was sufficiently stable
and would not be destroyed during the heat treatment processes [33]. Furthermore, the size of the
LiMnPO4/C particles increased slightly after annealing, which can be ascribed to the further growth of
crystals during the annealing process [35]. As pointed out by Hong et al. [35], the LiMnPO4/C nanorods
prepared in our work could shorten lithium ions and electron diffusion pathways and provide a large
interface between the electrode and electrolyte, which would improve its performance rate.

HR-TEM was used to further observe the crystal structure and the carbon coating layer on the
surface of the synthesized LiMnPO4/C. As shown in Figure 5a, the clear lattice fringe spacing of
0.37 nm is related to the (101) planes of LiMnPO4 (PDF# 74-0375), indicating that the crystallinity of the
LiMnPO4 was perfect. Additionally, the HR-TEM image also clearly showed that the primary LiMnPO4

particles were coated by a thin carbon layer (approximately 3 nm). This thin carbon layer favors the
inhibition of the growth of crystal and reduces the agglomeration of the particles [21,33,70], which have
been proved by the results in Figure 4e,f. In addition, the LiMnPO4/C crystallites were connected
directly with the thin carbon layer to form an excellent conducting network, which could effectively
enhance the electronic conductivity of LiMnPO4/C and further improve its capability rate [12,69].
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The structural and physical properties of the carbon layer were further characterized by Raman
spectroscopy. The Raman curve of the prepared LiMnPO4/C shown in Figure 5b can be fitted with four
Gaussian bands located at 1173, 1344, 1496, and 1590 cm−1. According to the previous literature [71,72],
the band at 1590 cm−1 (G band) is the graphitic band and the band at 1344 cm−1 (D band) is the
disorder band. The existence of the G band and D band indicates a successful coating of carbon on
the surface of the LiMnPO4/C particles [22]. Both the G band and D band belong to sp2-type carbon
vibrations, while the other peaks at around 1173 cm−1 and 1476 cm−1 are associated with sp3-type
carbon vibrations. The intensity ratio of the G band and D band (ID/IG) can be used to characterize the
graphitization degree of the carbon materials [22]. In this study, the value of the ID/IG for the prepared
LiMnPO4/C nanorods was 0.85, which is similar to the value reported by Qin et al. [32] and lower
than that reported by Fan et al. [22]. The lower ID/IG value indicates that the carbon layer obtained in
our work had a higher degree of graphitization, which is beneficial to electron diffusion and electron
conductivity [22].
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The formation processes of the LiMnPO4/C nanorods can be schematically illustrated by Figure 6.
According to crystal nucleation and growth theory [73], DES plays an important role in the formation of
LiMnPO4/C nanorods. Initially, PO4

3− anions react with Mn2+ ions to generate insoluble manganese
phosphates (mainly Mn2P4O12·H2O and Mn(H2PO4)2 particles) when LiOH solution is added to DES
at room temperature.Materials 2017, 10, 134 8 of 15 
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When heated in DES, Li+ ions react directly with Mn(H2PO4)2 to form LiMnPO4 crystal nuclei,
and Li+, Mn2+, H2PO4

- and OH- react with Mn2P4O12·H2O to generate LiMnPO4 crystal nuclei.
The main reaction equations are described below:

2LiOH + 2H3PO4 + MnSO4 = Mn(H2PO4)2 + Li2SO4 + 2H2O (1)

4LiOH + 4H3PO4 + 2MnSO4 = Mn2P4O12 + Li2SO4 + 8H2O (2)

2LiOH + Mn(H2PO4)2 = LiMnPO4 + LiH2PO4 + 2H2O (3)

10LiOH + Mn2P4O12 + 3MnSO4 + LiH2PO4 = 5LiMnPO4 + 3Li2SO4 + 6H2O (4)

During the further crystallization process, we speculated that the DES could adsorb on the surface
of the newly formed LiMnPO4 as a structure-directing agent to induce the formation of nanorods [50].
In addition, the large viscosity of DES could limit particle size and inhibit the crystal continuous
growth by capping the crystal faces during the reaction process [46]. Hence, DES can provide more
LiMnPO4 nuclei and a lower crystal-oriented growth rate, resulting in the formation of LiMnPO4

particles with a rod-like morphology. The specific effects of choline chloride and ethylene glycol on the
synthesis of LiMnPO4 material will be further discussed in the following section.

3.2. Electrochemical Characterization

Figure 7 shows the charge-discharge behaviors of the prepared LiMnPO4/C nanorods. As seen
in Figure 7a, the charge-discharge curves of the 1st, 20th, 40th, 60th, 80th and 100th cycles had
obvious charge/discharge plateaus around 4.25 V and 4.05 V, which is in accordance with the
lithium extraction and insertion processes, respectively [35]. The good overlap of the charge-discharge
curves at different cycles shows that the Li+ extraction and insertion processes are reversible [35].
The initial charge/discharge specific capacity was 139.0 and 127.9 mAh·g−1, respectively, and the
initial coulombic efficiency was approximately 92.0%, which is mainly attributed to unavoidable
passivation phenomena of the liquid electrolyte at high potential; and side reactions between active
materials and electrolytes [16,35,66,74,75]. As seen in Figure 7b, the prepared sample gave an initial
discharge capacity of 128 mAh·g−1 and maintained over 92.6% of the initial capacity after 100 cycles at
1 C, exhibiting good cycle stability. The improved cycling stability could be due to the nanorod-like
morphology, high crystallization and uniform carbon coating.
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Figure 7. Electrochemical properties for the prepared LiMnPO4/C: (a) charge-discharge curves at 1 
C rate; (b) cycle performance at 1 C rate; (c) charge-discharge curves at different rates; and (d) rate 
performances at different rates. 

 

Figure 7. Electrochemical properties for the prepared LiMnPO4/C: (a) charge-discharge curves at
1 C rate; (b) cycle performance at 1 C rate; (c) charge-discharge curves at different rates; and (d) rate
performances at different rates.

As shown in Figure 7c, the voltage platform gap between the charge and discharge increased
with the increase of the charge-discharge rate, which can be ascribed to the increase of electrode
polarization [31]. The charge capacity given in Figure 7c was greater than the theoretical capacity
(170 mAh·g−1), which can be ascribed to the side reaction of the electrolyte at high potential [16,66].
As seen in Figure 7d, the prepared LiMnPO4/C nanorods delivered a discharge capacity of 144, 136,
129 120 and 106 mAh·g−1 at 0.2, 0.5, 1, 2 and 5 C, respectively. The rate performance of LiMnPO4/C
was much better than that of the nanorod-like LiMnPO4/C reported in References [76,77], and close
to that provided by Hong et al. [35]. The improved performance rate can be attributed to the unique
nano-sized rod structure and the carbon layer.

A comparative experiment was conducted to explore the role of ethylene glycol and choline
chloride in the DESs synthesis of LiMnPO4. Figure 8 compares the cycling performance of the
LiMnPO4/C prepared in ethylene glycol/choline chloride and ethylene glycol solvent, respectively.
As shown in Figure 8, the LiMnPO4/C prepared in ethylene glycol solvent gave a specific discharge
capacity of 117 mAh·g−1 with a capacity retention ratio of 88% after 50 cycles at 1 C, which is close to
that of LiMnPO4/C prepared in the ethylene glycol solvent [18,30,33], while the LiMnPO4/C prepared
in ethylene glycol/choline chloride delivered 128 mAh·g−1 with a capacity retention ratio of 95% after
50 cycles at 1 C. The performance of LiMnPO4/C prepared in ethylene glycol/choline chloride was
much better than that in ethylene glycol, indicating that choline chloride plays a more important role
during the synthesis of LiMnPO4 in the DES. However, the interaction of choline chloride and ethylene
glycol in the DES is under further investigation.
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CV and EIS were carried out to further understand the electrode reaction of the prepared 
LiMnPO4/C. Figure 9 shows the CV behaviors with a scan rates range from 0.1 to 0.4 mV·s−1. As seen 
in Figure 9a, the CV curves present obvious redox peaks corresponding to the extraction and insertion 
of lithium ions during the charge/discharge processes [33,35]. When the scan rate increased, the 
cathodic peak moved to the low potential direction and the anodic peak moved to the high potential 
direction due to the increase in electrochemical polarization [35,70]. The plot of the anodic peak 
current densities (ip) compared with the square root of the scan rates (v1/2) is presented in Figure 9b. 
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Figure 9. (a) Cycle voltammetry curve of the prepared LiMnPO4/C; and (b) the plots of peak current 
density (ip) as a function of the square root of the scan rate (v1/2). 
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CV and EIS were carried out to further understand the electrode reaction of the prepared
LiMnPO4/C. Figure 9 shows the CV behaviors with a scan rates range from 0.1 to 0.4 mV·s−1. As seen in
Figure 9a, the CV curves present obvious redox peaks corresponding to the extraction and insertion of
lithium ions during the charge/discharge processes [33,35]. When the scan rate increased, the cathodic
peak moved to the low potential direction and the anodic peak moved to the high potential direction
due to the increase in electrochemical polarization [35,70]. The plot of the anodic peak current densities
(ip) compared with the square root of the scan rates (v1/2) is presented in Figure 9b.Materials 2016, 9, x FOR PEER REVIEW 10 of 15 
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circuit of EIS is shown in Figure 10, where Re stands for the resistance of the electrolyte; Rct and Q1 
(Constant phase angle element) are the charge transfer impedance and its electric capacitance of the 
electrode interface, respectively; Zw is known as the Warburg impedance; and Q2 (constant phase 
angle element) represents the “dispersion effect” resulting from the Li+ diffusion [69,80–82]. The 
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(10.93 Ω) and Rct (128 Ω) of the prepared LiMnPO4/C nanorods are close to that reported by Qin et 
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can facilitate electrolyte transport and the charge transfer reaction. 
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Figure 9. (a) Cycle voltammetry curve of the prepared LiMnPO4/C; and (b) the plots of peak current
density (ip) as a function of the square root of the scan rate (v1/2).

The correlation coefficient (R2 = 0.999) indicates the relationship between ip and v1/2 is consistent with
the Randles-Serick equation [78,79]. The Randles-Sevcik equation can be expressed as the following [78,79]:

ip = 2.69× 105n3/2CLiAD1/2v1/2 (5)

where ip is the peak current density (A·g−1); n is the number of electrons involved in the redox
process (n = 1 for Mn2+/Mn3+ redox pair); CLi is the initial concentration of lithium ions in LiMnPO4

(0.022 mol·cm−3); A is the total surface area of the electrode active material (cm2); D is the lithium ion
diffusion coefficient (cm2·s−1); and v is the scan rate. The value of the lithium ion diffusion coefficients
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can be calculated from the slope of Equation (5) and the value of the D for the prepared LiMnPO4/C
nanorods was 8.61 × 10−15 cm2·s−1.

The Nyquist plot of the prepared LiMnPO4/C and the corresponding equivalent circuit are shown
in Figure 10. The Nyquist curve consists of a compressed semicircle in the high-frequency region
related to charge transfer impedance and a declined line in the low-frequency region ascribed to
the Li+ diffusion resistance (Warburg impedance) in the LiMnPO4/C material [30]. The equivalent
circuit of EIS is shown in Figure 10, where Re stands for the resistance of the electrolyte; Rct and Q1

(Constant phase angle element) are the charge transfer impedance and its electric capacitance of the
electrode interface, respectively; Zw is known as the Warburg impedance; and Q2 (constant phase angle
element) represents the “dispersion effect” resulting from the Li+ diffusion [69,80–82]. The values of
the parameters of the equivalent circuit are presented in Table 2. As seen in Table 2, Re (10.93 Ω) and Rct

(128 Ω) of the prepared LiMnPO4/C nanorods are close to that reported by Qin et al. [32]. The smaller
values of Re and Rct indicate that the nanorods coated with a thin carbon layer can facilitate electrolyte
transport and the charge transfer reaction.
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Table 2. Parameters of EIS spectroscopy of the prepared LiMnPO4/C.

Element Re (Ω) Rct (Ω) Q1 (F) n1 Q2 (F) n2

Values 10.93 128.00 1.55 × 10−6 0.8 2.18 × 10-3 0.8
Error (%) 0.93 1.13 4.15 0.59 4.76 2.67

The diffusion coefficient of the lithium ions (DLi) can be calculated according to the following
equation [66,75]:

DLi =
R2T2

2A2n4F4C4σ2 (6)

where R is the gas constant; T is the thermodynamic temperature used in the test; A is the reaction area
of the electrode; n is the number of transferred electrons per LiMnPO4 molecule during oxidization;
F is the Faraday constant; C is the concentration of lithium ions; and σ represents the Warburg factor,
which is the slope of the line between Z’ andω−1/2. The value of the DLi for the prepared LiMnPO4/C
was calculated to be 8.91 × 10−15 cm2·s−1, which is larger than that of the LiMnPO4/C nanorods
synthesized via a facile EG-assisted solvothermal approach [35] and is closed to the D value with CV
test (8.61 × 10−15 cm2·s−1). The low charge transfer resistance and high diffusion coefficient further
prove that as-prepared LiMnPO4/C nanorods can display good electrochemical performance.
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4. Conclusions

In this work, we have successfully prepared olivine-type LiMnPO4/C nanorods with an
orthorhombic structure in chloride/ethylene glycol-based DES at 130 ◦C for 4 h. The prepared
LiMnPO4/C nanorods delivered a discharge capacity of 128 mAh·g−1 with a capacity retention ratio
of approximately 93% after 100 cycles at 1 C. Even at 5 C, the sample still provided a discharge capacity
of 106 mAh·g−1, exhibiting a good capability rate and cycling stability. The improved electrochemical
performance can be attributed to the rod-like nanostructure and a thin carbon layer coated on
the surface of LiMnPO4. The results provided in this work demonstrate that chloride/ethylene
glycol-based DES can act as a novel structure-directing agent to influence crystal growth orientation
and control the micromorphology of LiMnPO4. Furthermore, DESs have potential application in the
preparation of olivine-type LiMPO4 and other electrode materials with a special micromorphology
for LIBs.
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