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Abstract: The aim of this paper is to evaluate the effective properties of composite materials with 
periodic random packing of ellipsoids of different volume fractions and aspect ratios. Therefore, we 
employ computational homogenization. A very efficient MD-based method is applied to generate 
the periodic random packing of the ellipsoids. The method is applicable even for extremely high 
volume fractions up to 60%. The influences of the volume fraction and aspect ratio on the effective 
properties of the composite materials are studied in several numerical examples. 
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1. Introduction 

Composite materials are widely used in engineering applications. Extraction of the mechanical 
properties by experiments is often expensive, time consuming and sometimes unfeasible. Therefore, 
it is important to develop modelling approaches, such as computational homogenization, to extract 
the mechanical properties of composite materials. The mechanical properties of composite materials 
are strongly determined by their microstructure, e.g., the shape, size and distribution of the inclusions 
in the matrix. Generating complex microstructures for RVEs (representative volume elements), which 
are commonly used in computational homogenization, remains a challenge. 

Computational multiscale methods, which are commonly used for extracting the mechanical 
properties of composites, can be classified into hierarchical, semi-concurrent and concurrent  
methods [1]. A classical hierarchical multiscale method transfers information from the fine scale to 
the coarse scale only. It is particularly efficient for linear materials and becomes expensive for  
non-linear material behavior, since all possible deformation states have to be accounted for in order 
to extract the material response. The Cauchy–Born rule or the FE2 approach [2,3] is a classical  
semi-concurrent method, which is also based on RVEs. However, in the FE2 approach, information 
is passed back also from the coarse scale to the fine scale in the course of a simulation. Though  
semi-concurrent multiscale methods are computationally expensive, they account only for 
deformation states that actually occur in a simulation, and the constitutive model is determined on 
the fly. Concurrent multiscale methods also transfer information back from the coarse scale to the 
fine scale. However, concurrent multiscale methods do not exploit RVEs. Instead, the fine scale is 
directly embedded into the coarse scale and coupling via methods such as Lagrange multipliers, etc. 
There are numerous concurrent multiscale methods, such as the handshake domain method [4–6] or 
interface coupling methods [7]. 



Materials 2017, 10, 112  2 of 18 

 

Homogenization methods can be classified into two categories: analytical homogenization 
methods [8–14] and computational homogenization methods [15–22]. The analytical homogenization 
methods, which are based on the Eshelby inclusion solution [8], are limited to linear materials and 
simple microstructures. In the computational homogenization methods, the macroscopic constitutive 
model is defined “on the fly” during the simulation. The linear [23] and nonlinear problems [3], even 
the multi-physics problems [24–30], can be addressed with these methods. The computational 
homogenization methods can deal with the composite materials with complex microstructures [31]. 

Efficient and reliable algorithms for the generation and discretization of the microstructure of 
composites are of major importance. The RVE generation approaches can be divided into two main 
categories: random sequential adsorption (RSA) and molecular dynamics (MD)-based algorithms. In 
the RSA algorithm [32–36], the positions of the inclusions are drawn in sequence, and the contact 
between the inclusions is checked until the number of inclusions or the volume fraction is reached. 
The RSA is efficient for small volume fraction (up to 30%). When the number or the volume fraction 
of inclusions is higher, the RSA may fail. The main idea of the MD-based algorithm [37–39] is as 
follows: All inclusions are randomly created in the unit cell. Each inclusion has a null volume and a 
random velocity. Then, the inclusions move, and their volumes gradually increase. When collision 
between two inclusions occurs, the velocities of the inclusions are updated according to the law of 
the conservation of momentum. The process stops when the number of inclusions or the volume 
fraction is reached. The MD-based algorithm is more efficient for higher volume fractions. It was even 
possible to reach a volume fraction of 70% [40]. Although the methods in [41] can generate more 
inclusion shapes, such as “block-like” shapes, it also needs more iterations to reach the best design. 
The MD-based algorithm will be more efficient than the genetic search method for dense packing 
inclusions. Due to the collision detection between the “block-like” shapes being more complex, only 
the ellipsoids are considered in this paper. 

The content of the paper is outlined as follows. In Section 2, the computational homogenization 
model is described. The MD-based RVE generation approaches are detailed in Section 3. Section 4 
presents the analysis of the effective properties of composite materials depending on the microstructure 
of the RVE. The paper is concluded in Section 5 with suggested topics for future studies. 

2. Computational Homogenization Method for Composite Material 

2.1. Governing Equations 

The computational homogenization method has two assumptions [23]. The first assumption is 
the separation of the length scales into micro- and macro-scales. The microscale length is several 
magnitudes smaller than the macroscale length, so that the microscopic heterogeneities and the 
macroscopic homogeneities can be reflected. Therefore, 

micro macrol l ， (1) 

where microl , macrol  are the length of the micro- and macro-scales, respectively. 
The second assumption is the periodicity of the microstructure. Two different scales x and y, 

associated respectively with the macroscale and microscale domains, are assumed. The relation 
between the microscale and macroscale spatial coordinates is: 

i
i
xy


 , (2) 

where ix (i = 1, 2, 3) denotes the component of macroscale coordinates; iy  corresponds to the 
microscale coordinates; ≪ 1 is a scale factor between the macroscale and the microscale. 

Consider a macroscale domain   with boundary  , which has a microstructure associated 
with a microscale domain denoted as  . The governing equation of the linear elastic problem may 
be expressed as: 
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jij x ib

    in   (3) 

ij ijmn mnL e     in   (4) 

, ,

1
( )

2 n mmn m x n xe u u     in   (5) 

The displacement and traction boundary conditions applied to the domain are: 

i iu u   in u
  (6) 

ij j in t 
 in t

  (7) 

where the subscript , , , {1, 2, 3}i j m n , ij
 , mne


, iu


, ijmnL

  are the components of stress, strain, 

displacement and constitutive tensor, respectively, ib  is the body force vector, iu , it  are the 

prescribed displacement and traction, u
 , t

  are the displacement and traction boundary and jn  

is the outward normal vector of the boundary. The subscripts ix , iy  refer to the spatial 
coordinates of the macroscale and microscale, respectively. 

2.2. The Asymptotic Expansion of Displacement 

Assuming the material responses at the macroscale model denoted as x and the microscale 
model denoted as y are related, the displacement, strain and stress fields can be approximated by 
using the asymptotic expansions [23] in terms of  , the scale factor between the micro- and  
macro-scales, 

0 (0) 1 (1) 2 (2) 2( ) ( , ) ( , ) ( , ) ( )i i i iu u u u        x x y x y x y  (8) 

1 ( 1) 0 (0) 1 (1) ( )ij ij ij ije e e e           (9) 

1 ( 1) 0 (0) 1 (1) ( )ij ij ij ij
              (10) 

where 
( )r
iu  is the y-periodic function of the order r of the displacement field. Substituting the 

asymptotic expansion of the displacements in Equation (8) into the strain-displacement relations in 
Equation (5), regrouping the terms according to the Equation (9), then the strain terms can be derived 
as follows, 

(0)(0)
( 1) 1

2
ji

ij
j i

uue
y y


 

     
 (11) 

(0) (1)(0) (1)
(0) 1

2
j ji i

ij
j i j i

u uu ue
x x y y

   
         

 (12) 
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(1) (2)(1) (2)
(1) 1

2
j ji i

ij
j i j i

u uu ue
x x y y

   
         

 (13) 

By substituting the strain in Equation (9) into the constitutive Equation (4), we have the 
asymptotic expansion of the stress as: 

( ) ( )r r
ij ijmn mnL e   r = −1, 0, 1 (14) 

The asymptotic expansion of the equilibrium equation can be obtained by substituting the stress 
in Equation (10) into the equilibrium Equation (3) and regrouping the terms according to the order 
of : 

( 1)
2 0ij

jy





 
 


 (15) 

( 1) (0)
1 0ij ij

j jx y
 




  
  

 
 (16) 

(0 ) (1)
0 0ij ij

i
j j

b
x y
 


 

    
 

 (17) 

After obtaining the equilibrium equations and boundary conditions related to different orders 
of  , the differential equations of the two-scale problems can be derived by solving  
Equations (15)–(17). After solving the equations at different scales, the multiscale problem is 
decomposed into:  

(1) The macroscale problem: 

 (0)

(0)

(0)

0ijkl kl i y
j

ii u

ijkl ikl j t

L e b
x

u u

L e n t


  



 

 

, 
(18) 

The microscale problem: 

0

( ) 0

( ) ( )

kl
kl m

ijmn mn
j n

mn vert
i y

mn mn
i i y

L I
y y

y





 

  
        
 

  

y
y

 
(19) 

and the bridging between the two scales is given by: 

1 kl
kl kl m

ijkl ij ijmn mny
n

L L I d
y





 
    

  
  (20) 

The computational homogenization method may be divided into four steps [42] as illustrated in 
Figure 1, which has been previously implemented with convergence studies in ABAQUS [23]: 

Step 1. Solve the microscale problem in Equation (19) with six unit right-hand side strain vectors, 

and compute the stress kl
ij  with the associated strain. 
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Step 2. Compute the homogenized elastic tensor ijklL  by Equation (20). 
Step 3. Solve the macroscale problem in Equation (18) with the homogenized elastic tensor. 
Step 4. Post-process the local stress of the critical RVE. 

kl
mijklL

 
Figure 1. Computational homogenization schemes. 

3. RVE Generation 

3.1. RVE Generation Algorithm 

The shapes of the inclusions in the microstructure are various, and they affect the effective 
properties of random two-phase materials [43]. It is hard to describe the shape precisely and improve 
the computational efficiency at the same time. The ellipsoids with different aspect ratios can describe 
a wide range of shapes; see Figure 2. The sphere and normal ellipsoid can simulate ‘regular’ 
reinforcements. Fiber reinforcements may be simulated by prolate ellipsoids. Joints in the rock mass, 
microcrack or two-dimensional reinforcement, such as graphene, are usually described as discs, so 
they can be simulated by the oblate ellipsoids. In this paper, the generation algorithm of periodic 
random packing of ellipsoids will be presented, which is a molecular dynamics (MD)-based method. 

 
Figure 2. Ellipsoids with different aspect ratios. 

All of the centroids of the N ellipsoids are randomly created in a cell of side L at the beginning. 
Each ellipsoid has a random orientation and initially a null volume. The ellipsoidal volumes are 
gradually increasing at a constant growth rate. The growth rates of the semi-principal axes (a0, b0, c0) 
are chosen so that a0/a = b0/b = c0/c, where (a, b, c) are the semi-principal axes’ lengths of the ellipsoids. 
At the same time, each ellipsoid has a random linear and angular velocity. The ellipsoids are then set 
in the translational and rotational motion, and the volumes gradually increase. At each increment, 
two types of collisions need to be checked, which are the collision between two ellipsoids and the 
collision between an ellipsoid and a cell face. If the collision between two ellipsoids occurs, the linear 
and angular velocities of the involved ellipsoids are updated according to the law of the conservation 
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of momentum. If the collision between an ellipsoid and a cell face occurs, the periodic images of the 
involved ellipsoid are created on the opposite face, line or vertex. The process stops until the volume 
fraction Vf is reached. The flowchart of the MD-based generation procedure of the periodic random 
packing of ellipsoids is shown in Figure 3. 

 
Figure 3. Flowchart of the generation of the periodic random packing of ellipsoids. 

3.2. Representation of an Ellipsoid 

An ellipsoid can be represented by the centroid vector r and the orientation denoted by two 
Euler angles, the dip angle θ and dip direction φ. The quaternion [44] is more convenient and stable 
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than the two Euler angles in numerical calculations. The quaternion of the ellipsoid consists of a scalar 
and a vector. The vector is the rotation axis of the ellipsoid, and the scalar is the rotation angle. The 
quaternion of the ellipsoid i at time t can be written as: 

[ , ]i i i
t t tq ψ  (21) 

where: 

1 1
cos ( ) cos

2 2 2
i i i
t t t


      (22) 

1 1 1 1 1 1
[ sin ( ) sin , sin ( ) cos , cos ( ) sin ]

2 2 2 2 2 2 2 2 2
i i i i i i i
t t t t t t t

  
         ψ     (23) 

At the end of the procedure, if ellipsoid i at time t has the quaternion as Equation (21), the two 
Euler angles θ and  are given by: 

1
2 1 3sin (2( ))

2
i i i i i
t t t t t


        (24) 

1 3 1 2
2 2

2 3

2( )
tan

1 2(( ) ( ) )

i i i i
i t t t t
t i i

t t

  


 
 


 

 (25) 

where 
i
kt  (k = 1, 2, 3) is the k-th term of the vector 

i
tψ . 

Assume that the global coordinate system is Ox1x2x3, and the local coordinate system O’x’1x’2x’3 

is aligned along the principal axes of ellipsoid i. The vector 
i
tr  denotes the position of the centroid 

O’ at time t. The equation of ellipsoid i at time t in its local coordinate system can be written as: 

T ' 0i
t' ' =Ax x  (26) 

where: 

' diag( , , ,-1)i t t t
t i i ia b cA  (27) 

is a diagonal matrix where 
t
ia , 

t
ib , 

t
ic  denote the length of the semi-principal axes of ellipsoid i at 

time t; 
T

1 2 3( ' , ' , ' , ')' x x x x  are the homogeneous coordinates of a point, which are more 
convenient in the computation than the Cartesian coordinates. The equivalent Cartesian coordinates 

of x’ are T31 2 '' '
( , , )

' ' '

xx x'
  

x . 

In homogeneous coordinates, the transition from the local coordinates system to the global 
coordinates system is directly combined by the rotation and translation, i.e., 

' '
0 1

i i
i t t
t

 
   

 

R
M

rx x x  (28) 

where the transition matrix 
i
tM  can be obtained from the quaternion of ellipsoid i at time t. 

i
tR  is 

the rotation matrix given by: 

2 T(2( ) 1) 2 2i i i i i i
t t t t t t    R I ψψ S  (29) 

where I is the identity matrix and 
i
tS  is an antisymmetric matrix given by [44]: 
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3 2

3 1

2 1

0

0

0

i i
t t

i i i
t t t

i i
t t

 
 

  
  

ψ ψ
S ψ ψ

ψ ψ
 (30) 

Substituting Equations (28)–(30) into Equation (26), the equation of ellipsoid i at time t in the 
global system becomes: 

T 0i
t =Ax x  (31) 

where: 

T 1( ) ' ( )i i i i
t t t t

 A M A M  (32) 

1( )it
M  is the inverse of

i
tM ; 

T( )it
M  is the inverse of 

T( )itM . 

3.3. Moving and Growing an Ellipsoid 

The configuration of ellipsoid i at time t is determined by the position vector 
i
tr , the quaternion 

i
tq  and the semi-principal axes’ lengths ( , , )i i i

t t ta b c . The ellipsoid i has a linear velocity νi and 

rotation velocity ωi. The growth rates of the ellipsoid i are 0 0 0( , , )i i ia b c . The configuration of ellipsoid 
i at time t + Δt can be derived according to the moving and growing rates of the ellipsoid i. The  
semi-principal axes’ lengths at time t + Δt are: 

0 0 0( , , ) ( , , )i i i i i i i i i
t t t t t t t t ta b c a a t b b t c c t           (33) 

The new position of the centroid at time t + Δt can be derived by the linear velocity, given by: 

i i i
t t t t   r r   (34) 

From time t to time t + Δt, the ellipsoid i has been rotated by an angle i t  about the unit 

vector 
i

i




. This motion can be expressed in terms of a quaternion 
i
tq , given by: 

[ , ] [cos( ),sin( ) ]
2 2

i i i
i i i
t t t i

t t
  

 
 q ψ

  


 (35) 

The quaternion at time t + Δt can be obtained by combining the quaternion 
i
tq  and 

i
tq ,  

such that [44]: 

[ , ]i i i
t t t t t t  q ψ  (36) 

where: 

T( )i i i i i
t t t t t t     ψ ψ  (37) 

i i i i i i i
t t t t t t t t       ψ ψ ψ ψ ψ  (38) 
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By knowing the position vector 
i
t tr , the quaternion 

i
t tq  and the semi-principal axes’ 

lengths ( , , )i i i
t t t t t ta b c   , the coefficient matrix 'it tA  can be deduced from Equation (27), and the 

transition matrix 
i
t tM  is obtained from Equations (29) and (30). Finally, the equation of ellipsoid i 

at time t + Δt is given by Equations (31) and (32). 

3.4. Calculating the Collision Time 

3.4.1. Collision Time between Two Ellipsoids 

The algebraic condition for the configuration relationship of two ellipsoids i and j can be 
represented by the roots of the characteristic equation of the two ellipsoids [45]. The characteristic 
equation at time t can be written as: 

det( ) 0i j
t t  A A  (39) 

where 
i
tA  and 

j
tA  are the coefficient matrix of ellipsoids i and j, respectively. Equation (39) is a 

fourth order polynomial of   and has four roots. The relationship between the four roots and the 
configuration of the two ellipsoids is shown in Table 1. The collision time between two ellipsoids is 
the time t + tc when Condition 2 in Table 1 is satisfied. This is an optimization problem, which can be 
solved with the bisection method and the secant method. 

Table 1. Conditions for the configuration relationship of two ellipsoids. 

Cases Conditions Ellipsoids Configuration 
1 Two negative and two positive roots Separate 
2 Two negative and a double positive roots Externally tangent 
3 All other cases Overlap 

Once the collision time tc is obtained, the contact point xc of the two ellipsoid can be solved from 
the following equation [46]: 

0 c( ) 0
c c

i j
t t t t   A A x  (40) 

where λ0 is the double positive root of the characteristic Equation (39) at time t + tc. 

3.4.2. Collision Time between an Ellipsoid and Cell Faces 

The point coordinates x in the equation 
T 0i

t =Ax x  of the ellipsoid i are a quaternion, but the 
point coordinates in the equation of a cell face are a vector. Therefore, the homogeneous coordinates 

need to be transformed to Cartesian coordinates. The coefficient matrix 
i
tA  can be rewritten as: 

T

1

2
1

( )
2

i i
t t

i
t

i i
t tF

 
 

  
 
  

B
A

d

d
 (41) 

where 
i
tB  is a 3 × 3 matrix; 

i
td  is a 3 × 1 vector; 

i
tF  is a scalar. 

The equation of ellipsoid i becomes: 

T 0i i i
t t t+F =Bx x d x  (42) 
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The intersection of ellipsoid i with a plane xk = β (k ∈ {1, 2, 3}; β ∈ {0, L}) is an ellipse, a point or 
the empty set, which is shown in Figure 4. The intersection type depends on the spatial relationship 
of the plane with Points A and B, where the normal of the ellipsoid is parallel with the normal of the 
plane. The normal of the ellipsoid can be derived from the gradient of the ellipsoid equation,  
such that: 

T( ) ( ) 2i i i i i
t t t t t+F  B Bn x x x d x x+d  (43) 

where ( )n x  is the normal of the ellipsoid at point x. 
Since the normals nA and nB are parallel to the normal of the plane nf, the points xA and xB can be 

solved from the following equation: 

( ) (2 i i
f t t f  B ) =0n x n x+d n  (44) 

Assuming that xAk < xBk, the intersection relationship of the ellipsoid i with the plane xk = β is 
shown in Table 2. The collision time between the ellipsoids i with a plane is the time t + ts when 
Condition 3 in Table 2 is satisfied. This is an optimization problem that can be solved with the 
bisection method and the secant method. 

 
Figure 4. Sketch of the intersection of an ellipsoid with a plane. 

Table 2. Conditions for the intersection relationship of an ellipsoid with a plane. 

Cases Conditions Ellipsoids Configuration
1 xAk < β < xBk Overlap 
2 Β < xAk or β > xBk Separate 
3 Β = xAk or β = xBk Tangent 

3.5. Post-Processing after the Collision 

3.5.1. Update the Velocities 

Assuming that the linear and angular velocities of the ellipsoids i and j before the collision are 
(νi−, ωi−) and (νj−, ωj−), the linear (νi+, νj+) and angular (ωi+, ωj+) velocities after the collision can be 
solved according to the law of the conservation of momentum. The friction and the energy loss are 
assumed negligible. An orthonormal basis (nc, t1, t2) is defined at the contact point xc, which is shown 
in Figure 5. nc is the normal of ellipsoid i at contact point xc, which is defined as Equation (43). The 
unit vector along nc is given by: 
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2

2

i i
t c t

c i i
t c t


B
B
x +dn
x +d

 (45) 

The unit vectors t1 and t2 are defined such that (nc, t1, t2) form a orthonormal basis, given by: 

2
c

c
c

 
xt n
x

 (46) 

1 2 c t t n  (47) 

 
Figure 5. Sketch of the collision of two ellipsoids. 

The linear momentum along the vectors (nc, t1, t2) and the angular momentum about the contact 
point xc are conserved during the collision. The conservation of the linear momentum allows us to 
write the following equations: 

T T
1 1( ) ( )r r r r

t tm m v t v t  (48) 

T T
2 2( ) ( )r r r r

t tm m v t v t  (49) 

T T T T( ) ( ) ( ) ( )i i j j i i j j
t c t c t c t cm m m m     v n v n v n v n  (50) 

where r ∈ {i, j}; 
r
tm  is the mass of the ellipsoid r at time t with a unit density, which is given by: 

4

3
r r r r
t t t tm a b c  (51) 

Considering the effect of the ellipsoids growing rate, the closing velocity of the two ellipsoids 
along vector nc must satisfy the following equation in order to avoid the ellipsoids from separating 
after the collision. 

T T
0 0 0 0 0 0( ) ( ) 2[max( , , ) max( , , )]c c i i i j j j

c c a b c a b c   n n   (52) 

where νc− and νc+ are the closing velocities from ellipsoid i to j before and after the collision, 
respectively, given by: 
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c c[ ( )] [ ( )]c i i i j j j
c t c t

           x r n x r n      (53) 

c c[ ( )] [ ( )]c i i i j j j
c t c t

           x r n x r n      (54) 

The conservation of the angular momentum about the contact point yields the  
following equation: 

c c[( ) ] [( ) ]r r r r r r r r r r
t t t t t tm m         H Hr x r x     (55) 

where r ∈ {i, j}; 
r
tH  is the moment of inertia of the ellipsoid r at time t with a unit density, which 

is given by: 

T' ( )r r r r
t t t tH R H R  (56) 

where 
r
tR  is the rotation matrix, which is defined as Equation (29); 'rtH  is the moment of inertia 

of ellipsoid r in its local coordinate system, given by: 

2 2 2 2 2 2' (( ) ( ) ,( ) ( ) ,( ) ( ) )
5

r
r r r r r r rt
t t t t t t t
m b c a c a b   H diag  (57) 

The velocities after the collision (νi+, νj+, ωi+, ωj+) can be obtained from the solution of  
Equations (48)–(50), (52)–(55). 

3.5.2. Create the Periodic Images 

When an ellipsoid intersects with the cell faces at time ts, the periodic images depend on the 
number of faces that intersect the ellipsoid. When the number of faces is 1, 2, 3, the number of the 
periodic images is 1, 4, 7, respectively, which is shown in Figure 6. The periodic images have the same 
quaternions, velocities and growing rates as the ellipsoid intersecting with the cell faces. The centroid 
of the periodic images has an offset {−L, L}, which depends on the face for which the periodic images 
appear. 

 
Figure 6. The periodic images when the ellipsoid intersect with different cell faces. 

3.6. RVE Samples 

Four RVE samples of different aspect ratios and volume fractions are generated with the  
MD-based method presented above, which is shown in Figure 7. Figure 7a–d shows the random 
packing of the sphere, normal ellipsoid, prolate ellipsoid and oblate ellipsoid, respectively. The aspect 
ratios are denoted as R1 = a/b and R1 = a/c, where semi-principal axis a is the axis of revolution. The 
number of inclusions denoted as N is the equivalent of the size of inclusions, when the size of the cell 
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is fixed. During the numerical experiments, we tested increasingly larger samples of the material, 
while keeping the size of the cell fixed. It was found that the effective properties stabilized when 
approximately 20 inclusions were used in a sample, which will be discussed in Section 4; see Figure 8. 
Therefore, the samples in Figure 7 satisfy the assumptions of computational homogenization. 

  
(a) (b)

 
(c) (d)

Figure 7. Representative volume element (RVE) samples of different aspect ratios and volume 
fractions. (a) R1 = R2 = 1, N = 200, Vf = 60%; (b) R1 = R2 = 2, N = 200, Vf = 40%; (c) R1 = R2 = 20, N = 200,  
Vf = 10%; (d) R1 = R2 = 1/20, N = 100, Vf = 5% 

(a) (b)

Figure 8. The variation of the normalized modulus with the number of inclusions for the volume 
fraction being fixed: (a) bulk modulus; (b) shear modulus. 
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4. Effective Properties of Composite Materials 

We now want to determine the effective elastic properties of the composite material consisting 
of the periodic random packing of ellipsoidal inclusions embedded in an isotropic elastic matrix. The 
size, aspect ratio and volume fraction of the ellipsoids will affect the effective properties of the 
composite material. These parameters are controlled with the RVE generation algorithm. The 
effective properties of the composite are calculated by computational homogenization as presented 
in Section 2. The results depend on the mechanical parameters of the inclusions and matrix. The Lame 
constants of the inclusions and matrix are (λ1, μ1) = (1, 1) and (λ2, μ2) = (10, 10), respectively. All of the 
RVEs in this section are assumed as the unit cell and having the normalized Lame constants; thus, 
the output is the normalized value of the homogenized parameters. The normalized bulk modulus 

0

K
K

 and shear modulus 
0

G
G

 are chosen as the output, where K , G  are the homogenized 

modulus and K0, G0 are the modulus of the matrix. 

4.1. Influence of the RVE Size 

Firstly, the size of the representative volume element (RVE) needs to be determined. The size is 
acceptable when the effective properties of composite materials stabilize if the size is increasing. Since 
the cells are the unit in all of the RVEs, the RVE size is equivalent to determine the minimal number 
of ellipsoids, which is sufficiently large to include a sampling of the microstructure and is 
homogeneous in the sense of macroscopic effective properties. Two cases are considered to determine 
the minimal number of the ellipsoids. In the first case, the aspect ratios are R1 = R2 = 2, and the volume 
fraction is Vf = 30%. In the second case, the aspect ratios are R1 = R2 = 10, and the volume fraction is  
Vf = 10%. Five numbers N (5, 10, 20, 40, 60) are studied for each case. The normalized bulk and shear 
modulus are shown in Figure 8, which shows that the effective properties stabilize when the number 
of inclusions exceeds 20. The number of 20 is valid when the aspect ratio R1, R2 ≤ 10. Indeed, it is 
necessary to generate more inclusions to obtain a uniform distribution of ellipsoid orientations when 
the aspect ratios are higher. This is shown in Figure 8b. The inclusion number of 20 will be considered 
in all of the following computations. 

4.2. Influence of the Aspect Ratio 

After the minimal number of the inclusions is determined, the influence of the aspect ratio on 
the effective properties of composite materials will be considered. As we know, the reinforcement 
effect mainly depends on the volume fraction when the macroscopic properties of the composite 
materials are isotropic. However, the aspect ratio will affect the reinforcement effect with different 
volume fractions. Two series of tests will be considered to study the influence of the aspect ratio on 
the reinforcement effect. Two cases are considered in the first series of the tests. In the first case, the 
aspect ratios are R1 = R2 = 2, and the inclusion number is N = 20. In the second case, the aspect ratios 
are R1 = R2 = 5, and the inclusion number is N = 20. Four volume fractions Vf (5%, 10%, 15%, 20%, 25%, 
30%) are studied for each case. The normalized bulk and shear modulus of the first series of test are 
shown in Figure 9. Three cases are also considered in the second series of tests. In the first case, the 
volume fraction is Vf = 10%. In the second case, the volume fraction is Vf = 20%. In the third case, the 
volume fraction is Vf = 30%. Since the max volume fraction for the aspect ratios R1 = R2 > 10 cannot 
reach 30%, so the aspect ratios R1 = R2 (2, 3, 4, 5, 6) are studied for the volume fractions 10% and 30%. 
Additionally, the aspect ratios R1= R2 (8, 10, 12, 14, 16) are studied for the volume fractions 10% and 
20%. For the aspect ratios R1 = R2 (2, 3, 4, 5, 6) and (8, 10, 12, 14, 16), the inclusion numbers are N = 20 
and N = 60, respectively. The normalized bulk and shear modulus of the second series of tests are 
shown in Figure 10. 

It is shown in Figure 9 that the dependence of the effective properties of the composite materials 
on the volume fraction of the inclusions for different aspect ratios is similar. The normalized bulk and 
shear modulus increase with the increasing volume fraction from 5%–30%. In Figure 9a, it is shown 
that the normalized bulk modulus is slightly higher under the higher aspect ratios  
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R1 = R2 = 5. However, there are no significant variations in the normalized shear modulus with 
different aspect ratios in Figure 9b. However, the composite materials are better reinforced with a 
higher aspect ratio with an increasing aspect ratio from 1–5 particularly for Vf = 30%. The influence 
of the aspect ratio on elastic properties has been studied in GP Tandon’s paper [31]. It is observed 
that the Young’s modulus and shear modulus increase with the increasing aspect ratio, whereas the 
bulk modulus decreases with it. These phenomena occur in the plane strain problem. The influence 
of the aspect ratio on elastic properties in the 3D microstructure is different. From Figure 10, it can be 
clearly observed that with the increase of the aspect ratio of the inclusions, there are no significant 
variations in the normalized shear modulus. On the other hand, the normalized bulk modulus 
increases slightly with increasing aspect ratio from 1–10. After 10, the influence of the aspect ratio 
gradually decreases. It also can be observed that when the volume fraction decreases from Vf = 30% 
to Vf = 20%, the normalized bulk and shear modulus significantly decreased. Generally speaking, the 
influence of the volume fraction on the elastic properties is greater than that of the aspect ratios. 

(a) (b)

Figure 9. The variation of normalized modulus with the volume fraction for the aspect ratio being 
fixed: (a) bulk modulus; (b) shear modulus. 

(a) (b)

Figure 10. The variation of normalized modulus with the aspect ratio for the volume fraction being 
fixed: (a) bulk modulus; (b) shear modulus. 

5. Conclusions 

In this paper, a computational homogenization model has been developed for the evaluation of 
the effective properties of the composite materials. The general steps of the computational 
homogenization model have been implemented in ABAQUS. The composite materials have the 
microstructure of the periodic random packing of ellipsoid inclusions, which are generated with an 
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MD-based method. Different shapes of inclusions are generated in the RVE samples, which show that 
the MD-based method can generate various kinds of reinforcements and a high volume fraction of 
inclusions. The influence of the size, aspect ratio and volume fraction of the inclusions on mechanical 
properties has been studied. These studies showed that the effective properties of composite 
materials will be stable when the number of the inclusions is high enough to ensure the isotropy of 
the materials. There is no significant influence on the normalized shear modulus with the increase of 
the aspect ratio when the volume fraction is fixed. However, for the normalized bulk modulus, the 
reinforcement effect varies considerably for a lower aspect ratio and stabilizes for a higher aspect 
ratio. It shows that the MD-based method and the computational homogenization method are 
efficient tools to evaluate the effective properties of composite materials. In future work, it is desirable 
to apply the MD-based method to generating the microstructure of rock mass joints and microcracks. 
Not only modeling the elastic properties, the developed modeling scheme can be extended for the 
modeling of other effective macroscopic properties, such as effective thermal conductivity  
and permeability [47]. 
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