
materials

Article

Finite Element Analysis of Tunable Composite Tubes
Reinforced with Auxetic Structures

Hubert Jopek ID

Institute of Applied Mechanics, Poznan University of Technology, ul. Jana Pawła II 24, 60-965 Poznan, Poland;
hubert.jopek@put.poznan.pl

Received: 1 November 2017; Accepted: 22 November 2017; Published: 27 November 2017

Abstract: A tubular composite structure that is built of two materials, characterized by different Young
moduli, is analysed in this paper. The Young’s modulus of one of these materials can be controlled by
external conditions e.g., magnetic or electric field, temperature etc. The geometry of the reinforcement
is based on typical auxetic re-entrant honeycomb cellular structure. The influence of this external
factor on the behaviour of the stretched tube is analysed in this paper. Also, the possibility of creating
a tubular composite structure whose cross-section is either shrinking or expanding, while stretching
the tube is presented.
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1. Introduction

Auxetics have become more and more popular over the recent years. Not only are they extensively
investigated by researchers, but also auxetics or auxetic-like structures are already used commercially.
It has been shown that auxetic behaviour i.e., negative Poisson’s ratio results from the specific
geometry of material structures. Some of the first analyses of re-entrant honeycomb structures were
presented by Kolpakov [1] and Gibson [2]. Nowadays, many geometrical patterns are known to be
responsible for auxetic behavior [3]. Such behaviour on the molecular level was first presented by
Wojciechowski [4,5] and Evans [6], and also by Kang et al. [7] and Grima for single molecules [8],
as well as by Goldstein for crystals [9,10]. Macroscopic auxetic structures can be divided into several
classes: foams [11] and porous structures [12,13], re-entrant structures [14,15], chiral structures [16],
non-chiral structures [17,18] rotating rigid or semi-rigid units [19], and many others.

Auxetic structures can also result from specific material distribution in composite materials,
even though all of the constituents are characterized by positive values of the Poisson’s ratio, an analysis
of such structures was presented by Strek and Jopek [20,21]. Czarnecki et al. [22,23] presented some
results concerning composites built by optimal distribution of Young’s modulus within elastic and
isotropic by means of topological optimization. Auxetic behaviour as a result of hard inclusions in
the soft matrix was shown by Pozniak [24] and Kochman [25]. Another class of auxetic composites
are multiphase structures, in which at least one constituent exhibit the negative value of the Poisson’s
ratio. The influence of auxetic fibres reinforcement on the mechanical behaviour of a composite under
bending load was studied by Jopek [26]. Bilski and Wojciechowski [27] investigated the possibility
of changing the value of effective Poisson’s ratio in layered composites with an auxetic layer built of
hexamers. The torsional behaviour of composite beams was studied by Strek [28,29].

A special group of materials contains so-called smart materials i.e., materials with controllable
properties. In recent years, several articles have been published on using auxetics in smart materials.
Ren et al. showed that the auxetic performance can be tuned by the geometry of microstructures,
while the strength and stiffness can be tuned by the plasticity of the base material, while maintaining the
auxetic performance [30]. Jopek and Strek [21] analysed thermoauxetic composite in which the value

Materials 2017, 10, 1359; doi:10.3390/ma10121359 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-1629-1047
http://dx.doi.org/10.3390/ma10121359
http://www.mdpi.com/journal/materials


Materials 2017, 10, 1359 2 of 13

of the effective Poisson’s ratio was tunable and switched from positive to negative value according
to the temperature applied, although all of the constituents are characterized by positive values of
the Poisson’s ratio. Similar behaviour was demonstrated later in the case of bi-material unit cells by
Li, Dong and Lakes [31,32]. Mechanical properties of materials could also be controlled by the electric
or magnetic field applied. Magneto- and electroelastic properties of materials have been analysed by
many researchers [33–35] In particular, there are polymer materials whose elastic properties are strongly
dependant on external magnetic field. Such materials are called magnetorheological elastomers,
and their properties has been studied by Kukla et al. [36] and Varga et al. [37]. Alderson et al. [38]
discussed piezomorphic materials i.e., materials that change smoothly their shape in response to
mechanical stress. Piezoelectric bimorph composite with auxetic phase used for increased power
output in vibration energy harvesting [39]. The influence of magnetic field and the behaviour of
magneto-auxetic systems have been investigated by Grima et al. [40] and Dudek et al. [41,42]. A very
comprehensive research has been presented by Danas [43], who described both theoretically and
experimentally the behaviour of magnetoelastic materials with auxetic microstructure. Raghunath [44]
also studied magnetoelastic properties of Galfenol, which exhibit auxetic behaviour.

Tubular structures are one of the most common mechanical elements used in engineering.
Although the cross-sectional shape of the tube can be in fact arbitrary, it is a very common to use
the simplest possible, i.e., circular, shape. Such circular hollow cross-sections have been found in
natural structures e.g., body parts like trachea or blood vessels, stalks many plants etc. When it
comes to engineering, using tubular structures has just become a necessity in the process of structural
design. Apart from an obvious application as parts of pipelines, tubular elements are also used in
construction as they exhibit good mechanical performance when compared to solid cross-sectional
elements with the same material consumption. It is possible to build tubular elements, e.g., stents
with use of auxetic materials and structures [45]. Duc et al. [46] analysed the nonlinear dynamic
response and vibration of sandwich auxetic composite cylindrical panels built of three layers, in which
the top and bottom outer skins are isotropic aluminum materials, while the middle core layer is
auxetic. Several articles have already been devoted to the mechanical properties and behaviour
of auxetic tubes. Ren et al. investigated the behavior of auxetic tubes that were made of different
materials [47]. Goldstein et al. [48] analysed mechanical properties of two-layer tube composites build
of auxetic and nonauxetic material. Zhang et al. analysed the possibility of manufacturing auxetic
materials with use of tubes and corrugated sheets [49]. Scarpa et al. [50], and Yao et al. [51] presented
the analyses of Single-Walled Nano Tubes. The method in transforming conventional silicone rubber
composites to auxetic robust rubbers in the case of graphene and carbon nanotube was published by
Valentini et al. [52]. The influence of auxetic phase in concentric composite has been analysed by Strek
and Jopek [53], whereas the structure and properties of auxetic oesophageal stents have been studied
by Ali et al. [54]. The mechanical behavior of auxetic tubes, and the study of the influence of selected
geometrical parameters was presented by Karnessis et al. [55]. The method of manufacturing auxetic
stents was proposed by Bhullar et al. [56]. Theoretical and experimental research concerning tubes
that were filled with auxetic foams were discussed by Mohsenizadeh et al. [57].

Recently, auxetic materials have been extensively studied due to their enhanced mechanical
properties, e.g., enhanced stiffness of composites reinforced with auxetic structures. The possibility of
using these structures in composites of controllable mechanical properties, so-called smart materials,
is very promising and concerns the research in the field of the latest research in materials mechanics.
In this article, an analysis of the behaviour of composite tube reinforced with auxetic phase is analysed.
The composite is built of two constituents. It is assumed that the Young’s modulus of one of these
constituents is dependent on an external factor, such as magnetic field, electric field, or temperature,
whilst the other stays unaffected. The aim of the analysis is to present tubular composites based on
auxetic structures, whose diameter could either shrink or expand in a controlled way depending on
the external factor. Such a tunable tubular structures could be then analyzed in the application of fluid
and bio-fluid mechanics, as well as the structural morphing element.
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2. Composite Structure of the Tube

The reinforcement of the tube is built of auxetic unit cells based on typical re-entrant honeycomb
geometry (see Figure 1a). The material of auxetic structure being the reinforcement is denoted as MR

(blue colour). The voids within the auxetic structure are completely filled with the matrix material MM

(grey colour), so that we obtain a solid bi-material composite layer (L2 see Figure 1b). The thickness
of the reinforcement L2 layer is denoted as ta, but the reinforcement layer can also be embedded in
the MM material so that the matrix creates also inner (L3) and outer (L1) layers, which isolate the
reinforcement from the surroundings. Both od these layers are equally thick and their cumulative
thickness is denoted as th. Overall thickness of the tube is defined as tc = ta + th The curvature of the
circular cross-section of the tube is defined by the centre line that divides the thickness of the tube’s
wall into halves. The radius of this centre line equals Rm. Therefore, the inner (Rw) and outer (Rz) radii
are defined as follows: Rw = Rm − (ta + th)/2, Rz = Rm + (ta + th)/2 (see Figure 1b). The geometry of
three-dimensional (3D) composite tube is presented in (Figure 1c). It is assumed that the even number
Nc of unit cells is distributed circumferentially, as well as the even number Nz is distributed along
the tubes height. Hence, the geometry is symmetrical with respect to the three main planes and only
one-eighth part of the tube needs to be analysed. In order to determine the volumetric fraction of each
constituent, one can make use of the symmetry of the unit cell and calculate only the quarter of the
unit cell whose area is defined as A = ad. The area of the reinforcement can be expressed as follows:

AR = (d − b)
(

c
cos(ϕ)

+ b tan(ϕ)

)
+ ab (1)

and the area of the matrix:
AM = A − AR (2)

So, the share of each constituent in the layer of reinforcement (L2):

SA,R =
AR
A

, (3)

SA,M =
AM
A

, (4)

However, one needs to take into account the thickness of the tube’s wall and the fact that the
reinforcement could be thinner due to matrix material that surrounds the reinforcement from the
inner and outer side. The matrix material that forms the inner and outer layers could isolate the
reinforcement that embedded in the tube, but it also diminishes its influence as the share of MR

material in the volume of the whole composite decreases. In that case, the wall could be split into
three layers: internal layer L3 built of the matrix material only of volume V1, the middle layer L2 being
the mixture of matrix material, and the reinforcement of volume V2, and finally the outer layer L1,
also built only of matrix material only of volume V3 so the volume of each constituent is defined by
the following formulae:

VR = SA,R × V2, (5)

VM = V − VR, (6)

where V = V1 + V2 + V3 is the total volume of the tube. Hence volumetric share of each constituents is
expressed as:

SV,R =
VR
V

, (7)

SV,M =
VM
V

, (8)
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Figure 1. The geometry of composite tube: (a) composite unit cell of reinforcement layer, (b) quarter 
of cross-section with all of the layers marked (c) three-dimensional view of the whole tube, (d) the 
considered one-eighth of the tube with boundary conditions marked. 

Smart materials whose properties are tunable via external conditions, such as electric or 
magnetic field, temperature etc. allow for creating more sophisticated structures, which could be 
also controlled by the same factor. In the case of the considered composite tube, it is built of two 
materials MR and MM, and the material of the reinforcement is such smart material and its Young’s 
modulus that can be controlled by external factor, while the change of the Young’s modulus of the 
other material is negligibly small. In such a case, it is possible to investigate just the ratio of each 
constituents Young’s modulus instead of the values of each of them. 

The reinforcement material MR is characterized by Young Modulus ER and the value of the 
Poisson’s ratio νR, whereas the matrix material is characterized by EM and νM. As it was shown by 
Milton [58], in the case of composites built of auxetic structure with all of the voids filled, that it is 
possible to preserve the negative Poisson’s ratio of this structure if the structure is stiff and the other 
material compressible, which means that the ratio of Young’s moduli is different from 1. Similar 
results have been presented by Goldstein [48]. Hence, the value of the effective Poisson’s ratio is 
strongly dependent on the values of Young moduli of constituents. When considering the fact that 
the key factor in the analysis is the ratio of both materials, Young’s moduli, it was assumed that  
EM = 1 and the value of ER varies in the following range ER = (0.001, 1000), which implies that the ratio 
ER/EM also changes in the same range. Moreover, it follows that simulation also cover cases in which 
the Young modulus of the reinforcement is constant and the Young’s modulus of the matrix is 
influenced by external factors. Either way, the ratio of Young’s moduli can be tuned. Although the 
effect of an external field on the Young’s modulus of magneto- and electro-elastic materials is 
usually not that great, it is possible to obtain the change of the Young’s modulus by two or three 
orders of magnitude with the change of temperature, hence, such wide range of analysis seems 
justified. 

Figure 1. The geometry of composite tube: (a) composite unit cell of reinforcement layer, (b) quarter
of cross-section with all of the layers marked (c) three-dimensional view of the whole tube, (d) the
considered one-eighth of the tube with boundary conditions marked.

Smart materials whose properties are tunable via external conditions, such as electric or magnetic
field, temperature etc. allow for creating more sophisticated structures, which could be also controlled
by the same factor. In the case of the considered composite tube, it is built of two materials MR and
MM, and the material of the reinforcement is such smart material and its Young’s modulus that can
be controlled by external factor, while the change of the Young’s modulus of the other material is
negligibly small. In such a case, it is possible to investigate just the ratio of each constituents Young’s
modulus instead of the values of each of them.

The reinforcement material MR is characterized by Young Modulus ER and the value of the
Poisson’s ratio νR, whereas the matrix material is characterized by EM and νM. As it was shown by
Milton [58], in the case of composites built of auxetic structure with all of the voids filled, that it is
possible to preserve the negative Poisson’s ratio of this structure if the structure is stiff and the other
material compressible, which means that the ratio of Young’s moduli is different from 1. Similar results
have been presented by Goldstein [48]. Hence, the value of the effective Poisson’s ratio is strongly
dependent on the values of Young moduli of constituents. When considering the fact that the key
factor in the analysis is the ratio of both materials, Young’s moduli, it was assumed that EM = 1 and
the value of ER varies in the following range ER = (0.001, 1000), which implies that the ratio ER/EM
also changes in the same range. Moreover, it follows that simulation also cover cases in which the
Young modulus of the reinforcement is constant and the Young’s modulus of the matrix is influenced
by external factors. Either way, the ratio of Young’s moduli can be tuned. Although the effect of an
external field on the Young’s modulus of magneto- and electro-elastic materials is usually not that
great, it is possible to obtain the change of the Young’s modulus by two or three orders of magnitude
with the change of temperature, hence, such wide range of analysis seems justified.

In case of the experimental investigation, magnetorheological elastomers could be used.
These materials are built of a polymeric matrix with magnetic micro- or nanoparticles embedded.
The structure that is considered could by obtained if the particles were distributed so that they create a
re-entrant auxetic pattern. Another possibility is to use two polymers that can be bonded together,
assuming that the Young modulus of one of the materials changes significantly with the change of
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temperature, while the other is almost constant in the same range of temperature e.g., two types of
silicone rubber.

For simulation, it was assumed the basic values of νM and νR were assumed as 0.3, although the
simulation for several different values of νR was performed in order to investigate its impact as well.
Symmetry boundary conditions are used on Γx, Γy, and Γz1 boundaries and prescribed displacement
along the z-axis is assumed on the Γz2 see Figure 1d, the prescribed displacement ∆h = 0.1h.

The change of ER results in the change of effective Poisson’s ratio of the composite, which in the
case of flat geometry would by described as ν = − εt

ε l
, where εt—transverse strain, ε l—longitudinal

strain along the stretching/compression direction. However, when considering the tube, the effective
Poisson’s ratio of stretched (compressed) tube is calculated on the basis of the change of the length
of its circumference, which could be expressed simply by its diameter or radius. Hence, the effective
Poisson’s ratio of the axially stretched tube is given by the following [39]:

νe f f = − εc

εz
(9)

where εc—average circumferential strains and εc =
∆R
R , and εz =

∆h
h . Given the fact that the composite

material properties are not homogeneous in the cross-sectional area, one should expect that the
deformed cross-section could diverge from its initial circular shape. Hence, both longitudinal and
circumferential strains are averaged.

3. Results

Numerical analysis was performed with the use of Comsol Multiphysics FEM software. Linear
elastic materials are assumed for both of the materials. The mesh was built of about 20,000 tetrahedral
elements. Geometrical parameters of the tube: Rm = 1, Nc = 6, Nz = 10, ta = 0.1, th = {0, 0.2}. The aim of
the analysis is to present the influence of the change of reinforcement elastic modulus on the behaviour
of the tube.

3.1. Case 1

In the first case, the results were obtained for the case, in which th = 0, which means that the tube’s
wall is of the same thickness as the reinforcement layer so no additional inner and outer layer occur.
The volumetric share of the phase of the reinforcement SV,R = 0.43. The change of the inner radius
Rw of the stretched tube with respect to the Young’s moduli ratio is presented in the Figure 2. Several
values of the Poisson’s ratio of the reinforcement material are presented in order to investigate the
influence of this parameter, as well while the value of the Poisson’s ratio of the matrix is kept constant
νM = 0.3. The dashed line in the plot represents the inner radius of the tube before deformation, just for
the reference. If the ratio ER/EM = 1 and νR = νM, then the tube is built of isotropic homogenous
material and it behaves as such.

One can observe that as the ER/EM diverge from 1 the radius of the tube also starts changing.
However, the influence of the ratio ER/EM is far more significant if the ratio is greater than 1, which
means that the material of the reinforcement is stiffer. This effect results from the fact that the
reinforcement material creates auxetic structures, and the stiffer the reinforcement, the stronger it
influences the behaviour of the whole tube. It is clearly noticeable that it is possible to obtain a tube that
would either shrink or expand depending on the external factor that would change the reinforcement
Young’s modulus. Moreover, such change is possible even for a relatively small change of this Young’s
modulus, If ER is greater than EM by about one order of magnitude, then we can obtain a tube that
would change its radius from 0.93 up to 0.97, which means that the cross-section of the tube would
change by almost by 10%. Furthermore, a very interesting result is obtained in the case in which the
ratio is changed to its reciprocal so that the matrix is stiffer than the auxetic reinforcement. The tube
behaves similarly to the one with stiffer reinforcement, although the effect of changing the Young’s
moduli ratio is smaller.
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Figure 2. The inner radius of the tube Rw with respect to ER/EM ratio for selected values of νR, th = 0.

The value of the Poisson’s ratio of the reinforcing material was also studied, and, naturally, it also
influences the behaviour of the whole composite. The impact of changing the value of νR decreases
as the ratio ER/EM diverge from 1. For a completely isotropic material of the tube, the diameter
of the stretched tube is minimal, however, this relation is dependent on the Poisson’s ratio. In the
case of νR = 0.49, the minimum value of the radius is obtained if the value of the ratio ER/EM < 1.
For all the values of νR < 0.3 the minimum radius of the deformed tube is obtained if ER/EM > 1. It is
clearly noticeable that the value of νR is also significant, and it enhances the auxetic behaviour of the
reinforcement structure as νR tends to −1. In consequence, lower values of νR diminish the effect of
the changing ER/EM ratio. For clarity reasons it was assumed that the external factor influences only
the ER/EM ratio. So, in each case of νR, the ER/EM ratio was the only control variable. It is important,
however, to remember that the Poisson’s ratio can be also dependant on such phenomena as a magnetic
field, electric field, or temperature. Hence, the radius of the tube could change in a wider range if both
Young’s modulus ratio and the values of the Poisson’s ratio were controlled simultaneously by this
external factor.

The shape of the deformed cross section is presented for two cases. In Figure 3, the cross-sectional
shape of the tube is presented for the following set of parameters: ER/EM = 0.001, νR = νM = 0.3,
th = 0. The cross-sectional shape for the same parameters but the ratio of Young’s moduli changed
ER/EM = 1000 is presented in the Figure 4. The selected cross-section lays in the plane of tube symmetry.
The stiffness of the auxetic reinforcement is far smaller than the stiffness of the matrix material.
The stresses are concentrated in the area of the matrix in the case of ER/EM = 0.001, while for
ER/EM = 1000, the highest values of von Mises stresses occur at the corners of the auxetic structure.
Additional red arrows show the directions of displacements so that it is clearly noticeable that the first
tube shrinks while the latter expands.
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occur: th = 0. The area of stress concentration is magnified on the right.
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Figure 4. The deformation of the cross-section of the stretched tube and stress field for ER/EM = 1000,
the auxeticity of the reinforcement determines the behavior of the tube. The tube’s wall thickness is
equal to the reinforcement thickness, inner, and outer layers (L1, L3) do not occur: th = 0. The area of
stress concentration is magnified on the right.
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3.2. Case 2

In the second analysis, the same auxetic structure is embedded in the matrix material so that
th = 0.2 and the volumetric share of the reinforcement material SV,R = 0.15. The change of the inner
radius of the tube Rw with respect to ER/EM ratio for selected values of νR is presented in the Figure 5.
For such a composite, it is still possible to influence its behaviour by changing the ER/EM ratio, however,
significant change is obtained only if ER/EM > 1. Since the share of the reinforcement phase is much
smaller than in the first case, the effect of its auxetic structure is suppressed if it is made of softer
material i.e., the ratio ER/EM < 1. Hence, the effect of increasing the inner radius Rw if the ER/EM tends
to 0.001 is not observed in this case. Furthermore, the influence of the νR diminishes with the decrease
of ER/EM, and it becomes negligibly small for ER/EM < 0.1. Likewise, the first case of the composite
tube, this one is also capable of changing the inner radius by ca. 10% if the ER/EM change by about
one order of magnitude (e.g., from 12 to 120). It is worth noting that this behaviour is only slightly
influenced by the value of νR, although the value of the inner radius depends on it.
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The shape of the deformed tube’s cross-section is presented in the Figure 6 in the case of ER/EM
= 0.001, whereas Figure 7 shows the cross-sectional shape for ER/EM = 1000 is presented in Figure 7.
The highest values of stresses concentrate in the area of the matrix along the interface between phases
in the case of ER/EM = 0.001. If the Young’s modulus of the reinforcement is higher than the one of
the matrix i.e ER/EM = 1000, then the highest values of the stresses occur at the corners of the auxetic
reinforcement, as it occurred for the geometry with th = 0.

The values of effective Poisson’s ratio of the composite were also calculated (see Figure 8).
Since the value of the effective Poisson’s ratio is strongly related to the change of the tube’s radius,
the plot in the Figure 8 resembles the plot in the Figure 5.
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Figure 7. The deformation of the cross-section of the stretched tube and stress field for ER/EM = 1000.
The auxeticity of the reinforcement determines the behavior of the tube. The reinforcement embedded
in the matrix material: th = 0.2. The area of stress concentration is magnified on the right.
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4. Conclusions

In this paper, a composite tube that is reinforced with auxetic structure is studied by means
of Finite Element Analysis. The reinforcement of the tube is assumed to be made of the material
whose Young’s modulus can be controlled by external factor e.g., magnetic field, temperature, or other
physical phenomena, while the other Young’s modulus is constant. Hence, the ratio of both Young’s
moduli changes as well. The change of this ratio allows for controlling the deformation of the composite
tube. The shape of reinforcement is designed as auxetic re-entrant structure. Two cases of the tube
are considered. In the first case, the tube’s wall is only as thick as the reinforcement layer, and the
matrix materials fill the voids of the auxetic structure. The results indicate that the diameter of the
stretched tube can change about 10% as a result of the external field applied. In the second analysis,
the reinforcement is embedded in the matrix material so the influence of its auxetic geometry is
diminished. Yet, the results obtained indicate that it is also possible to control the diameter of such
a tube in the range of about 10%, although the changes are limited to the case in which the value of
Young’s modulus of the reinforcement is greater than the Young’s modulus of the matrix. Further
research will be conducted in order to investigate the behaviour of such structure under different types
of loading.

The reinforcement can be completely embedded in the matrix i.e., it is possible to isolate it from
the surroundings if necessary.
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