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Abstract: The intergranular crack propagation of the lamellar structure β titanium alloys is
investigated by using a modified Gurson-type damage model. The representative microstructure
of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors,
is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth
and the shear fracture associated with void shearing are considered for the grain boundary α layer.
The individual phase properties are determined according to the experimental nanoindentation
result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain
hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α

layer on fracture toughness and the intergranular crack growth behavior are emphatically studied.
The computational predictions indicate that fracture toughness can be increased with increasing
the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture
toughness. Based on the current simulation technique, qualitative understanding of relationships
between the individual phase features and the fracture toughness of the lamellar alloys can be
obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

Keywords: intergranular crack propagation; β titanium alloys; micro-mechanical damage model;
ductile fracture; fracture toughness

1. Introduction

Titanium alloys are commonly used in aerospace engineering due to their high strength, low
density, good mechanical properties and excellent heat and corrosion resistance. As the breakthrough
product among α/β titanium alloys, the Ti-6Al-4V alloy occupies the most part of the market of
aerospace components [1]. In recent years, the β titanium alloys have emerged to replace Ti-6Al-4V in
some of aerospace components owing to their excellent comprehensive performance [1,2]. According to
the morphology and the distribution of the α phase associated with different heat treatment procedures,
there are two commonly used microstructures of the β titanium alloys, namely fully lamellar and
bimodal, respectively [3]. The literature focussed on the morphology of the α phase showed that
the preparation route of the high ultimate tensile strength for the lamellar alloy is more convenient
than that for the bimodal alloy [4]. A typical processing sequence for the lamellar β alloys contains
a series of four steps, namely the homogenization (step I), the deformation (step II), the recrystallization
(step III) and the annealing plus the aging treatment (step IV), where the first three steps are operated
in the β phase field and the final step is normally done in the α + β phase field [1]. After the heat
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treatment, the representative structure of the lamellar β alloy consists of the continuous thin α phase
layer surrounding the hard grain interior, which is composed of the nanoscale α phase laths inside
the prior β grain [1,3,4], as shown in Figure 1. Due to the preferential plastic deformation along the
continuous α layer and the grain boundary regions are softer than the precipitation hardened grain
interiors [1], intergranular ductile fracture is easy to happen [3]. Since the fracture toughness of the
β titanium alloys is highly related to intergranular fracture [1,3] and the fracture toughness is one of
the key design criteria of the failure-resistant components in aerospace engineering, it is necessary to
investigate the intergranular crack propagation behavior of the lamellar β titanium alloys.

 (a)

(b)

  (c)

(d)
Figure 1. Continuous α layer at grain boundaries in some β titanium alloys: (a) β 21S; (b) Ti-10V-2Fe-3Al;
and (c) Ti-5Al-5V-5Mo-3Cr (Ti-5553); (d) TEM photograph of continuous α layer (A) and matrix α

plate structure (B) in Ti-5553 corresponding to (c) (from [1], by permission of c© Springer Science +
Business Media).

Prior efforts at modeling intergranular fracture of polycrystalline metals have shown that ductility
and fracture toughness depends on the material response of the grain interiors, the intergranular failure
properties of the grain boundary regions, the distribution of the grain size and orientation [5–12].
One common approach is to simulate the intergranular separation of grain boundaries according
to the cohesive interface models [8–12] and the stress–strain behavior of the grain interiors can be
described by using the anisotropic elastic theory [11,12], the isotropic Von Mises plasticity [8,9] or the
crystal plasticity theory [8–10] depending on whether the effects of the plasticity and the orientation of
grains are considered. Although the cohesive interface models are helpful to understand the failure
mechanisms associated with low ductility or fracture toughness at meso-scale, they are more suitable
in simulating the brittle intergranular fracture [8,10] or the cleavage fracture [12,13] of polycrystalline
materials. In the β titanium alloys, the intergranular crack initiation sites are commonly considered
to be caused by the difference in elastic-plastic deformation between grains [1,3]. Fractographic
examinations have also shown that the intergranular fracture of the β titanium alloy occurs on the
grain boundary through nucleation of voids, void growth and coalescence [3]. The intergranular failure
caused by this micro-mechanism can be well described by the Gurson–Tvergaard–Needleman (GTN)
model according to void volume fraction together with the first and the second stress invariants [14,15].
Based on the assumption that damage evolution is determined by cooperation of plastic deformation
and high stress triaxiality, the GTN model was extensively used in simulating the gradually degraded
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yield surface of ductile materials [15,16]; however, few investigations on intergranular ductile fracture
have been performed based on this model [7].

For the two-phase titanium alloys including the β alloys, quantitative tilt fractography analysis
has been performed to calculate the angular deviation between the loading direction and the initiation
facet normal corresponding to intergranular fracture, which reveals that both normal and shear force
components of facets are necessary to initiate a crack [3]. Therefore, the deformation process of the
grain boundary layer involves the significant variations of stress states; however, it has already be
recognized that the GTN model has no ability to simulate fracture at low stress triaxiality [15,17].
In order to encompass a wider scope of stress triaxiality, the original GTN model has been extended
by taking into account the effects of the third stress invariant. Some additional parameters are
introduced, which set the rate of damage evolution in shear [17–19]. These extended models capture
the macroscopic experimental observations of various metal alloys in the shear dominated stress states
with low stress triaxiality.

Motivated by the issues outlined above, the intergranular ductile fracture of the β titanium
alloys will be investigated based on a extended GTN model that considers both the normal fracture
due to the internal necking of neighboring voids and the shear fracture associated with the void
shearing mechanism. The paper is structured as follows. In Section 2, the extended GTN model in
terms of low stress triaxiality is reviewed and the corresponding numerical algorithm is introduced.
In Section 3, the finite-element polycrystal model of the lamellar Ti-5Al-5V-5Mo-3Cr (Ti-5553) alloy with
the random grain geometry is generated from the Voronoi tessellation at first. Then, the stress–strain
responses of both the grain boundary α layer and the grain interiors are determined according to
the nanoindentation and the uni-axial tensile tests available in the literature, and finally show the
representative simulations of the damage evolution under both tensile and shear loading. In Section 4,
a notched Ti-5553 specimen is used to simulate the intergranular crack propagation process. The effects
of void shearing of the grain boundary α layer and the elastic-plastic response of the grain interiors on
the fracture toughness of Ti-5553 are discussed in detail. Meanwhile, the crack propagation process for
two different model parameters are compared to reveal the effects of void shearing. The conclusions
are summarized in Section 5.

2. Constitutive Modeling

By considering void growth and the internal necking between two adjacent voids, the original
GTN model was developed to describe the gradually degraded yield surface depending explicitly upon
the void volume fraction f of ductile materials [15,16]. The yield function of the model is given below:

Φ =

(
σeq

σy

)2
+ 2q1f ∗ cosh

(
−3

2
q2

σm

σy

)
−
(

1 + q2
1f ∗2

)
, (1)

where the constants q1 and q2 were introduced by Tvergaard and Needleman to improve the predictive
ability of the Gurson model [14,20]. σy(ε̄p) = σy0 + R(ε̄p) refers to the yield stress of the matrix material,
in which σy0 is the initial yield stress and R is the hardening function associated with the equivalent
plastic strain ε̄p. σeq = 3

2 S : S denotes the Von Mises stress and σm is the mean stress. The deviatoric
stress S = σ − σm I, where σ is the macroscopic Cauchy stress tensor and I is the second order identity
tensor. The ratio σm/σeq is the stress triaxiality that cooperates with plastic deformation to promote
void growth. f ∗ is the equivalent value of the void volume fraction f . By introducing the critical void
volume fraction fc at the onset of void coalescence, f ∗ is of the bi-linear form as

f ∗ =


f , f < fc,

fc + κ( f − fc), fc < f < fF,

fu, f ≥ fF,

(2)
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where κ is the acceleration factor for void growth after coalescence. fF indicates the void volume
fraction at fracture and fu = fc + κ( fF − fc). By taking into account the void shearing mechanism [17],
the evolution equation for f is defined by

∆ f = (1− f )∆εp : I + q3 f ω(σ)
S : ∆εp

σeq
(3)

without void nucleation, where ∆εp is the macroscopic plastic strain rate tensor. The material constant
q3 is introduced to represent the damage evolution rate in pure shear state. ω is the shear stress
invariant used to quantify the stress state during the damage process. ω is denoted as

ω(σ) = 1−
(

27det(S)
2σ3

eq

)2

, (4)

where ω lies between 0 and 1, ω = 0 for the tensile stress state and ω = 1 for the pure shear stress state
plus an arbitrary mean stress. The operator det(S) stands for the determinant of the deviatoric stress
tensor S. It needs to be emphasized that f in Equation (3) can not be considered as the void volume
fraction any more in the extended model, it defines the damage counter similar to the damage variable
in the continuum damage mechanics theory [15,17]. The second term in Equation (3) introduces the
material softening due to void deformation and reorientation. The onset of fracture is predicted when
f reaches fF and the material is considered to fracture.

The constitutive equation of materials based on Hooke’s law can be written in an incremental
form from time t to t + ∆t as

σt+∆t = 2Gεe
t+∆t + λI I :

(
εe

t+∆t
)
= 2G (εe

t + ∆εe) + λI I : (εe
t + ∆εe) , (5)

where G is the shear modulus and λ is the Lame constant. Since the elastic increment strain
∆εe = ∆ε − ∆εp, Equation (5) can be written in its predictor–corrector form in the framework of
the backward Euler method [21] as

σt+∆t = σe − (2G∆εp + λI I : ∆εp) , (6)

where ∆ε is the total strain increment and ∆εp is the plastic strain increment. σe = 2G (εe
t + ∆ε)+λI I :

(εe
t + ∆ε) denotes the elastic predictor which can be alternatively written as

σe = Se + σe
m I, (7)

where the deviatoric elastic predictor and the predictor of means stress are defined by

Se = 2Ge = 2G
[

ε−
(

I I : ε

3

)]
, σe

m = K
(

I : ε

3

)
. (8)

The quantity e represents the deviator of strain and K is the elastic bulk modulus. The yield
function and the flow rule are given by

Φ
(
σm, σeq, σy(ε̄

p), f ∗
)
= 0, (9)

∆εp =
1
3

∆εm I + ∆εeqnt+∆t, (10)

with
n =

3
2

S
σeq

, ∆εm = ∆λ
∂Φ
∂σm

, ∆εeq = ∆λ
∂Φ
∂σeq

. (11)
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Eliminating the plastic multiplier ∆λ in above equations, the following constraint equation
is obtained,

∆εm
∂Φ
∂σeq
− ∆εeq

∂Φ
∂σm

= 0. (12)

The stress tensor at time t + ∆t can be determined by

σt+∆t = σmt+∆t I + St+∆t = σmt+∆t I +
2
3

σeqt+∆t
nt+∆t. (13)

The combination of Equations (6) and (10) results in

σt+∆t = σe − K∆εm I − 2G∆εeqnt+∆t. (14)

Since Se and St+∆t are coaxial in the deviatoric stress space according to Equation (14), nt+∆t can
be determined through the elastic predictor as

nt+∆t =
3
2

Se

σeqe . (15)

Projecting Equation (14) to I and n, then the following equations can be derived in comparison
with Equation (13):

σmt+∆t = σm
e − K∆εm, (16)

σeqt+∆t
= σeq

e − 3G∆εeq. (17)

By assuming that the equivalent plastic work principle is always satisfied, the relationship
between the equivalent plastic strain ε̄p of the matrix and the macroscopic plastic strain is given by

(1− f ) σy∆ε̄p = σ : ∆εp. (18)

Finally, all the corresponding equations for the extended GTN model are summarized as follows:

Φ
(
σm, σeq, σy(ε̄

p), f ∗
)
= 0,

∆εm
∂Φ
∂σeq
− ∆εeq

∂Φ
∂σm

= 0,

σm = σm
e − K∆εm,

σeq = σeq
e − 3G∆εeq,

∆σy =
dσy

dε̄p ∆ε̄p =
dσy

dε̄p
σm∆εm + σeq∆εeq

(1− f ) σy
,

f = f + ∆ f ,

∆ f = (1− f )∆εp : I + q3 f ω(σ)
S : ∆εp

σeq

= (1− f )∆εm + q3 f ω(σ)∆εeq.

(19)

The above system of nonlinear equations for the unknowns σm, σeq, ∆εm, ∆εeq and f are solved by
means of the Newton–Raphson method [22]. The integration algorithm of the extended GTN model
has been implemented into the commercial code ABAQUS according to the user subroutine UMAT
(user-defined material) [23].



Materials 2017, 10, 1250 6 of 18

3. Parameters Determination and Model Validation

3.1. Estimation of Individual Phase Properties

The mechanical properties of the β alloys are dominated by the preferential plastic deformation
along the continuous α layers at β grain boundaries as indicated by Lütjering et al. in Ref. [1],
this phenomenon has been confirmed in some widely used β alloys such as Ti-6246 and Ti-5553
with lamellar structure for aerospace applications [1,3]. In the present study, the intergranular crack
propagation behavior is investigated according to Ti-5553. Based on the experimental observations,
the typical structure of the lamellar Ti-5553 alloy is composed of the continuous thin α phase layer
surrounding the prior β grain, which is embedded by the α phase laths [1,3,4], as displayed in
Figure 1c,d. In simulations, it is important to determine the microstresses for each constituent phase
during deformation. Since the mechanical behavior of the nanoscale α phase precipitates inside the
prior β grain is difficult to obtain, each precipitation hardened grain is treated as a homogeneous and
isotropic grain; meanwhile, the grain boundary α phase layer and the hard grain interiors are assumed
to follow the elastic-plastic isotropic hardening behavior.

According to the existing literature [24,25], the stress–strain curve of α phase can be determined
by fitting the nanoindentation load-depth curve. Since the mechanical properties of each individual
phase of metal alloys depends on various factors such as chemical composition, microstructure and
thermal processing [13,26,27], the reported α phase properties for Ti-5553 are different. For qualitative
investigation, a experimental nanoindentation test reported in Ref. [26] is adopted to identify the
mechanical properties of the α phase layer. A three-sided Berkovich indenter with a total included
angle of 142.3◦ is used in their tests. Based on several studies [28,29], nanoindentation tests using
a conical indenter with a half apex angle of 70.3◦ yields the same load-depth curve as the Berkovich
indenter, thus an axisymmetric finite-element model is developed as shown in Figure 2a. The mesh
near the contact region is refined to ensure the accuracy of the simulation results, and the minimum
size of four-nodal elements equals 10 nm. In simulations, the vertical movement of the nodes at
the bottom boundary is constrained; meanwhile, the horizontal movement of the nodes on the left
boundary is constrained due to the symmetry condition. The loading process is performed by applying
the downward displacement on the master node of the rigid indenter and the subsequent unloading is
achieved by removing the applied displacement of the indenter at the peak reaction force.

                                                 (b)

Figure 2. (a) axisymmetric finite-element model with a conical indenter for the nanoindentation
simulation; (b) contour plot of the equivalent plastic strain (PEEQ) within the α phase layer near the tip
of the conical indenter after unloading.
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Because the general elastic parameters found in the open literature for the α phase of the titanium
alloys have little difference [26,30], the isotropic elastic parameters identified in Ref. [26] are considered
to be the known parameters, namely, the Young’s modulus E is 125 GPa and the Poisson’s ratio is 0.33,
the nanoindentation simulations are concentrated in determining the plastic properties. After a large
number of numerical calculations, the relationship between true stress σt and the true plastic strain
εt

p can be well described by the Holomon equation σt = K1(εt
p)n1 with εt

p ≥ 0.2%, where the
strength coefficient K1 = 889 MPa and the strain hardening exponent n1 = 0.027. Figure 2b displays the
equivalent plastic strain within the α phase near the tip of the indenter. The comparison between the
simulation and the experimental load-depth curve is shown in Figure 3. The two results are matched
each other very well at the loading stage, while the deviation exists at the final stage of the unloading
part. Since the unloading part is highly sensitive to the Young’s modulus, this numerical result is the
best fitting based on the known isotropic elastic parameters and the given indenter-tip geometry.

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

1600

 Experimental data
 Simulation result

Lo
ad

 (µ
N

)

Indentation depth (nm)

Figure 3. Comparison of numerical and experimental load-depth curves for the α phase layer of the
lamellar Ti-5553 alloy.

In accordance with the popular approach to obtain the material properties of each individual
phase [31,32], a experimentally measured stress–strain curve in uni-axial tension from specimens of the
lamellar Ti-5553 [27] is used to estimate the material parameters of the grain interiors. The chemical
composition of the material is given in Table 1. The heat treatment produces a microstructure composed
of refined α precipitates in the prior β grain together with the grain boundary α phase layer, and this
microstructure often has the higher tensile strength accompanied by some ductility. The tensile
tests show that the ultimate strength is between 1093–1201 MPa, and the fracture strain ranges from
4.7–15.9% [27].

Table 1. Chemical composition of the Ti-5553 alloy (wt %).

Ti Al V Mo Cr Fe O N

Bal. 4.8 5.2 5.6 3.5 0.6 0.231 0.022

Typically, the grain size of the β titanium alloys including Ti-5553 lies in the range of 25–500 µm,
and the ratio of the grain boundary α layer thickness to the grain size ranges from 10−2–10−4 [7].
Because of the need to determine the elastic and plastic parameters of the hard grain interiors,
the advanced Voronoi algorithm [33] is adopted to generate the more realistic two-dimensional grain
structure of the polycrystal, which is used as the representative volume element (RVE) of the Ti-5553
alloy, as shown in Figure 4. Since the ratio between the average grain size and the thickness of the grain
boundary α layer is too small to be generated in the finite-element model, the RVE in simulations is
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a 600× 600 µm square consisting of 100 grains, and the thickness of the grain boundary α layer is 4 µm.
Refer to the general perspective of crack propagation modeling [7,34], the grain boundary normally has
the finite thickness of two finite elements. The RVE captures the main features of the grain structure in
the lamellar Ti-5553 as displayed in Figure 1c, thus it can be used to study the interaction between
the grain interiors and the grain boundaries reasonably. In order to calculate macrostresses from the
finite-element representation of the microstructure, two-dimensional plane strain elements are applied
to simulate the material behavior of the Ti-5553 specimen under tension. The grain boundaries in this
model are explicitly modeled with finer meshes for simulating intergranular ductile fracture.

Figure 4. The finite-element model used for the representative volume element (RVE) of the
lamellar Ti-5553.

During the simulation of the uni-axial tension, all the nodes at the top edge are given the same
displacements in the vertical direction. To avoid the movement of rigid body, one of the top nodes is
constrained not to move in the horizontal direction and the rest of the top nodes can freely move in the
horizontal direction during deformation. Meanwhile, all the nodes at the bottom edge are constrained
not to move in the vertical direction, but can move freely in the horizontal direction. In the post process
of modeling, the macroscopic engineering stress is derived by dividing the reaction force of the RVE in
the vertical direction with the initial area of 600 µm2. The engineering strain is derived by dividing the
vertical displacement of the top edge with the initial length 600 µm of the RVE.

By considering that the material softening happens due to the formation of the intergranular
crack, the extended GTN model introduced in Section 2 is adopted to determine the damage evolution
along the grain boundaries. Over a large number of numerical testings, the best estimation of the
experimental stress–strain curve is given by the following flow curve of the grain interiors, namely,

σt =

{
Eεt, εt

p < 0.2%,

K1(εt
p)n1 , εt

p ≥ 0.2%,
(20)

where εt is the true strain, the strength coefficient K1 = 1215.7 MPa and the strain hardening exponent
n1 = 0.032, as displayed in Figure 5. The corresponding isotropic elastic parameters are the Young’s
modulus E is 100 GPa and the Poisson’s ratio is 0.33. The model parameters of the extended GTN
model are: the initial void volume fraction f0 = 4 × 10−6, fc = 0.5, fF = 0.6, κ = 3.0, q1 = 1.5, q2 = 1.0 and
q3 = 0.7. It should be mentioned that such a procedure for the parameters determination may not be
unique; however, these determined material parameters can be used to qualitatively investigate the
intergranular ductile fracture of the β titanium alloys influenced by both the grain boundary α layer
and the grain interiors reasonably.
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Figure 5. The engineering stress–strain curve of the RVE under uniaxial tension based on the fitted
input stress–strain curves for the grain boundary α layer and the grain interiors.

3.2. Damage Evolution in Tensile and Shear Loading

Accurate modeling of damage development is very important in capturing the macroscopic
behavior of the lamellar Ti-5553 alloy since void growth and void shearing strongly affect the
mechanical behavior of the alloy during deformation. For the uni-axial tension discussed above,
the final distribution of the equivalent plastic stain within the grain interiors is displayed in Figure 6a.
As shown by the graph, there are several positions within the grain interiors have the intense plastic
strain concentrations. Actually, these positions also indicate the preferential plastic deformation along
the adjacent α phase grain boundaries associated with the total applied stretch. Since the damage
evolution is caused by both the plastic deformation and the stress states based on the current model,
the intergranular cracks have been formed only in two places along the grain boundaries; meanwhile,
the intergranular crack propagation is blocked by the high plastic strain localization ahead of the
crack-tip. One of the Gaussian integration points located in the red circle indicated in Figure 6a is
used to identify the damage evolution at the grain boundary. As shown in Figure 6b, the intergranular
damage at the material point is caused by both void growth and void shearing during the tension
process, where the damage growth rates for void growth and void shearing are calculated according to
the first term and the second term of Equation (3), respectively.

�

(a)                                                           (b)

Figure 6. (a) the distribution of the equivalent plastic stain (PEEQ) within the grains under the uniaxial
tension and (b) the corresponding damage evolution of one Gaussian point located in the red circle for
both void growth and void shearing.
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In order to verify the application of the model under a shear dominated condition, a shear loading
is performed on the RVE in the plane strain condition. All the top nodes are given the same shear
displacements in the horizontal direction and one of the top nodes is constrained not to move in the
vertical direction. The movements of both the horizontal and vertical direction are constrained for
all the bottom nodes. The material constant q3 = 2.0 and the rest of the model parameters are the
same as those for the uni-axial tension simulation. The final distribution of the equivalent plastic
stain within the grain interiors at the shear displacement of 0.46 mm is shown in Figure 7a. Although
the loading is nearly antisymmetric, the intergranular crack paths are not antisymmetric due to the
random grain geometry. These positions corresponding to the local plastic strain concentration indicate
the preferential plastic deformation along the adjacent continuous α layer under the shear loading.
The high plastic deformation within the grain interiors prevents the crack propagation through the
grains, which is similar to that happened in the tension simulation. One of the Gaussian points inside
the red circle as shown in Figure 7a is also used to capture the damage process of the grain boundary.
Obviously, the void shearing mechanism dominates the damage development at the material point
during deformation (see Figure 7b). The effect of q3 is considered according to the reaction force
against the shear displacement curve, as shown in Figure 8. Since q3 is the acceleration factor of void
shearing, the curve peaks at the lower value of displacement for the higher value of q3. With the shear
displacement, the reduction in force is also observed for q3 = 0 due to the existence of the void growth
mechanism. The above simulations reveal that the damage evolution associated with intergranular
fracture can be captured reasonably by the current model.

�

(a)                                                          (b)

Figure 7. (a) the distribution of the equivalent plastic stain (PEEQ) within the grains under the shear
loading and (b) the corresponding damage evolution of one Gaussian point located in the red circle for
both void growth and void shearing.
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Figure 8. The reaction force versus the applied displacement curves of the RVE under the shear loading
for different values of q3.
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4. Intergranular Crack Propagation

After the model verification, the intergranular ductile crack propagation is simulated according
to the determined material parameters. A notched specimen is created simply by removing one grain
at the right boundary of the RVE, and the boundary conditions are the same as those for the uni-axial
tension simulation. The calculation results for the distribution of the von Mises stress and the damage
field evolution are displayed in Figure 9. The contour maps of the damage variable characterize crack
propagation. There are several crack initiation sites, and two of them have the same positions as those
in the uni-axial tension (see Figure 9a). With the further loading, the crack initiated from the notch-tip
propagates into the bulk of material and merges with other cracks to form one main crack that crosses
the polycrystalline aggregate. As shown in the von Mises maps, the high local stress concentrations
happen ahead of the current crack-tips during crack propagation, and the local unloading occurs in
the wake of the advancing crack-tips. Crack branching has also been observed at some triple points
of the model; however, these crack branches stop to grow after propagating a very short distance
(see Figure 9c).

(a)                                           (b)                                           (c)

(d)                                          (e)                                            (f)

Figure 9. Contour maps during intergranular crack propagation: (a–c) von Mises stress; (d–f) damage
evolution. The imposed displacement is (a,d) 0.04 mm; (b,e) 0.08 mm; (c,f) 0.3 mm.

Since changing the parameter q3 results in a variation in the growth rate of voids, and a change of
the strain at which fracture occurs [17], the effects of the void shearing mechanism on the intergranular
crack propagation are considered by varying the value of q3. The macroscopic load-displacement
curves are compared for the different values of q3 as plotted in Figure 10. As deformation progresses,
the peak load is reached, and then the external load decreases due to the crack initiation at the notch-tip.
However, there is no sudden drop of load after the crack initiation, instead there is a load plateau
associated with the initial stage of crack propagation. The length of the load plateau for q3 = 2.0 is
shorter than other cases due to the faster void shearing process. Meanwhile, although the external
load for q3 = 2.0 drops more quickly during the subsequent deformation, the crack propagation path is
exactly the same as other cases (see, e.g., Figure 9).
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Figure 10. Computational results of the reaction force versus the applied displacement curves for
different values of q3.

In order to explore the influence of the flow properties of the grain interiors on the intergranular
crack propagation behavior, three different flow curves are considered by varying the strain hardening
exponent n1 in Equation (20), namely, n1 is 0.032, 0.076 and 0.12, as illustrated in Figure 11. During
calculations, the flow properties of the grain boundary α phase layer are fixed and q3 = 0.7. The yield
stress of the grain interiors σy

g can be derived by substituting εt
p = 0.2% into Equation (20). The ratio

between σy
g and the yield stress of the grain boundary α phase layer σy

α equals 1.3, 1.0 and 0.8 for
each n1 approximately. The simulation results for n1 = 0.076 and 0.12 together with the former result of
n1 = 0.032 are compared in Figure 12. Based on the macroscopic load-displacement curves as shown in
Figure 12a, the material softening occurs firstly at n1 = 0.032 associated with the fastest crack initiation
process, which indicates that the decrement of the strain hardening exponent of the grain interiors can
promote the formation of the intergranular crack. It also can be seen that the peak load for n1 = 0.032 is
higher than the other two cases due to the higher ratio of σy

g/σy
α. Since there is only one propagating

crack that exists as shown in Figure 12d, the external load drops slower at n1 = 0.12 in comparison
with other two cases corresponding to the multiple crack propagation (see, e.g., Figure 9).
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Figure 11. The true stress–strain curves of the grain interiors with the different strain
hardening exponents.
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(a)                                          (b)

(c)                                           (d)

Figure 12. Fracture in a notched-tensile specimen: (a) reaction force versus displacement for the
different strain hardening exponents; Contour maps in (b–d) show the von Mises stress in the grain
interiors associated with the different crack propagation paths for (b) n1 = 0.032, (c) n1 = 0.076 and
(d) n1 = 0.12, respectively.

As mentioned, the intergranular fracture properties depend on the hardening ability of the grain
interiors, the fracture toughness of Ti-5553 is estimated for the different strain hardening exponents.
Since the plastic zone near the crack initiation site is constrained geometrically to the near region of
grain boundary, the energy release rate G, which is valid in the small scale yielding, is adopted in this
study. According to Irwin’s crack closure integral, the released energy G for a crack propagates from
the length a to a + ∆a is identical to the energy required to close the crack of length ∆a. This idea has
been realized according to the virtual crack closure technique (VCCT) [35] as the following:

GI =
1

2B∆a

[
Fi

y(a)∆ui−1
y (a)

]
,

GI I =
1

2B∆a

[
Fi

x(a)∆ui−1
x (a)

]
,

(21)

where ∆a is the crack propagation length and B is the thickness of the crack surface. As depicted in
Figure 13, Fi

x(a) and Fi
y(a) are the nodal forces of node i at the crack-tip along x and y directions, ∆ui

x(a)
and ∆ui

y(a) are the relative nodal displacements corresponding to the crack sliding and opening of
the upper and lower crack surface at node i-1 along x and y directions, respectively. The total energy
release rate G is the sum of GI associated with the opening mode and GI I associated with the sliding
mode. This technique has been implemented into ABAQUS according to the user defined element
interface (UEL) [23] based on the algorithm introduced in Ref. [35].
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Figure 13. Illustration of the virtual crack closure technique (VCCT) through four nodal elements.

Since fracture toughness is generally determined at the onset of crack propagation under the plane
strain condition [36], the applied displacement corresponding to the crack length a = 0.02 mm is used
to determine the critical energy release rate Gc. At this moment, there is only one crack that propagates
for each n1. The procedure for calculating Gc is similar to that for the previous notch simulation,
and the only difference is that the user elements are pre-defined along the crack propagation path
according to the former numerical results. In order to examine the influence of the void shearing
mechanism on fracture toughness, two different values of q3 are considered to determine the released
energy as shown in Figure 14, where G = GI + GI I . Since GI I can be negligible compared with GI at
a = 0.02 mm, the stress intensity factor for the opening mode can be derived based on KI =

√
E′G and

E
′

= E/(1− ν2) for the plane strain condition. Assume that the Young’s modulus E = 120 GPa for the
polycrystal according to the macroscopic stress–strain response as shown in Figure 5, and the Poisson’s
ratio ν = 0.33, then the fracture toughness KIC = 60.7 MPa

√
m for q3 = 1.3 and n1 = 0.12 approximately.

This value is in agreement with the general fracture toughness found in the literature [1,37] for the
Ti-5553 alloy with lamellar structure. In Figure 14, the variation of critical energy release rate Gc as
a function of the hardening exponent n1 is plotted for two different values of q3. In both cases, an
increase of n1 associated with a decrease of the ratio σy

g/σy
α can result in the higher fracture toughness.

Meanwhile, the fracture toughness of Ti-5553 decreases with the increase of q3 at a given n1. Since the
modifications of the yield stress or the strain hardening behavior of the grain interiors can be controlled
by changing the size or the morphology of the intragranular α precipitate [37], the simulations indicate
that the heat treatment associated with the improvement of the strain hardening can be performed to
resist the intergranular fracture of the lamellar β alloys.
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Figure 14. The critical energy release rate Gc versus the strain hardening exponent n1 curves for two
different values of q3.
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In Figure 15, the effect of void shearing on the crack propagation process is conducted for the
hardening exponent n1 = 0.12, unlike the other two cases of n1 = 0.032 and 0.076, and only one
predominant crack propagates in this case during deformation. As shown in Figure 14a, the applied
displacement continuously increases with the crack length a, where the three points on each curve
correspond to those moments of the crack propagation as displayed in Figure 15b–d. The sharp point
on the curves indicates that the intergranular crack meets a triple point during propagation (see,
e.g., Figure 15d). The damage accumulation caused by void shearing along the crack propagation
path is shown in Figure 16. Depending on the stress field and the grain morphology, the damage
associated with q3 = 1.3 fluctuates significantly during crack propagation, and most of the peaks and
valleys are located at the triple points. As expected, the presence of the void shearing mechanism
strongly affects the intergranular crack propagation, and the increment of q3 promotes the process of
intergranular fracture.
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Figure 15. The crack propagation process in a notched-tensile specimen: (a) the applied displacement
versus the crack length a curves at n1 = 0.12. Contour plots in (b–d) show the moment corresponding
to the different crack lengths indicated in (a).
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Figure 16. The damage caused by void shearing along the crack propagation path for two different
values of q3.
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5. Conclusions

In this paper, the numerical simulations via the extended GTN model have been performed
to study the intergranular ductile crack propagation of the β titanium alloy with lamellar structure.
The individual phase properties of the grain boundary α phase layer and the hard grain interiors are
determined according to the RVE numerically. Besides void growth, the void shearing of the grain
boundary α phase can affect the macroscopic stress–strain response under both tension and shear
dominated loading conditions significantly. An increase of the material constant q3 associated with
the acceleration of void shearing promotes the intergranular crack propagation process; however,
the crack propagation path seems not to be influenced by changing q3 solely. The existence of void
shearing along the grain boundary α phase can be deleterious to the fracture toughness of the lamellar
Ti-5553 alloy. The higher strain hardening exponent or the lower ratio of σy

g/σy
α results in the higher

fracture toughness, and the crack propagation path can be affected by the hardening capacity of the
grain interiors obviously. For engineering applications, the computational framework in this study can
potentially be used as a guideline for the heat treatment process of the failure-resistant components
made from the β titanium alloys with lamellar structure.
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