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Abstract: Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix
were successfully fabricated by electrodeposition. For the first time, the disposition and thermal
conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of
the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy.
The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets
by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature
dependency of the G-peak shift has been also measured. Most remarkable is the global thermal
conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the
flash method. Our experimental results are accounted for by an effective medium approximation
(EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity
inside a copper matrix.

Keywords: graphite nanoplatelets; polarized Raman spectroscopy; anisotropy phonon thermal
conductivity; metal matrix composite coating (MMCC); thermal analysis

1. Introduction

Electronics have been the major growth sector in the world economy over the past two decades.
To sustain this growth, modern electronics need better cooling technologies to compensate their
increasing power densities, along with weight and size reductions [1]. Accordingly, low-dimensional
carbon structures have revealed truly exciting features for heat removal and thermal conductivity [2,3].
In the last few years, great efforts were invested to use the excellent mechanical and thermal
properties of nano-sized carbon materials, like carbon nanotubes (CNTs) [4,5], graphene [6,7]
or graphite nanoplatelets (GnPs) [8], and nano-diamonds [9,10] to refine a copper matrix [11,12].
In this regard, highly-ordered pyrolytic graphite (HOPG) is undoubtedly attractive for its excellent
anisotropic thermal properties, with an in-plane thermal conductivity of approximately of
2000 W·m−1·K−1 at room temperature [13–16], and low production cost. Due to the outstanding
thermal properties of graphite, high-purity nano-crystals have been recently used as fillers for
metal matrix composites (MMCs) to conduct heat efficiently [17–20]. However, the alignment
and dispersion of carbon nanofillers inside the metal matrix play the most relevant role for the
increase of heat conduction [21–28]. For MMCs, carbon nanofillers are usually difficult to disperse
uniformly within the metal matrices. In traditional powder metallurgy processes, several groups
showed that carbon nanoparticles have a strong tendency to agglomerate due to Van der Waals forces.
Zhang et al. [29] reported that GnPs strongly agglomerated in a Cu-matrix with 0.5 vol % of GnPs;
while Bartolucci et al. [30] reported that the MMC with 0.1 wt % of multi-layer graphene (MLG) in

Materials 2017, 10, 1226; doi:10.3390/ma10111226 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-4801-3022
http://dx.doi.org/10.3390/ma10111226
http://www.mdpi.com/journal/materials


Materials 2017, 10, 1226 2 of 13

an Al-matrix had a lower strength with respect to the pure Al counterpart due to agglomeration.
Nevertheless, in recent years many different processes have been developed to solve the agglomeration
problem, such as molecular-level mixing [31,32], electroless plating [29], or surface modification of
carbon fillers and Cu powder by polymers before mixing and sintering [33]. However, achieving
a high degree of alignment in a reproducible way remains challenging. Khaleghi et al. [34] used
strong magnetic fields to align copper-coated carbon nanotubes within a copper matrix. Compared
to unaligned samples, they obtained a thermal conductivity enhancement along the nanotube main
direction by a factor of four. Firkowska et al. [21] used the GnPs size to control the alignment and
thermal conductivity in copper matrix composites, showing that the alignment is inseparably linked
to the lateral size of the nanoplatelets. This relationship resulted in anisotropic thermal properties
of the composites, with a thermal conductivity along the flake alignment direction up to five times
higher than perpendicular to it. In this context, electrochemical processes allow the realization of
metal matrix composite coatings (MMCCs) with a better control of the alignment and inclination of the
nanofillers, combined with excellent dispersion. Such copper-matrix composites with highly-aligned
GnPs have great potential in directed heat dissipation applications, allowing an in-plane thermal
conductivity above pure copper. In this paper, we used the electrochemical method developed by
Antenucci et al. [35] to synthesize thin composite coatings with highly-aligned graphite nanoparticles.
For the first time, the carbon nanofillers inside the copper matrix and the entire composite structure
have been entirely characterized. In this way it was possible to refine a whole series of indispensable
characterizations to understand the present and future potentiality of the process. The orientation
and inclination of the nanoplatelets in the copper matrix were verified by polarized Raman scattering.
The room temperature thermal conductivity of 1244 ± 86 W·m−1·K−1 of the nanoparticles has been
measured by the dependence of the Raman G-peak frequency on the laser power excitation and
independently measured G-peak temperature coefficient. The resulting composite coating has a
superior thermal conductivity of 640 ± 20 W·m−1·K−1 evaluated by the flash method, which is in
excellent agreement with modeling based on the effective medium approximation (EMA).

2. Experimental

2.1. Sample Preparation

Graphite nanoplatelets obtained by exfoliation of expanded graphite, provided by NANESA
s.r.l. (Arezzo, Italy), were used to realize an electrochemical metal matrix composite coating (MMCC)
able to improve the thermal properties of aluminum substrates. 6082-Aluminum alloy samples have
been chosen as substrates for the electrodeposition process. The surface preparation was carried
out using a sandblasting machine to easily remove the oxide layer that is formed on the surface.
The electrodeposition process used is composed of three distinct phases [35,36]. During the first phase,
a thin copper layer is electroplated on the aluminum substrate to prepare the surface for the GnP
deposition, given the high electron affinity between the two materials. During the second phase the
GnPs and Cu are simultaneously electroplated. In this phase, the inclination of the nanoparticles can
be adjusted by controlling the growth of copper crystal. Due to the extreme volatility of GnPs, during
the third phase a thin copper layer is electroplated to trap the nanoparticles inside the coating. For the
entire electrodeposition process a copper sulphate solution, with water as the solvent, has been used
as an electrolytic bath. For the first and third phases, an acidic bath was used at room temperature,
consisting of 1.25 M CuSO4, 0.61 M H2SO4, and CuCl2 50 ppm. For the second phase an acidic solution
at 60 ◦C of 1.25 M CuSO4, CuCl2 50 ppm, and 0.33 g/L of high-purity GnPs was used instead. The baths
were kept in agitation using a magnetic agitator located within the electrolytic cell. The agitation was
set at 3 rpm. The electrodeposition process was carried out with a direct current of I = 3.33 A·dm−2.
The MMCC without the third phase was mechanically removed from the aluminum substrate and
observed by SEM (Zeiss LEO-Supra, Rome, Italy) and by Raman spectroscopy (Horiba LabRAM HR
Evolution, Haifa, Israel). As presented in Figure 1, particles have a rigid form with an average lateral



Materials 2017, 10, 1226 3 of 13

size of 15 µm in a range between 6 µm and 30 µm, and a thickness of about 8 nm. The crystalline
quality of the GnPs was evaluated by their Raman spectra. The morphology and dispersion of the
nanoscale fillers were verified by scanning electron microscopy (SEM). The crystalline structure of
the GnPs remained intact during composite synthesis as verified by the constant D-peak intensity in
Raman scattering. Tuinstra and Koening [37] were the first to study the disorder in graphitic samples
in their seminal paper. The ratio of the D-peak intensity to that of the G-peak varied inversely with La
(the average inter-defect distance). Thus, the lack of significant variations in the ratio between ID and
IG indicates that no further defects were induced in the crystal lattice after the process [21]. The ratio
between the D- (1360 cm−1) and the G-peak (1581 cm−1) was determined after the electrodeposition
process and compared to the as-received material. As shown in Figure 1c, the D/G intensity ratio
remains constant at 0.081, indicating that the electrochemical process does not induce further defects
in the crystal lattice.
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Figure 1. GnPs characterization: (a) SEM image of a single nanoplatelet of graphite; (b) particle size 
analysis of GnPs, as provided by the supplier; and (c) representative Raman spectra of GnPs before 
(blue line) and after (orange line) the electrodeposition process. 
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To analyze the influence of GnPs on the composite thermal properties, the degrees of their 
alignment, the inclination angle and their thermal conductivity have been determined. To perform 
these analyses, the last layer of copper, generally used to trap the particles inside the coating 
(preventing them from fleeing, due to weak bonds between carbon and copper atoms), was not 
realized. The quantitatively orientation of carbon nanofillers inside the composite can be efficiently 
evaluated by polarized Raman spectroscopy [37–41]. The Raman’s full range spectrum used to 
characterize the GnPs was between 1200 cm−1 and 3000 cm−1. In this way we could analyze all the 
main Raman peaks for the graphite (D, G, and 2D) and perform our characterizations. Raman 
spectroscopy was carried out on the MMCCs without outer copper coating using a monochromatic 
laser wavelength of 532 nm. The maximum power on the sample was set to 1.3 mW to prevent the 
damaging of the sample. A series of analysis was performed to optimize the laser power. All the 
Raman analysis were completed with samples having only one layer of copper and one layer of 
copper/GnPs. Thus, the nanoparticles were directly observable by Raman spectroscopy. The angle 
between the polarization direction and the sample was rotated with a λ/2 wave plate. The incoming 
light, as well as the backscattered light, was focused by a 50× objective, with a grating of 1800 gr·mm−1 
and a hole of 200. The polarization of the incoming and scattered light was chosen parallel to each other.  

To evaluate the heat conduction coefficient of a single GnP we used the Raman spectroscopy to 
correlate the phonon frequency shift with variations of laser power intensity and temperature [7]. 
The sample temperature was controlled by a cold-hot cell operated using a liquid nitrogen source. 
All measurements were carried out at low and constant laser excitation power to avoid overheating 

Figure 1. GnPs characterization: (a) SEM image of a single nanoplatelet of graphite; (b) particle size
analysis of GnPs, as provided by the supplier; and (c) representative Raman spectra of GnPs before
(blue line) and after (orange line) the electrodeposition process.

2.2. Measurements

To analyze the influence of GnPs on the composite thermal properties, the degrees of their
alignment, the inclination angle and their thermal conductivity have been determined. To perform
these analyses, the last layer of copper, generally used to trap the particles inside the coating
(preventing them from fleeing, due to weak bonds between carbon and copper atoms), was not realized.
The quantitatively orientation of carbon nanofillers inside the composite can be efficiently evaluated
by polarized Raman spectroscopy [37–41]. The Raman’s full range spectrum used to characterize the
GnPs was between 1200 cm−1 and 3000 cm−1. In this way we could analyze all the main Raman peaks
for the graphite (D, G, and 2D) and perform our characterizations. Raman spectroscopy was carried
out on the MMCCs without outer copper coating using a monochromatic laser wavelength of 532 nm.
The maximum power on the sample was set to 1.3 mW to prevent the damaging of the sample. A series
of analysis was performed to optimize the laser power. All the Raman analysis were completed with
samples having only one layer of copper and one layer of copper/GnPs. Thus, the nanoparticles were
directly observable by Raman spectroscopy. The angle between the polarization direction and the
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sample was rotated with a λ/2 wave plate. The incoming light, as well as the backscattered light, was
focused by a 50× objective, with a grating of 1800 gr·mm−1 and a hole of 200. The polarization of the
incoming and scattered light was chosen parallel to each other.

To evaluate the heat conduction coefficient of a single GnP we used the Raman spectroscopy
to correlate the phonon frequency shift with variations of laser power intensity and temperature [7].
The sample temperature was controlled by a cold-hot cell operated using a liquid nitrogen source.
All measurements were carried out at low and constant laser excitation power to avoid overheating and
complete burning of the nanoplatelets. The power on top of the cold-hot cell window was below 1.3 mW
and, therefore, much smaller on the sample surface. The power density on the cold-hot cell window
was measured using a Nova II OPHIR laser power meter (Haifa, Israel). The estimated accuracy of
the cell temperature control was ±0.1 ◦C. The amount of the thermal power

.
Q absorbed by a single

graphite nanoplatelet was evaluated through the calibration procedure with HOPG, considering the
reduced number of layers, absorption coefficient, scattering cross-section, and a calibration factor [42].
When the Raman laser beam is focused on the calibration HOPG sample, the measured power is
.

QD ≈ I0 A, where A is the illuminated area and I0 is the laser intensity on the surface. The scattered
intensity from the HOPG sample can be obtained by summation over all n layers:

∆IHOPG = NI0σHOPG ∑∞
n=1 exp(−2αHOPGaHOPGn)

≈ NI0σHOPG(exp (2αHOPGaHOPG)− 1)−1 (1)

where σHOPG and αHOPG are the scattering cross-section and absorption coefficient for HOPG with the
monolayer of thickness aHOPG. The latter can be reduced to:

∆IHOPG ≈ 1/2(N/A)(σHOPG/αHOPGaHOPG)
.

QD (2)

where N/A is the surface number density of the scattering atoms. Considering a single GnP, the power
absorbed is given by:

.
Q ≈ I0 A exp(−αGnPaGnPn) ≈ I0 A (3)

where αGnP, aGnP are, respectively, the absorption coefficient and monolayer thickness of a single
nanoplatelet. Thus, the Raman intensity can be related to the absorbed power as:

∆IGnP ≈ 1/2 (N/A) (σGnP/αGnPaGnP)
.

QD (4)

where σGnP is the scattering cross-section of the single nanoplatelet. Once defined, the ratio of the
integrated intensities is ς = ∆IGnP/∆IHOPG, and the power absorbed in a graphite nanoparticle
through the power measured by the detector can be expressed as:

.
QGnP = ς(σHOPGαGnPaGnP/σGnPαHOPGaHOPG)

.
QD (5)

The term in the brackets is very close to unity because it consists of the ratios of the in-plane
microscopic material parameters for essentially the same material. The value of ς has been determined
experimentally and it completes the calibration. For several examined samples, we found ς to be in the
range between 0.97 and 0.99. The value obtained mainly depended on the fact that the thickness of
the GnPs used is large enough to let the nanoparticles show the same response of the material that
generates them. The distribution of power between the GnPs and the copper matrix may depend on
the conditions of the experiment and was checked for each experimental run.

The light flash method was used to measure thermal diffusivity (α) with an IPG-DRL200 laser.
The power used was 20 W for a time of 0.05 s. The through-plane diffusivity was measured on the
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rear face of the same sample, according the Parker’s law [43], using a high-precision thermo-camera
(Flir-A655SC) equipped with a 24.5 mm lens. The thermal conductivity k was calculated from:

k = αρcp (6)

with cp being the specific heat obtained by rule of mixture and ρ bulk density of the sample.

3. Results and Discussion

3.1. GnPs Alignment and Inclination

All GnPs spectra were excited with visible (532 nm) laser light and collected in the backscattering
configuration. To study the disposition of the nanofillers, it was used a polarized laser beam in
‘VV’ configuration, where the polarization direction of the incident light is parallel to the scattered
light. For a single GnP, Raman scattering is allowed for an in-plane polarization, but forbidden
in the perpendicular polarization direction [44]. This means that the G-peak normalized intensity
will have a maximum when the polarization is parallel to the crystal lattice and a minimum when
the polarization is perpendicular to it [45,46]. The intensity of the Raman active modes can be
calculated using the selection rules for light scattering in crystals [44,47]. During the evaluation
of a carbon crystal alignment by polarized laser beam, we can have an in-plane configuration or
an out-of-plane configuration. As shown in Figure 2a, when the laser incidence is not normal, but
oblique with the crystal lattice, the electric field vector of the incident light can be fully contained
into a graphene plane (in-plane configuration), or it can make an angle θ (out-of-plane configuration),
depending on the polarization direction of the incident light [45]. Considering ε as the specimen
rotation angle with respect to the polarization direction, for perfectly aligned GnPs (i.e., γ1 = γ2 = 0,
respectively, the rotation angles of the x- and z-axis) the G-peak intensity has a maximum for the
in-plane polarization (ε = 0, π, and 2π), while it is zero for ε = π/2, 3π/2. In our Raman experimental
set-up presented in Figure 2b, the in-plane GnPs direction inside the matrix is oriented within the
x-z-plane whereas the polarization is varied in the x-y-plane.
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Figure 2. Schematic diagram of the polarization configurations and set up in our polarized Raman
spectroscopy. (a) The inset shows the two configurations for an oblique laser incidence on a GnP plane
(θ 6= 0) depending on the polarization direction of the incident light; and (b) the measurement setup
for polarized Raman spectroscopy in ‘VV’ configuration.

The normalized Raman intensity of the G-peak measured in the out-of-plane configuration,
with respect to that in the in-plane configuration, was analyzed as a function of the angle θ. In the
‘VV’ configuration, the polarized Raman scattering on a single isolated GnP exhibits approximately
cos2θ-dependence in which θ is the angle between the GnP basal plane and the polarization direction
of the incident light. Thus, the G-peak normalized Raman intensity measured in out-of-plane
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configuration with respect to that measured in in-plane configuration Io(θ)
Ii(θ)

(G) were supposed to exhibit

a C1cos2θ + C2 trend, where C1 and C2 are constants such that C1 + C2 = 1 [48,49]. A similar relationship
was used by Gupta et al. [50] for the intensity variation of the D-band with laser polarization angle
relative to the edge of a graphene flake to consider non-uniformity of the edge. Fixed the polarization
configuration, spectra were obtained with different rotations of polarization angle in steps of 5◦,
with the laser beam parallel to the z-axis. Experimental data of the GnPs’ inclination inside the coating,
as shown in Figure 3, agreed quite well with cos2θ-dependence (orange line) as expected.

For a single graphite nanoplatelet with a certain orientation in the matrix the inclination angle
can then be calculated, considering:

θ ∝ arccos

√
Imin
IMax TOTG−Peak

(7)
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Figure 3. Quantitative determination of the spatial orientation of GnPs by polarized Raman
spectroscopy. All Raman spectra were reduced at the same level in order to avoid any shifting
and variations of the peaks due to excessive brightness of the copper surface, making comparison
easier. (a) Intensity attenuation of the G-peak in ‘VV’ polarization configuration for a single graphite
nanoplatelet; and (b) the comparison between actual data (blue line) and cos2θ-dependence fitting
curve, with C1 = 0.833 and C2 = 0.167. The spectra are excited at 532 nm and recorded at room
temperature in the ‘VV’ polarization configuration.

An average inclination of 66.3◦ ± 4.2◦ has been obtained for the GnPs inside the copper
matrix. To determine the average statistical alignment of GnPs many different spectra were obtained
rotating the polarization angle in steps of 15◦, using a laser beam parallel to the z-direction. Since
the nanoparticles have an average inclination of almost 66◦ in the out-of-plane configuration, the
normalized intensity of the G-peak (at different polarization angles) can’t be uniform in the x-y-plane.
This allows a maximum only for a polarization angle parallel to the GnP in-plane direction (ε IG−Max ).
Thus, a perfectly-aligned GnP (γ1 = γ2 = 0) has a maximum G-peak intensity only for equal polarization
angle pairs. Once identified, a preferential orientation of the particles, and given to this the arbitrary
value of E = 0◦ the GnPs alignment within the copper matrix can be easily determined. For each GnP
analyzed, we evaluated the deviation of ε IG−Max from the main direction individuated by polarized
Raman spectroscopy (E). A standard deviation of ±4.16◦ of the ε IG−Max from the in-plane preferred
direction has been measured. Intensity variation due to crystal lattice defects and rough surfaces
have also been considered. The inclination and preferred orientation direction of the GnPs within
the copper matrix observed by SEM (Figure 4) and polarized Raman spectroscopy clearly influences
the anisotropic thermal properties of the composite. Subsequently, the thermal conductivity of the
nanoparticles (kGnP) was measured.
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Figure 4. (a) SEM image of the disposition of a single GnP on the copper layer after the second
electrodeposition phase; and (b) a HRTEM micrograph of a single GnP cross-plane section.

3.2. GnPs’ Thermal Conductivity

In carbon materials heat conduction is usually dominated by acoustic phonons, which are ion-core
vibrations in a crystal lattice. This behavior is explained by the strong covalent sp2 bonding resulting
in an efficient heat transfer by lattice vibrations [13,15,16]. For this reason, the heat conduction
coefficient can be effectively determined by Raman spectroscopy correlating the phonon frequency
shift with variations of laser power intensity and temperature [7]. For reasonable laser power levels,
the change of phonon frequency with temperature is a manifestation of anharmonic terms in the
lattice potential energy, determined by the anharmonic potential constants, the phonon occupation
number, and the thermal expansion of the crystal [51]. Since the single GnP has a shorter crystal
planar domain size where exist defects, it will absorb laser energy and expand easily because of
its lower thermal conductivity. Consequently, the single nanoparticle shows a strong temperature
dependence, also thanks to the extremely small cross-section area of the heat conduction channel due
to a thickness of h = 8 ± 0.1 nm. The heat conduction through a surface with the cross-sectional area S
can be evaluated from the following equation:

δQ/δt = −kGnP

∮
∇T ·dS (8)

where Q is the total heat transferred over the time t and T is the absolute temperature. For a single
GnP, with planar dimensions comparable to the laser spot size light, the heat propagation through
the nano-platelet can be approximated to a plane-wave heat front. In this case, the heat generated by
the laser within the thin GnP can escape through a cross-sectional area S = W × h, where W is the
average particle width. Considering a uniform planar heat flow, the thermal conductivity equation can
be determined by the equation:

kGnP = L/2S·∆
.

Q/∆T (9)

where L is the distance from the middle of the GnP plane to the edge of the particle, and ∆T is the
local temperature rise due to the changing heating power ∆

.
Q. Since the excitation power levels are

relatively low, the G-peak position linearly depends on the sample temperature by the equation:

ω = ω0 + χGT (10)

where ω0 is the frequency of the G-peak when temperature T is extrapolated to 0 K and χG is the
first-order temperature coefficient, which defines the slope of the dependence.

The final expression for the thermal conductivity in the planar heat wave case can be written as:

kGnP = (L/2hW)·χG·(δ
.

Q/δω) (11)
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where δω is a small shift in the G-peak position due to the variation δ
.

Q in the heating power on the
sample surface. An average value of 4.48 ± 0.12 has been extracted for the ratio L/W by SEM and
HRTEM morphology analysis. Several measurements varying the sample temperature have been
carried out to evaluate the temperature dependence of the G-peak position. The sample temperature
was controlled by a cold-hot cell operated using a liquid nitrogen source. The investigation was carried
out at low and constant laser excitation power, completely avoiding the overheating and burn of the
nanoplatelets. As shown in Figure 5, for a nano-graphite platelet the increasing temperature leads
to the red shift of the G peak. The temperature range used to evaluate the G-peak shift was from
T = −150 ◦C to T = 120 ◦C. The general trend can be clearly estimated over the examined temperature
range. Some data dispersion for the G-peak shift can be mainly attributed to: drifts of the laser spot on
the GnP surface due to thermal expansion of the metal matrix during the sample temperature change,
high sensitivity of the G-peak to the number of graphene layers, and to the presence of defects [52].
The measurements were repeated several times on different GnPs to verify the reproducibility.

The value obtained for the GnP temperature coefficient was χG = −(5.3± 0.28)× 103 cm−1·K−1

while the extrapolated value of ω0 corresponded to a frequency of 1581.4 cm−1. The laser low excitation
power, together with the independent temperature external control, have allowed a much higher
accuracy in measurements of the temperature coefficient. After determining the G-peak frequency shift
due to temperature variations, the excitation power dependence of the Raman G peak was measured.
The excitation power at the GnP sample location was determined by a power meter. To preserve the
accuracy of our method, we measured the power at the sample position and not at the laser output
to avoid any losses in the spectrometer. The power measured by the detector can be split into two
terms:

.
QD =

.
QGnP +

.
QCu, where

.
QGnP is the power dissipated within the nanoparticle while

.
QCu is

the power lost in the matrix. For cuprous oxide, there are twelve optical phonon branches theoretically
expected in the Raman spectrum, and three of them are Raman active. In measured Raman spectra
from copper thin films, three peaks are usually observed. They are identified as the first order phonon
scattering (298, 346, and 632 cm−1), and assigned to Ag and 2Bg CuO phonon peaks [53]. Since the
dimensions of the laser spot and the single GnP were of the same order of magnitude, we monitored
the spectral region between 200 cm−1 and 700 cm−1 at different power levels to confirm that the Cu2O
and CuO layers close to the nanoparticle were not strongly heated during the measurement. No one
shift was appreciated. Therefore, the power absorbed by the single GnP was directly dependent by the
one measured with the power meter. The power absorption of the single nanoplatelet can be extracted
by the power absorption of the bulk HOPG considering the reduced number of layers, absorption
coefficient, and scattering cross-section, and a calibration factor [42] (see Measurements). As clearly
shown in Figure 6, the increase in the laser power excitation led to the increase in the intensity count
and redshift of the G mode peak.
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The average value of δω/δ
.

QGnP ≈ −2.73 cm−1·mW−1 was finally obtained. Substituting the
values extracted for the temperature coefficient (χG) and the excitation power dependence of the

Raman G peak (δω/δ
.

QGnP) in Equation (11), we obtain the average thermal conductivity value of
kGnP = 1244± 86 W·m−1·K−1 for the entire set of GnPs analyzed. The thermal conductivity value
obtained is in line with those available in literature for high purity graphite nano-crystals having a
number of layer n > 8 [13].

3.3. MMCC Thermal Conductivity

Subsequently, the measurements of the thermal diffusivity (α) were carried out by the laser flash
technique. For all the MMCC’s samples the diffusivity was measured in the through-plane direction,
to evaluate the enhancement given by the nanoplatelets’ disposition. As a reference, the thermal
diffusivity of a coating made of pure copper (αCu ≈ 122 mm2·s−1) was evaluated. The average
value obtained for the MMCC was αGnP ≈ 192 mm2·s−1, which is surprising for the GnP volume
fraction ( f ) approximately of 27%. The bulk density of the composite materials was determined by
Archimedes’ principle, and is used to calculate the thermal conductivities (see Measurements) that
consequently follow the same trend as the thermal diffusivities of the composites. The through-plane
heat thermal conduction (HTC) obtained for the MMCC was of 640 ± 20 W·m−1·K−1, while the one
obtained for the pure copper coating was of 400 ± 21 W·m−1·K−1 Despite other methods where
adding highly-conductive carbon nanomaterials the thermal conduction decreased, the use of an
electrochemically-controlled method has allowed an improvement of k up to 57% compared to
pure copper.

3.4. Effective Medium Approximation Model

To understand the mechanism behind the thermal conductivity enhancement, we used the model
developed by Nan et al. [54] within the effective medium approximation. It describes the effect of
geometry, concentration, thermal conductivity, and orientation of the filling material, as well as the
thermal interface resistance between the matrix and filler on the heat conduction improvement of the
composite. Considering a single GnP as an ellipsoidal oblate inclusion in the metal matrix, the effective
thermal conductivity of the composite with equi-sized particles, with respect to its symmetry axes,
is given by:

k11 = k22

= km
2+ f [β11(1−L11)(1+〈cos 2θ〉)+β33(1−L33)(1−〈cos 2θ〉)]

2− f [β11L11(1+〈cos 2θ〉)+β33L33(1−〈cos 2θ〉)]
(12)



Materials 2017, 10, 1226 10 of 13

and:

k33 = km
1 + f [β11(1− L11)(1− 〈cos 2θ〉) + β33(1− L33)〈cos 2θ〉]

1− f [β11L11(1− 〈cos 2θ〉) + β33L33〈cos 2θ〉]
(13)

with:
βii =

kii − km

km + Lii(kii − km)
(14)

and:

〈cos 2θ〉 =
∫

ρ(θ) cos2 θ sin θdθ∫
ρ(θ) sin θdθ

(15)

where θ is the angle between the materials axis Z and the local particle symmetric axis Z′, ρ(θ)

is a distribution function describing ellipsoidal particle orientation, kii and km are, respectively,
the thermal conduction of the particle and of the matrix, and Lii are geometrical factors dependent
upon the particle shape. To calculate k11 and k33 we used the values measured by Raman spectroscopy
and the laser flash technique, widely explained above, with kGnP11 = kGnP22 = 1244 W·m−1·K−1,
kGnP33 = 15 W·m−1·K−1, and km = 400 W·m−1·K−1. In order to match the experimental data, the
Kapitza resistance has been neglected. This indicates that the Kapitza resistance is not a limiting
factor for a high thermal conductivity of a copper-GnP composite, since the total thermal resistance is
not dominated by the Kapitza resistance. The EMA calculations are in excellent agreement with the
experimental observations (Figure 7).Materials 2017, 10, 1226 10 of 13 
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Figure 7. Calculated in-plane thermal conductivity enhancement for GnP-MMCC by the EMA model
depending on the filler volume fraction in comparison with the experimental data obtained by the
flash method.

This shows that the alignment and inclination of the fillers is the major factor for the high
through-plane thermal conductivity obtained. Additional improvements can be done increasing
the inclination of the nanoparticles, together with a further increase of the lateral size of GnP and
the inclusion of fillers with higher intrinsic thermal properties, like graphene sheets (GS) with
kGS ≈ 2000–5000 W·m−1·K−1.
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4. Conclusions

We characterized, for the first time, the thermal conductivity of the composite coating starting
from the nanofillers. We proposed a simple approach to evaluate the inclination, the alignment and
anisotropic phonon thermal conductivity of the nanoparticles inside the copper matrix by Raman
spectroscopy. Moreover, the thermal conductivity of the composite coating has been measured by the
flash method. Through the EMA-model we correlated the nanoparticle properties to the metal matrix,
and the global experimental results obtained for the heat conduction of the coating. Our experimental
results, together with the EMA modulations, suggest that a further increase of the GnP lateral size,
with an improvement of the nanoparticle’s inclination, may result in a higher thermal conductivity,
far superior than the one of pure copper. The MMCC developed, with very high thermal conductivity,
have great potential for high power density heat spreading applications.
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