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Abstract: Producing predictions of the probabilistic risks of operating materials for given lengths of 
time at stated operating conditions requires the assimilation of existing deterministic creep life 
prediction models (that only predict the average failure time) with statistical models that capture 
the random component of creep. To date, these approaches have rarely been combined to achieve 
this objective. The first half of this paper therefore provides a summary review of some statistical 
models to help bridge the gap between these two approaches. The second half of the paper 
illustrates one possible assimilation using 1Cr1Mo-0.25V steel. The Wilshire equation for creep life 
prediction is integrated into a discrete hazard based statistical model—the former being chosen 
because of its novelty and proven capability in accurately predicting average failure times and the 
latter being chosen because of its flexibility in modelling the failure time distribution. Using this 
model it was found that, for example, if this material had been in operation for around 15 years at 
823 K and 130 MPa, the chances of failure in the next year is around 35%. However, if this material 
had been in operation for around 25 years, the chance of failure in the next year rises dramatically 
to around 80%. 

Keywords: creep; Wilshire equation; deterministic and random components; parametric and  
non-parametric statistical models; discrete hazard based models 

 

1. Introduction 

The prediction of long-term creep properties from short timescale experiments is rated as the 
most important challenge to the UK Energy Sector in a recent UK Energy Materials Review [1]. Creep 
strain (ε) is a function not only of stress (τ) and absolute temperature (T), but also of time (t) 

ε = f1(τ, T, t) (1a) 

After an initial strain on loading, a decaying creep rate ( ) during the primary stage of creep is 
followed by an accelerating strain during the tertiary stage. A minimum creep rate ( ) occurs at the 
boundary of these two stages. As such, Equation (1a) is often represented in differential form 

 = f2(τ, T, t) (1b) 

When it comes to extrapolating from short term accelerated test data, three very broad 
approaches can be identified. Whole creep curve methods work by relating the whole creep curve to 
the test conditions under which that creep curve was obtained. A single creep curve at steady uniaxial 
stress τ and absolute temperature T can be modelled using a general functional form 

)Ψ,....,Ψ,....,Ψ,Ψ,η( 21 qjtε   (2a) 
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where η is some non-linear function and the Ψj are numerical parameters. At any one test condition, 
the Ψj parameters are constant, but they do vary systematically with the test conditions. It is this fact 
that enables creep curve predictions to be made  

)b,....,b,...,b,b,(g ,,2,1 pjjj,jjj τ,T k  (2b) 

where gj are non-linear functions, and bj,k are additional numerical parameters that can be estimated 
using a suitable estimation technique. However, the form of the η and gj functions are not known and 
consequently the literature contains many representations of these including, for example, the Theta 
methodology proposed by Evans and Wilshire [2]  

)1(e)e(1ε 42
31   tt  (3a) 

with  

τTT jjjjj 4,3,2,1, bbb1,bΨ    (3b) 

Whilst Evans [3] derived Equation (3a) from creep deformation mechanism theory, the all 
important extrapolation function given by Equation (3b) is mainly empirical in nature. There are 
many other approaches in the literature including those by McVetty [4], Garofalo [5], Ion et al. [6], 
Prager [7], Othman and Hayhurst [8], Kachanov [9] and Rabotnov [10]. 

Secondly, parametric techniques work by relating a measured point on the creep curve to the 
test conditions under which that measurement was made. This point is typically the minimum creep 
rate or the time to rupture. Around the minimum creep rate there remains a considerable period of 
time where  remains more or less constant, so that Equation (1b) reduces to  

 = f3(τ, T) (4a) 

with, following Monkman and Grant [11],  

1/t ∝  (4b) 

where here t represent the time at which failure occur. Because the functional form of f3 is not known 
the literature again contains many different representations of Equations (4a) and (4b). For example, 
Dorn [12] and Larson and Miller [13], both assumed that at a constant stress 







T
εm *

c
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 exp C  (5a) 

where Qc is the activation energy in J/mol. These two approaches then diverge with the incorporation 
of stress with Dorn suggesting the parameter C0 varies with stress, whilst the Larson and Miller 
model has Qc varying with stress—but in both cases the form of the stress function was empirically 
specified (typically involving the use of polynomials in stress or the log of stress).  

The literature contains many other variations including Manson and Haferd [14], Manson and 
Muraldihan [15], Manson and Brown [16] and Trunin et al. [17]. Unfortunately, all these parametric 
models suffer from parameter instability with respect to stress and temperature making reliable long 
term life predictions from accelerated short term testing impossible—as empirically illustrated by 
Abdallah et al. [18]. These empirical models are now quite old and, despite their known short 
comings, are still extensively used for safe life estimation. The hyperbolic tangent method [19] and 
the Wilshire Equation [20] can be seen as the most recent types of parametric model, with the later 
having the form 

  
R

1000
Qbb ln[t] c

*
10 T
τ   (5b) 

where R is the universal gas constant, τ* = ln(−ln(τ/τTS)) with τTS being the tensile strength. Unlike the 
above models, a raft of recent publications [21–26] on a wide range of high temperature materials 
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have demonstrated the parameters of this model (b0, b1, and Qc) are stable and so reliable long term 
predictions have been made from this model using short term data of no more than 5000 h duration. 

Finally, there are computational/numerical approaches that often incorporate detailed 
deformation mechanism into finite element code to obtain creep property predictions. Many of these 
numerical models are based on remaining life assessment with abridged accelerated testing. In some 
of these approaches, for example [27,28], uniaxial test specimens are cut from removed components 
that have been in service for over a long time (typically over 100,000 h) and re-tested under laboratory 
conditions for short times until failure occurs by accelerating the temperatures (but using the in 
service stress). Such testing yields the remaining life or useable residual life (around 60% of remaining 
life). The above parametric models are then used to predict/extrapolate these residual lives to 
operating temperatures. Often numerical models are used to extrapolate such abridged short-term 
testing. An alternative to this destructive approach is the non-destructive disc test, where small discs 
are taken from in service components without destroying their integrity. Again numerical models 
can be built for this disc test, e.g., Evans [29] or parametric procedures can be used for extrapolative 
purposes.  

What all the above studies have in common however is that they are all deterministic in nature. 
As the level of stress increases the time to failure diminishes and the primary component of the creep 
curve becomes less pronounced. These variations in creep properties are governed by (as yet not fully 
understood) physical laws that can be used to determine creep properties at any test condition. These 
physical laws are embedded into the above mechanistic models that can then be used to explain 
variations in creep properties as a function of test conditions alone. 

However, creep is not just a deterministic process that is predetermined by physical laws. It is 
also a random process. If the time function, f1, could be quantified, it could then be used to predict 
the strain at any time. Unfortunately, the nature of creep is such that this function could not then be 
used to predict the strain for another specimen tested under exactly the same conditions. This random 
component of creep is in turn very large. For example, in the NIMS [30] 1Cr-1Mo-0.25V steel database 
used in this paper, the time to failure at 773 K and 373 MPa varies between the limits of 125 h and 
1360 h depending on the batch. A lot of the random variation seen in creep databases of this nature 
are down to variations in chemical composition and heat treatments experienced by the different 
batches of the test material. However, even when such factors are removed, failure times are still 
highly stochastic in nature. This was illustrated by Evans [31], who tested 15 specimens of Ti-6.2.4.6 
at different temperatures and stresses. These test specimens were all cut from the same batch and 
tested within the same laboratory on the same make of calibrated uniaxial test apparatus. The results 
are reproduced in Figure 1 where it can be seen that the random variation is great enough to 
encompass variations induced by changes in stress. 

This random component of creep is not just important because it is large in size, but also because 
if predictions are to be made for more than just the average time at failure, then this random 
component must be modelled with the same degree of vigour as displayed by all the above 
deterministic models. However, they are not. We can summarise the above as stating creep life has 
both a deterministic and a random component 

 = f3(τ, T)ef4(u) (6) 

where u is the random component and f4 is some function that describes how the random component 
is distributed. 

The first aim of this paper is to address this shortcoming by providing a detailed, although by 
no means complete (as this is a very large subject area), review of statistical failure time models that 
describe different ways that f4(u) can be specified, so as to provide materials scientists with a 
framework for further developing their deterministic creep models, such as the Wilshire Equation, 
so that they become cable of providing predictions that have levels of confidence attached to them. It 
should be noted that these statistical models say nothing about the deterministic models reviewed 
above and do not imply that one model is any better at prediction than another. However, when a 
model of the random component is combined with the above deterministic components, they become 
more capable of predicting both the systematic variation with test conditions and the observed 
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random variation at each test condition. Without this, the deterministic models can do no more than 
accurately predict the average safe life and not the safe life corresponding to say a 1% chance of 
failure. This review is provided in Section 3 of this paper and where appropriate illustrated using 
data on 1Cr-1Mo-0.25V steel. 

 
Figure 1. Uniaxial creep curves at 773 K for Ti-6.2.4.6 (including the band of creep curves obtained at 
a repeat stress of 580 MPa bounded by the maximum and minimum rupture times). 

The second aim of this paper is to illustrate one of the many ways that these deterministic and 
random component models can be combined. It is impossible in one paper to do an illustration for 
all of the above deterministic models reviewed above, and so the Wilshire model is selected for this 
purpose. This approach is selected because it has been shown to outperform the others in terms of 
accurately predicting the average time to failure beyond 100,000 h using very short term data (less 
than 5000 h). The Wilshire equation is combined with a discrete hazard based model for the random 
component. A hazard based model was chosen because it offers extra flexibility on distributional 
shape and form compared to other approaches as discussed in the review section below. Further, a 
discrete version of the hazard function is used because it helps empirically quantify the form of the 
hazard function (and because it has never been used within the context of creep failure before—
whereas other approaches have [32]). 

The review and illustration of combining deterministic and random creep models illustrated 
using the NIMS database on 1Cr-1Mo-0.25V steel [30]. This is carried out in Section 4, and conclusions 
are then drawn in Section 5. 

2. The Data 

This present study features forged 1Cr-1Mo-0.25V steel for turbine rotors and shafts. For 
multiple batches of this bainitic product, both the creep and creep fracture properties have been 
documented comprehensively by the National Institute for Materials Science (NIMS), Japan [30]. 
NIMS creep data sheet No. 9B includes information on nine batches of as tempered 1Cr-1Mo-0.25V 
steel. Each batch of material had both a different chemical composition and a different thermal and 
processing history—details of which can be found in creep data sheet No. 9B. Specimens for the 
tensile and creep rupture tests were taken radially from the ring shaped samples which were 
removed from the turbine rotors. Each test specimen had a diameter of 10 mm with a gauge length 
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of 50 mm. These specimens were tested at constant load over a wide range of conditions: 47–333 MPa 
and 723–923 K. In addition to failure time (t) measurements, values of the 0.2% proof stress (τY) and 
the ultimate tensile strength (τTS) determined from high strain rate (~10−3 s−1) tensile tests carried out 
at the creep temperatures for each batch of steel investigated were also reported.  

The review section below (Section 3) is illustrated using all batches of data, whilst the discrete 
hazard based model outlined in Section 4 is illustrated using only a single batch of materials from 
this database—VaA. 

3. Illustrated Review of Approaches to Modelling the Stochastic Nature of Creep Failure  

3.1. A Statistical Description of Continuous Failure at Fixed Test Conditions 

Due to batch to batch variations in chemistry and heat treatment and within batch variations in 
microstructure, creep failure times for a high temperature material (or indeed any given material), 
even under fixed test conditions, are stochastic in nature. Therefor such failure times need to be 
described through a random variable T. In reality, T can take on a large and continuous number of 
different values at a given test condition, t1, t2, …, tn, with 0 ≤ t1 ≤ t2 ≤ … ≤ tn. As such it cannot be 
known with certainty when failure will occur and so failure must be expressed using the survivor 
function which gives the probability of surviving beyond a certain length of time, S(t) 

  )S(Pr ttT   (7a) 

The probability of failing at or before a given length of time is then given by F(t) = 1 − S(t).  
The probability of failure in a very small increment of time, ∆t, is then f(t) = ∆F(t)/∆t. F(t) is often 
referred to as the cumulative distribution function (cdf) and its derivative, f(t), the probability density 
function (pdf). 

The probability of failure can also be expressed through the hazard function. This function gives 
the rate of failure at time t, given the specimen survives up to time t 

 
t

tt|TtTt
t

t Δ

ΔPr
lim)(h

0Δ





 (7b) 

where |T ≥ t reads given that T is greater than or equal to t. As such, the hazard rate is a conditional 
probability of failure. A conditional probability is defined as P(A|B) = P(A and B)/P(B), where in 
terms of the hazard rate event B is the probability of surviving a length of time t and so equals S(t). 
Event A and B would then be the probability of failing in the small increment of time ∆t beyond t, 
which is the pdf at time t. Thus 
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 (7c) 

If follows from these definitions that the hazard function can also be found from the survivor 
function using 

t

t
t

d

)]dln[S(
)h(


  (7d) 

and the cumulative (or integral) hazard function is given by 

)]ln[S()dh()Λ(
0

tttt
t

   (7e) 

Approaches to estimating the survivor function generally fall under three headings: parametric, 
non-parametric and semi-parametric. The assumption behind the parametric approach is that the 
form of the survivor function can be captured through a small number of parameters. For example, 
if failure times at a fixed test condition are normally distributed, then the survivor function is fully 
defined through two parameters—the mean and the standard deviation. In contrast, the non-
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parametric approach is model (parameter) free and as such makes no assumptions about how failure 
times are distributed. The semi-parametric approach combines these two approaches, for example, 
by specifying a base line hazard function at a particular test condition non-parametrically and then 
using a few parameters to model how this baseline function changes with the test conditions. 

3.1.1. Non-Parametric Estimation 

The starting point for many non-parametric techniques is to partition time into j = 1 to k equal 
intervals, with k being as large as practically possible. If n equals the number of specimens placed on 
test at the same test condition and dj the number of specimens failing during the kth interval, then 
Kaplan and Meier [33] proposed the following estimator of the survivor function (for uncensored 
data) that has as its basis the binomial distribution 

n

d

n

t
tS

k

j
j

i
ikm


 11

   time toup failures ofNumber 
1)(ˆ  

(8a) 

where dj is the number of failures in time interval j. This estimator is also referred to as the product-
limit estimator as originally these authors justified this estimator based on its properties when k 
tended to infinity or as the time interval tended to zero.  

Nelson [34] and Aalen [35] proposed the following non-parametric estimator of the cumulative 
hazard function 





k

j j

j
i r

d
t

1

)(ˆ  (8b) 

where rj is the total number of specimens at risk (or not yet failed) just prior to time ti. The Fleming-
Harrington [36] estimator of the survivor function is, from Equations (7e) and (8b), 

))(ˆexp()(ˆ
iifh ttS   (8c) 

The above are of course estimates (designated by the hat symbol) of the survivor function 
computed in the above ways, but from a population or very large sample. The standard deviation of 
the above estimators provides a way to quantify the possible size of the difference between the true 
or population survivor function—S(t)—and that calculated from a small sample or a randomly 
selected sub set of the population. The standard deviation of these estimators are in turn estimated 
by 
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In large samples, these estimates are unbiased and the Nelson Aalen estimator is then also 
approximately normally distributed. 

As an illustration, Figure 2 compares these non-parametric estimators of the survivor function 
for the 1Cr-1Mo-0.25V specimens in the NIMS dataset tested at 823 K and 294 MPa. At low times to 
failure the above two estimators provide very similar values for the survivor function, but these 
estimators start to diverge at around 250 h—with the Fleming-Harrington estimator exceeding the 
Kaplan-Meier estimator. The Nelson-Aalen estimator of the cumulative hazard function is shown on 
the right hand side vertical axis. The errors bars associated with the estimated cumulative hazard 
function, which are made equal to one standard deviation, are also shown. As can be seen, the 
standard error increases quite dramatically with the time to failure, making the estimates at high 
survival probabilities quite unreliable in a sample this small. 
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Figure 2. Various non-parametric and parametric estimates of the survivor and hazard functions for 
batches of 1Cr-1Mo-0.25V steel tested at 823 K and 294 MPa. 

3.1.2. Parametric Estimation 

Any distribution defined for t ∈ (0, ∞) can be used to specify parametric survivor and hazard 
rate functions. A good transformation for visualising many commonly used parametric distributions 
is the log transformation of failure time, Y = ln(T), with y ∈ (−∞, ∞). Then, a whole family of 
distributions for Y opens up by introducing location (via parameter μ) and scale (via parameter b) 
changes of the form 

ln(T) = Y = μ + bZ (9a) 

where, like T and Y, Z is a random (but standardised) variable, z ∈ (−∞, ∞). To prevent the occurrence 
of a degenerate distribution for large values of k1 and/or k2, the following re-parameterisation is used 

ln(T) = Y = μ + (b/δ)W = μ + σW (9b) 

where )( δ 2121 k/(kkk  , σ = b/δ and where W is therefore another standardised random variable 
defined as W = δZ. 

By specifying a very general distribution for Z, it is possible to identify many of the familiar 
failure time distributions used in failure time analysis. Prentice [37] and Kalbfleisch and Prentice [38] 
for example defined the probability density function for Z as 
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where Z is said to be distributed as the logarithm of an F random variable with 2k1 and 2k2 degrees of 
freedom. T is described as following a four parameter generalised F distribution, T ~ GENF(μ, σ, k1, k2). 
Г(k) is the gamma function at k. The Appendix A to this paper also shows that the pdf of this 
generalised gamma distribution can be re-parameterised as a function of time 
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where λ = exp(−μ) and β = 1/(δσ) = 1/b. Except, under some restricted values for k1 and k2, there is no 
closed form expression for the survivor and hazard functions, but they are related to the incomplete 
beta function and Appendix A shows how this can be computed using percentiles from the F 
distribution. Equation (9d) is however degenerate when k1 = k2 = ∞ and then a different specification 
of the pdf must be used (see Appendix A).  

Particular values for these parameters define important sub families within the GENF family 
and these sub families are summarised in Figure 3. It can be seen that some of these distributions are 
commonly used within engineering. When k2 = ∞, failure times have a Generalised Gamma 
distribution, T ~ GENG(μ, σ, k1). There are then three well known two parameter distributions within 
this Generalised Gamma family. T is gamma distributed, T ~ GAM(μ, σ, k1), when k2 = ∞ and σ = 1. T 
is log normally distributed, T ~ LOGNOR(μ, σ), when k2 = k1 = ∞; and T is Weibull distributed,  
T ~ WEIB(μ, σ), when k2 = ∞ and k1 = 1. In turn, the Weibull distribution collapses to the exponential 
distribution when k2 = ∞, k1 = 1 and σ = 1. The family, T ~ BURR(μ, σ, k1), is obtained when either  
k1 = 1 (Burr III) or k2 = 1 (Burr XII). Then when k2 = k1 = 1, T has a log-logistic distribution,  
T ~ LOGLOGIS(μ, σ), and when k2 = k1 = 1 = σ the log-logistic distribution collapses to the logistic 
distribution, T ~ LOGIS(μ). The form and characteristics of all these special cases are further described 
in the Appendix A. 

 
Figure 3. Members of the Generalised F distribution. 

Evans [32] has shown how the parameters of these distributions can be estimated using 
maximum likelihood procedures. An alternative semi-parametric approach is to use the least-square 
procedure in conjunction with a probability plot. The procedure here is to linearise a plot of t against 
S(t) by finding suitable transformations of S(t) and possibly t. A least squares best fit line to the data 
on such a plot then yields estimates of the parameters μ (given by the intercept of the best fit line) 
and σ (the slope of the best fit line). However, as seen in Figure 1, the non-parametric estimate 

)(ˆ
ikm tS  is a step function increasing by an amount 1/n at each recoded failure time. Plotting at the 
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lead to a bias in the resulting parameter estimates. A reasonable compromise plotting position is the 
mid-point of the jump 

iikmikm p
n

i
tStS ˆ

5.0
)](ˆ)(ˆ[

2

1
1 


   (10a) 

where i indexes the ordered failure times (i = 1 for the smallest failure time, i = 2 for the next smallest 
all the way up to n for the largest failure time), with t1 being the smallest failure time up to tn the 
largest failure time. From the Appendix A to this paper, the log of the pth percentile for t is given by 

ln(tp) = μ + (b/δ){wk1,k2,p} =  μ + σ{wk1,k2,p} (10b) 

where wk1,k2,p is the pth quantile of an F distribution with (2k1, 2k2) degrees of freedom. Percentiles of 
the F distribution are tabulated at the back of many well know engineering statistical text books (it 
can also be found in Excel using the FINV function). Using ip̂  in Equation (4a) for p in Equation 
(10b) allows values for wk1,k2,p to be computed. Thus, when 

ip,,kk ˆ21w  is plotted against the ordered 

values for ln(t), ln(ti), the data points will reveal scatter around a linear line provided the data have a 
generalised F distribution with given values for k1 and k2. 

The generality of Equation (10b) is clearly seen by considering the special case of k2 = ∞ and k1 = 
1, which is the Weibull distribution, whose survivor function is shown in the appendix A of this paper 
to be 

 β)(exp)S( tt   (11a) 

This can be linearised as 

)]}ln[S(ln{)]}ln[S(ln{
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]ln[)ln( ttt  


  (11b) 

Then, replacing S(t) with the parametric estimator ip̂  and t by its ordered value ti gives 

]}ˆln[ln{]}ˆln[ln{
1

]ln[)ln( iii ppt  


  (11c) 

Equations (11c) and (10b) imply that wk1,k2,p collapses to ln{−ln[S(t)]} when k2 = ∞ and k1 = 1.  
As an illustration, Figure 4a is a ]}ˆln[ln{/)ln( ii pt   plot for the ten 1Cr-1Mo-0.25V specimens 

tested at 823 K and 294 MPa. The best fit line obtained using the least squares technique is also shown. 
The slope of this best fit line is σ = 0.2938, with intercept μ = 5.8385. This implies β = 1/σ = 3.4 and λ = 
exp(−5.8385) = 0.0029. However, with a coefficient of determination (R2) of just 85%, the Weibull 
distribution is unlikely to be the best description of this sample of failure times. 

This R2 value was computed over the range p = 0 to 2 and q = 0 to 1 (both in increments of 0.1), 
where  

0.5
2121

1
21 )11)(11(   and     )2(   /k/k/k/kqkkp  (11d) 

As such, this range covered all the distributions shown in Figure 3. It was found that R2 was 
maximised when p = q = 0, i.e., when k1 = k2 = ∞. It therefore appears that, within the generalised F 
distribution family, it is the log normal distribution that best describes the specimens tested at 823 K 
and 294 MPa. This is consistent with the findings by Evans [32]. 

Figure 4b plots ln(ti) against 
ipkk ˆ2,1,w  when k1 = k2 = ∞, so that the variable on the horizontal axis 

is essentially a standard normal variate. The R2 value is 93% and so much higher than the Weibull 
case. The slope of this best fit line is σ = 0.3788 and can be interpreted as an estimate of the standard 
deviation in log times to failure. The intercept is μ = 5.6768 and can be interpreted as an estimate for 
the mean of the log times to failure at the stated test conditions. The survivor function associated with 
his normal distribution (using these parameter estimate) is shown in Figure 2. It tends to be lie above 
the parametric estimators at intermediate failure times, but below it as the higher failure times. 
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Figure 4. Probability plots for 10 batches of 1Cr-1Mo-0.25V tested at 823 K and 294 MPa: (a) the 
Weibull distribution; and (b) the log normal distribution. 

3.2. A Statistical Description of Continuous Failure Times at Varying Test Conditions 

There are a number of approaches to extending the above concepts to the case of varying test 
conditions. 

3.2.1. Accelerated Failure Time Models (AFT) 

In this type of model, μ in Equation (9b) is made a function of the test conditions 

ln[T] = Y = μ + σW = r(x) + σW  

with 

r(x) = r(x1 + x2 +…. + xm) (12a) 

where x1 to xm are separate variables describing the test condition (for example, x1 may be stress, x2 
temperature etc.) and r is an un-specified function (its form being best suggested by creep theory). x 
is a 1 by m matrix containing the m test variables that describe the test conditions for each of the N 
specimen placed on test. A commonly used specification for r(x) is  

r(x) = b1x1 + b2x2 + … + bmxm (12b) 

where b1 to bm are parameters that require estimation. As the name suggests, this approach has an 
accelerated life interpretation. In this formulation, the error term σW is seen as a base or reference 
distribution that applies when x1 = x2 = … = xm = 0. This base distribution can be translated to a time 
scale by defining T0 = exp{σW}. The probability that a test specimen will survive time t, S0(t), is then  

S0(t) = Pr{T0 > t} = Pr{W > ln(t)/σ}  

In this accelerated model, T is distributed as  

T0exp(b1x1 + b2x2 + … + bmxm)  

and so the test conditions act multiplicatively on survival times. Therefore, the probability that a test 
specimen with test conditions x will be survive time t is 
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S(t,x) = Pr{T > t|x} = Pr{T0er(x) > t} = Pr{T0 > ter(x)} = S0(teb1x1+…+bmxm) (12c) 

Thus, the probability that a specimen with test conditions x will survive time t is the same as the 
probability that a base test specimen will be alive at time texp{r(x)}. This can be interpreted as time 
passing more rapidly by a factor exp{r(x)}—for example, twice as fast or half as fast. (A good analogy 
here is the use by humans of pet years to describe the age of their pets in relation to their life). 
Consider for example a multiplier of two for a specimen with test condition x. In terms of survival, 
this means that the probability that the specimen would be alive at any given time is the same as the 
probability that a base specimen would be alive at twice the length of time. In terms of risk, this model 
implies that an engineering component is exposed at any service life to double the risk of a base 
component that has been in service for twice as long.  

The importance of Equation (12c) for this paper is that Evans [32] has shown, when using an 
AFT model, that whilst a generalised F distribution explained the shape of the failure time 
distribution at most test conditions for 1Cr-1Mo-0.25V steel, none of the distributions contained as 
special cases within the generalised F distribution adequately explained the shape of the actual failure 
time distributions at the remaining test conditions. This failure is explained by Equation (6c) as it 
shows that the survivor function should have the same form at all test conditions (namely that form 
identified for specimens tested at the base conditions)—unless time is stretched too much. However, 
in hazard based models, to be discussed below, the survivor function at a particular test conditions 
can differ markedly from that identified at the base test conditions and so offers extra flexibility over 
AFT models.  

3.2.2. Proportional Odds Models 

Another approach assumes that the effect of the test conditions is to increase or decrease the 
odds of failure by a given duration by a proportionate amount: 
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 (13a) 

where S0(t,x) is a baseline survivor function, taken from a suitable distribution, and exp{b1x1 + … + 
bmxm} is a multiplier reflecting the proportionate increase in the odds associated with test condition 
values x. Taking natural logs, gives 

logit(1 − S(t,x)) = logit(1 − S0(t)) + b1x1 + … + bmxm (13b) 

so the test conditions effects are linear in the logit scale. A somewhat more general version of the 
proportional odds model is known as the relational logit model. The idea is to allow the log-odds of 
failing in a given population to be a linear function of the log-odds in a reference or baseline 
population, so that  

logit(1 − S(t)) = α + θlogit(1 − S0(t)) (13c) 

The proportional odds model is the special case where θ = 1 (and where the constant α depends 
on the test conditions).  

As an example, consider a proportional odds model with a log-logistic baseline. The 
corresponding survival function and the odds of failure are 
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  (13d) 

Multiplying the odds by exp(b1x1 + … + bmxm) yields another log-logistic model. However, this is 
not true of other distributions: if the baseline survivor function is Weibull then this baseline 
multiplied by the odds of failing is not a Weibull survivor function. 
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3.2.3. Proportional Hazard Models (PH) 

The PH model of Cox [39] has a baseline hazard function h0(t) that shows how the hazard rate 
increases with time when this linear combination of test conditions equals unity 

)r( )(h)|h( 0 xtxt   (14a) 

The log hazard function is then additive 

)]ln[r( )](hln[)]|ln[h( 0 xtxt   (14b) 

Obviously, the cumulative hazards would follow the same relationship, as can be seen by 
integrating both sides of the previous equation. Exponentiating minus the integrated hazard, we find 
the survivor functions to be 

S(t,x) = S0(t)exp(b1x1+b2x2+…+bmxm) (14c) 

so the survivor function for test conditions x is the baseline survivor raised to a power that is 
dependent upon the test condition. If a test specimen is exposed to twice the risk of a reference 
specimen at every point in time, then the probability that the specimen will be alive at any given time 
is the square of the probability that the reference or base specimen would be alive at the same time. 
In this PH model, a simple relationship in terms of hazards translates into a more complex 
relationship in terms of survival functions. Choosing a different parametric form for the baseline 
hazard, leads to a different model in the proportional hazards family. Apart from when the baseline 
hazard function corresponds to that of the Weibull hazard function, the hazard function at all other 
test conditions will be different in form from the baseline hazard function. 

A possible limitation of the PH model is seen in Equation (14a), which implies that hazard 
functions associated with different test conditions are always constant multiples of one another—
hence the name “proportional” hazards. One way to relax this proportionality assumption is to allow 
the test variables to interact with time or equivalently to allow b1, b2 etc. to be time dependent. Then, 
Equation (12b) becomes 

b1(tx1) + b2(tx2) + … + bp(txp) (15) 

If, for example, the base line hazard function corresponds to the log normal distribution (so 
under test conditions r(x) = 1 the underlying failure time distribution is log normal), the underlying 
failure time distribution will not be log normal at any other test condition (i.e., when r(x) ≠ 1). This is 
a major advantage of building a failure time model around the hazard function rather than around 
the pdf or f(t). 

3.3. Modelling Discrete Failure Times at Varying Test Conditions 

Another major issue with hazard based models is to do with the identification of the baseline 
hazard function, ho(t). Without having many repeat tests carried out at a single test condition, it is 
difficult to accurately identify its functional form. One solution to this problem is to create a discrete 
failure time dataset from the original continuous one, i.e., split the continuous failure time data up 
into small but equally sized time spans. By doing so, it is possible to calculate a piecewise hazard 
function for each interval of time, which over all time intervals allows the shape of the base line 
hazard function to be identified. Springer and Willett [40] provide a good review of this approach. 
This is the approach taken in Section 4.  

3.3.1. Creating Discrete Data from Continuous Data 

The first step required in building a discrete hazard function is to create the specimen-specimens 
dataset from the continuous failure time database. Here time is partitioned into k equal intervals  
Ij = (aj−1 to aj), j = 1 to k and with k being as large as practically possible and a being a point in time. As 
an illustration of how this is done, consider batch VaA of the NIMS database, where i = 1, N = 43 
specimens are tested, with each specimen receiving a different stress-temperature test combination. 
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If x1 in Equation (12a) represent stress, then in batch VaA of NIMS this was varied from 412 MPa to 
47 MPa and if x2 represents temperature this varied over the range 723 K to 948 K. The smallest 
recorded failure time was 338,760 s and the largest was 407,844,720 s. Many creep prediction models 
work with the log time to failure and so in natural log units these failure time limits corresponded to 
12.73 and 19.83. The researcher then needs to decide upon how many discretised time intervals to 
work with. For example, the NIMS data could discretised into 15 equal (log) time intervals, 
respectively giving (log) time intervals of width 0.5. In this example, k = 15 and aj−1 − aj = 0.5 with a0 = 
12.5 and ak = 20). The first interval this NIMS dataset is therefore 12.5–13.0 and corresponds to j = 1, 
the second is 13.0–13.5 and corresponding to j = 2 all the way up to the interval 19.5–20 and 
corresponding to j = 15. The specimens-specimen data are then generated by creating a binary 
variable, v, for each time interval. Thus, the binary variable equals 0 in time interval It if the specimen 
does not fail in that interval and 1 if it does. This binary variable is created for each specimen in the 
test matrix. 

Table 1 illustrates the start of the creation of this specimens-specimen format by considering just 
the firsts two NIMS specimen in batch VaA using aj−1 − aj = 0.5. The first specimen was tested at x1 = 
412 MPa and x2 = 723 K. It failed at 16.36 log seconds. The second was tested at x1 = 373 MPa and x2 = 
723 K and it failed at 17.84 log seconds. Continuing the process shown in Table 2, creates M values 
for v, where M = kN = 358 for this NIMS batch. 

Table 1. Illustration of the creation of a specimens-specimen dataset. 

Time Interval Ij = aj−1 − aj  
(Log Seconds) Specimen Number, i Stress, x1

(MPa) 
Temperature, x2  

(K) vij 

12.5–13.0 1 412 723 0 
13.0–13.5 1 412 723 0 
13.5–14.0 1 412 723 0 
14.0–14.5 1 412 723 0 
14.5–15.0 1 412 723 0 
15.0–15.5 1 412 723 0 
15.5–16.0 1 412 723 0 
16.0–16.5 1 412 723 1 
12.5–13.0 2 373 723 0 
13.0–13.5 2 373 723 0 
13.5–14.0 2 373 723 0 
14.0–14.5 2 373 723 0 
14.5–15.0 2 373 723 0 
15.0– 15.5 2 373 723 0 
15.5–16.0 2 373 723 0 
16.0–16.5 2 373 723 0 
16.5–17.0 2 373 723 0 
17.0–17.5 2 373 723 0 
17.5–18.0 2 373 723 1 

3.3.2. Re-Specification of the Continuous Hazard Based Models 

Equation (14b) can be re-specified as 

 xxxjxij mimijji b...bDb)]r( ln[ )](ln[h)]|ln[h( 110,0   (16a) 

where 
)1(  otherwise 0   Dand  aa interval in 1 vif   1    Dand  b )](ln[h j10,0 ,..,k  jj jj-ijjj  . 

In Equation (14b), x is a Nk by 2 matrix where each column contains the i different stress and 
temperature combinations that each specimen was tested at and xi is the ith first row of the matrix x. 
However, when the data are discretised in this way, h(ij|x) in Equation (14a) is not directly 
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observable. Instead, there is the binary variable vij that equals zero when the specimen is un-failed in 
time interval aj−1 − aj or 1 if it fails in that time interval. Therefore, what is required is a non-linear 
function that maps between vij = 0 and vij = 1 to give the hazard rate between 0 and 1 for each specimen 
in each time interval. Two commonly used functions that achieve this are the logistic 
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and the log-log 

 mimijj xD
ij xij b..xbb 110,eexp1)]|[h(v   (16c) 

functions. These are in turn special cases of a more general S shaped curve given by 
  )}b...b)exp(b(1/+{11=)]|[h(v 2110, miijjij xxDxij  (16d) 

so Equation (16d) collapses to Equation (16b) when α = 1 and tends to Equation (16c) as α tends to ∞.  
Plotting estimated values of b0,j against time allows the shape of the baseline hazard function to 

be observed, which in turn could lead to a simplification of Equation (16d). For example, if such a 
plot reveals a straight line, the k bo,jDj terms can be replaced by a + b0j 

  )}b...bb)exp(a(1/+{11=)]|[h(v 2110 miiij xxjxij  (16e) 

Non-proportionality can then be accommodated by allowing the x variables to interact with time 
t in the following way 

  )}b....bb)exp(a(1/+{11=)]|[h(v 21i10i mij jxjxjxij  (16f) 

3.3.3. Estimation 

These discrete hazard models are essentially binary response regression models and so the 
unknown parameters can be estimated by maximising the log likelihood function given by 
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where the binary response variable vij and h(t|x) is given by Equation (16d), Equation (16e) or 
Equation (16f). Hence, Equation (17) will be maximised yielding some given set of values for the 
unknown parameters on the right hand side of Equation (16d), Equation (16e) or Equation (16f). This 
function can be maximised for various values of α, with the chosen value for α corresponding to the 
largest of these maximised log likelihoods. Direct maximisation can be carried out using standard 
non-linear optimisation algorithms [41], or alternatively Equation (17) can be maximised indirectly 
by using the iteratively reweighted least squares algorithm of McCullagh and Nelder [42]. 

3.3.4. Assessing Model Adequacy 

There are a number of ways to assess the adequacy of these discrete hazard based models. The 
discrete hazard models given by either Equation (16d), Equation (16e) or Equation (16f) produce a 
predicted hazard rate or probability of failure within the time intervals at−1 to at, rather than a specific 
time at which failure occurs. This makes it a little more complicated to assess whether the model is 
capable of accurately predicting the observed failure times. To obtain predicted times to failure (more 
specifically the time interval in which failure is predicted to occur), a cut-off point c is needed, such 
that if the predicted hazard rate exceeds c in time interval at−1 to at then failure is predicted to have 
occurred in that time zone. Otherwise, the prediction is that the specimen will not fail in that time 
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interval. The usual value for c is 0.5, and once chosen a simple classification table, such as that in 
Table 2, can be constructed. 

Table 2. Classification table for a discrete hazard model. 

Predicted vij 
Observed vij

Total 
Survived: vij = 0 Failed: vij = 1

Survived: vij = 0 m1 m3 M3 
Failed: vij = 1 m2 m4 M4 

Total M1 M2 M 

In Table 2, there are M2 time intervals where a specimen failed. The model correctly predicted 
correctly m4 of these, but incorrectly predicted m3 of these intervals, that is m3 specimens failed in 
times zones different from those the model predicted them to fail in (where M2 = m3 + m4). Similarly, 
there are M1 time zones where vij actually equalled zero (M1 time zones not containing failed 
specimens) and of these, the model predicted correctly m1 of these time zones, but incorrectly 
predicted m2 of these zones (i.e., there were m2 times zones where a specimen survived, but the model 
predicted failures to occur). M can be found from summing either M1 and M2 or M3 and M4.  

The models success rate in predicting the time zones where specimens will not fail is given by 
m1/M1. This can be taken to be the probability of the model correctly detecting a false signal and is 
called the models specificity. The models success rate in predicting the time zones where specimens 
will fail is given by m4/M2. This can be taken to be the probability of the model correctly detecting a 
true signal and is called the models sensitivity. The models over-all rate of correct classification is 
then given by (m1 + m4)/M.  

Given the way in which a specimens-specimen dataset is constructed, there are many more 
values of vij = 0 compared to vij = 1, it is common to observe sensitivity values well below specificity 
values. Thus a well specified model will have high values for both sensitivity and specificity. 
However, the sensitivity and specificity depend in part on the chosen value for the cut-off point c and 
c = 0.5 may not be the optimal value as far as failure time prediction is concerned. One solution to 
this is to construct a classification table for a range of cut-off points to see how the discrete hazard 
model works as a classifier of when failure will occur. However, a neater way of doing this is given 
by the area under the receiver operating characteristic (ROC) curve. The ROC emerges on a graph 
that plots the sensitivity against (1-specificity) associated with all possible values for c (c = 0 to 1). The 
resulting area under the ROC curve lies between zero and unity and measures the ability of the 
hazard model to discriminate between time zones where a specimen will fail and zones where it will 
not. Hosmer and Lemenshow [43] suggest the following benchmarks for this area: An ROC of 0.5 
provides no discrimination implying the model performance no better than tossing a coin to decide 
if a specimen fails in a given time interval. An ROC between 0.7 and 0.8 gives acceptable 
discrimination, whilst a ROC between 0.8 and 0.9 gives excellent discrimination. Finally, a ROC above 
0.9 gives outstanding discrimination. 

One way to determine an optimal value for c is to choose that value that yields the best failure 
time predictions. For example, if c inserted for v in say Equation (16e), then the variable t on the right 
hand side of the equation becomes the predicted time zone at which a specimen fails, t̂  

  )}b...bˆb)exp(a(1/+{11=)]|[h(c 2110 mii xxjxij  (18a) 

This can be solved for ĵ  

0211
)/1( /)}b...b()ln(]1)1{ln[(ˆ bxxacj mii     (18b) 

Thus, ĵ  is a prediction of the time interval where a specimen fails. For example, if ĵ  = 2.5, 
failure is predicted to occur in the time interval I2 = a2 − a1, and the actual predicted time is then equal 

to (a2 + a1)/2 (or another example, actual failure time = 0.25a2 + 0.75a1 if ĵ  = 2.75). Notice the j = 2 time 
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interval is, from Table 1, the 12.5–13 logged seconds and its mid point is therefore 12.75 logged 
seconds (or 96 h). 

A plot can then be made of actual failure time against this predicted time. If a best fit line is put 
through the data on such a plot, the optimal value for c can be taken to be the one that produces a 
best fit line closest to the 45° line on such a plot. As an alternative, c can be chosen to minimise the 
mean squared error defined as 

 
N

ˆ
MSE

2
jj 

  (18c) 

Using c = 0.5 in Equation (18b) can also be interpreted as yielding a median predicted time to 
failure, whilst using c = 0.05 produces a time interval prediction such that there is only a 5% chance 
of failure occurring in that or an early time interval. Likewise using c = 0.95 produces a time interval 
prediction such that there is a 95% chance of failure occurring in that or an early time interval. These 
then come together to define a 90% confidence interval for the time interval where failure will occur.  

4. Application of Discrete Hazard Function to Batch VaA of 1Cr-1Mo-0.25V 

4.1. Incorporating Wilshire Variables into a Discrete Hazard Model 

The intention of this paper is to keep within the discrete hazard model as many features of the 
Wilshire methodology as possible—purely to illustrate the assimilation of that creep model with this 
statistical model for the random component of creep and not because one implies the other. In its 
simplest form, the Wilshire Equation is given by Equation (5b). However, the hazard function 
describes a failure rate or conditional probability of failure and not the failure time itself. There are a 
number of ways to incorporate this Wilshire equation into a discrete hazard based model and the 
following describes some of the possibilities. The starting point is to map Equation (5b) onto Equation 
(16d–f) by replacing ln[t] = y with the log hazard rate ln[h(t|x)]. This gives, based on Equation (16d), 

 bbb)]r( ln[ (j)]ln[h)]|ln[h( 22110,0 iijji xxDxxij   (19a) 

where x1 = τ* and x2 = 1000/RT. 
However, h(ij|x) is not observable. Instead there is the binary variable vij that equals zero when 

the specimen is un-failed in time interval aj−1 − aj or 1 if it fails in that time interval. Therefore, what 
is required is a non-linear function that maps between vij = 0 and vij = 1 to give the hazard rate between 
0 and 1 for each specimen in each time interval. Section 3.3.2 outlined a general form of such a 
function allowing Equation (19a) to be written as  

 -
22110, )}bb)exp(b(1/+{11=)]|[h(v iijjij xxDxij   (19b) 

If the b0,j parameters trace out a linear time trend, then Equation (19b) can be written as 
  )}bbb)exp(a(1/+{11=)]|[h(v 2211o iiij xxjxij  (19c) 

As will be seen below, this plausibility of such a simplification can be assessed by plotting out 
the estimated b0j values. Non-proportionality can then be accommodated by allowing τ and 1000/RT 
to interact with time in the following way 

  )}bbb)exp(a(1/+{11=)]|[h(v 22110 iiij jxjxjxij  (19d) 

In addition, it is known (see Wilshire [21] and Evans [32]) that for this material the relationship 
between t and τ* changes at some critical value for τ* (i.e., b1 changes value at this point) and that the 
activation energy changes at around 823 K (i.e., b2 changes value at this point). Thus, Equation (19b) 
can be written as 

  }BbBbbb)exp(b(1/+{11=)]|[h(v 22411322110, iiiiiijjij xxxxDxij  (19e) 
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where B1 = 0 when τ* ≤ τcrit and unity otherwise. Similarly, B2 = 0 when T ≤ 823 and unity otherwise. 
The reason for doing this is that it allows stress and temperature to have a different effect on the 
hazard rate either side if 823 K and τcrit. The explanation provided by Wilshire is that as τcrit is close 
in value to the yield stress, dislocation movement is confined to grain boundaries below the yield 
stress so that the activation energy falls below that for self diffusion through the crystal—so causing 
the value for b2 to change. Thus, when τ* ≤ τcrit, B2 = 0, and so the effect of temperature on the hazard 
rate is determined by the value for b2. However, when τ* > τcrit, B2 = 1, and so the effect of temperature 
on the hazard rate is determined by the value for b2 + b4. The role of stress is also different either side 
of τcrit (changing from b2 to b2 + b3). 

Often, the values for b0,j reveal a linear trend or some well defined non-linear trend such as a 
polynomial, exponential or power law trend. For example, if a linear trend is revealed by a plot of 
the b0,t values against t, then Equation (19e) takes the form  

  }BbBbbbb)exp(a(1/+{11=)]|[h(v 22411322110 iiiiiiij xxxxjxij  (19f) 

In Equation (19e,f), the effect of changing test conditions is to shift in a parallel fashion the log 
baseline hazard function, but it is also possible to allow the slope of the baseline hazard function to 
depend on x1 and/or x2. For example, if b0 depends on x1 then Equation (19f) becomes 

  }bBbBbbbb)exp(a(1/+{11=)]|[h(v 1522411322110 jxxxxxjxij iiiiiiiij  (19g) 

4.2. Results 

4.2.1. Model Given by Equation (19e) 

A specimens-specimen dataset was created for batch VaA using k = 15 and Ij = aj−1 − aj = 0.5 with 
a0 = 12.5 and ak = 20. This dataset consisted of M = 358 observations on v. Using these data, the 
parameters of Equation (19e) were estimated for a range of values for α and τcrit. The values for α and 
τcrit that produced the highest ROC were α = 1 and τcrit = 0.1. This α value suggests the logistic discrete 
hazard model is preferable to the log-log discrete hazard model, whilst the τcrit value is a little higher 
than that identified by Evans [32] and Wilshire [21] but is broadly similar in value. Table 3 shows the 
results of applying the McCullagh and Nelder algorithm to this data. The values for x1 and x2 were 
normalised to be zero at 823 K and 294 MPa so that the resulting estimated value for b0,t give the 
baseline log hazard rates that corresponds to this test condition. 

The student t-values associated with x1 and x2 in Table 3 reveals that both τ* and the reciprocal 
of temperature are statistically significant variables so yielding support for the Wilshire 
methodology, whilst the last two rows show a discontinuity in the Wilshire model at τ* = 0.1 and at 
a temperature of 823 K. These estimates are not comparable in value to those in Equation (5b) because 
the latter show the impact of τ* and T on failure times directly, rather than the log hazard rate as is 
so in the former case. Reading across row one of Table 3, the estimated log hazard rate for time 
interval j = 1 (12.5–13.0 log seconds) when temperature is 823 K and stress is 294 MPa is −4.7526, 
implying a hazard rate of exp(−4.7526) = 0.0086. This hazard rate corresponds to the log time interval 
of 12.5 to 13.0, which in turn corresponds to a time interval in hours of 75 to 123. Associating this 
hazard rate with the mid point of this time interval gives a hazard rate of 0.0086 at time 100 h. 
Proceeding in the same way for this next two rows of Table 3 gives a cumulative hazard rate of 0.189 
at 163 h and 0.795 at 268 h. Recall that Figure 2 show the non-parametric estimate of the cumulative 
hazard rate associated with the test conditions of this estimated baseline hazard rate. Reading of this 
graph at 270 h shows the non-parametric estimate of the cumulative hazard rate is 0.85, showing this 
model is consistent with this non-parametric estimator. 

Table 4 shows the classification table for this model using c = 0.5 revealing that sensitivity equals 
68% and specificity equals 98% with an overall correct failure time zone prediction rate of 94%. Figure 5 
shows the ROC for this model and the area under this curve is 0.972, which according to Hosmer and 
Lemenshow, makes this model outstanding in its ability to discriminate between failure and non-
failure in the 15 time zones.  
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Table 3. Estimation of the parameters in Equation (19e). 

Parameter Variable Estimate Student t-value
b0,1 ln[ho(j = 1)] for 12.5–13.0 −4.7526 −2.81 ** 
b0,2 ln[ho(j = 2)] for 13.0–13.5 −1.7111 −1.43 
b0,3 ln[ho(j = 3)] for 13.5–14.0 −0.5019 −0.48 
b0,4 ln[ho(j = 4)] for 14.0–14.5 −0.7838 −0.53 
b0,5 ln[ho(j = 5)] for 14.5–15.0 1.9713 1.26 
b0,6 ln[ho(j = 6)] for 15.0–15.5 3.4266 2.16 ** 
b0,7 ln[ho(j = 7)] for 15.5–16.0 6.7247 4.24 *** 
b0,8 ln[ho(j = 8)] for 16.0–16.5 9.8840 4.81 *** 
b0,9 ln[ho(j = 9)] for 16.5–17.0 9.9378 4.31 *** 
b0,10 ln[ho(j = 10)] for 17.0–17.5 11.9647 4.85 *** 
b0,11 ln[ho(j = 11)] for 17.5–18.0 14.2367 5.11 *** 
b0,12 ln[ho(j = 12)] for 18.0–18.5 16.4289 5.27 *** 
b0,13 ln[ho(j = 13)] for 18.5–19.0 18.3696 5.39 *** 
b0,14 ln[ho(j = 14)] for 19.0–19.5 17.9018 5.04 *** 
b0,15 ln[ho(j = 15)] for 19.5–20.0 19.2411 0.38 
b1 x1 −28.554 −5.13 *** 
b2 x2 −1363.8818 −5.62 *** 
b3 x3 5.4672 2.37 ** 
b4 x4 642.0808 −4.43 *** 

Parameters estimates using the iteratively reweighted least squares technique of McCullagh and 
Nelder [42]. Student t-values test the null hypothesis that the true parameter values equal zero. ** 
identifies statistically significant variables at the 5% significance level, and *** identifies statistically 
significant variables at the 1% significance level. These levels of significance are based on the student 
t-statistic that has a student t distribution. 

Table 4. Classification table for a discrete hazard model of Equation (13e) with c = 0.5. 

Predicted vij 
Observed vij

Total Survived: vij = 0 Failed: vij = 1
Survived: vij = 0 306 14 320 

Failed: vij = 1 9 29 38 
Total 315 43 358 

The MSE is minimised at c = 0.53 with a value of 0.0526. Figure 6 then plots the actual times to 
failure (hours) for specimens in batch VaA, together with the failure time zones predicted by the 
model using c = 0.53. The error bars shown around the predictions reflect the fact that this model 
predicts the time interval in which failure occurs and the width of this time interval is 0.5 log hours. 
The models predictions are taken to be the mid points of these error bars. With only a few exceptions 
(for example, at 773 K with 373 MPa and 823 K with 157 MPa), the model predicts the time interval 
at which failure actually occurs correctly. The worst prediction comes at 873 K and 47 MPa—but this 
point was also poorly predicted in the original Wilshire [21] paper as well. 

Figure 7 plots the piece-wise log hazard rates associated with each time zone (the b0t in Table 3) 
against the numbered time zone and this plot reveals a well-defined linear trend. The trend is very 
strong with an R2 value of 98.4% with no obvious deviation from linearity. This suggests that it should 
be possible to create a more parsimonious version of Equation (19e), without affecting the predictive 
ability of the simpler model, by replacing the fifteen b0t parameters with a linear trend containing just 
two parameters—a and b0. Figure 7 implies that a = 6.57 and b0 = 1.86. This parsimonious version is 
estimated in the following subsection. 
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Figure 5. The receiver operating characteristic (ROC) from model given by Equation (13e). 

 

 
Figure 6. Actual failure times and predicted times interval obtained from the model given by Equation (19e). 
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Figure 7. Estimated baseline (i.e., corresponding to 823 K and 294 MPa) piece-wise log hazard function 
based on Equation (19e). 

4.2.2. Model Given by Equation (19f) 

When Equation (19g) was estimated, the t value associated with parameter b5 suggested that b5 
was insignificantly different from zero at the 1% significance level so that the data were not 
supportive of the slope of the log base hard function estimated in the previous sub section changing 
at some critical value for the normalised stress. Table 5 shows the estimated parameters of Equation 
(19f) obtained using the McCullagh and Nelder algorithm (again the values for α and τcrit that 
produced the highest ROC were α = 1 and τcrit = 0.1). 

Table 5. Estimation of the parameters in Equation (19f). 

Parameter Variable Estimate Student t-value 
a Constant −5.8351 −4.91 *** 
b0 Time trend, j 2.0736 6.02 *** 
b1 x1 −30.8703 −5.85 *** 
b2 x2 −1451.7496 −5.93 *** 
b3 x3 5.1666 3.84 *** 
b4 x4 596.9284 4.48 *** 

Parameters estimates using the iteratively reweighted least squares technique of McCullagh and 
Nelder [42]. Student t-values test the null hypothesis that the true parameter values equal zero. *** 
identifies statistically significant variables at the 1% significance level. These levels of significance are 
based on the student t-statistic that has a student t distribution. 

The estimated values for b1 to b4 in Table 5 are consistent with those shown in Table 3 and, again, 
the student t-values associated with these parameters reveal they are significantly different from zero 
at either the 1% or 5% significance level. Further, the values for a and b0 are not that dissimilar from 
the values sown in Figure 6. These parameter estimates can be used to calculate the hazard rate at the 
base or reference test conditions of temperature = 823 K and stress = 294 MPa. For example, in time 

ln[ho(j)] = 1.8584j- 6.5741
R² = 0.9844

12.75 13.75 14.75 15.75 16.75 17.75 18.75 19.75

-10

-5

0

5

10

15

20

25

-10

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mid point of log time to failure interval
ln

[h
o(

j)]

Time interval, j



Materials 2017, 10, 1190  21 of 30 

 

zone j = 1 (corresponding to the log time interval of 12.5 to 13 or 75 to 123 h) the hazard rate is 
predicted to be exp(−5.8351 + 2.0736 × 1) = 0.0232.  

Table 6 shows the classification table for this model when c = 0.5 revealing that sensitivity equals 
69.8% and (1-specificity) equals 96.8% with an overall correct failure time zone prediction rate of 95%. 
Figure 8 shows the ROC for this model and the area under this curve is 0.951, which according to 
Hosmer and Lemenshow, makes this model outstanding in its ability to discriminate between failure 
and non-failure in the 15 time zones. Further, this value is only slightly below that from the previous 
model, showing that the use of a simple linear time trend instead of a piece-wise hazard function has 
not resulted in a significant reduction in predictive ability. 

Table 6. Classification table for a discrete hazard model of Equation (19f) with c = 0.5. 

Predicted vij 
Observed vij

Total 
Survived: vij = 0 Failed: vij = 1

Survived: vij = 0 305 13 318 
Failed: vij = 1 10 30 40 

Total 315 43 358 

 
Figure 8. The receiver operating characteristic (ROC) from model given by Equation (19f). 

The MSE is minimised at c = 0.53 and Figure 9 then plots the actual times to failure for specimens 
in batch VaA against the failure time predicted by the model using c = 0.53. As a continuous base 
hazard function is now used instead of the piece-wise hazard function, an actual failure time, rather 
than an interval time, prediction can be made. Figure 9 plots the actual failure times against the 
predicted failure times (n natural logs). The best fit line on this plot is very close to the ideal outcome 
associated with the 45 degree line—corresponding to a situation where the model predicts each 
failure time perfectly. Hence, the bias in prediction remains small in this more parsimonious model. 

Figure 10 shows a different representation of these predictions—where stress is shown on the 
vertical axis and times to failure on the horizontal. This time the error bars show a 50% prediction 
band based on using c = 0.25 and c = 0.75 in Equation (18b). Again, and with only a few exceptions, 
the actual failure times fall within the models 50% prediction bands. 
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Figure 9. Actual log failure times plotted against predicted log failure times obtained from the model 
given by Equation (19f). 

 

 
Figure 10. Actual failure times and predicted failure times obtained from the model given by Equation (19f). 

Figure 11 illustrates how this model can be used to predict the hazard rates associated with in 
service life under various conditions—in this illustration operating at 130 MPa and 823 K. It can be 
seen that the hazard rate remains very close to zero up to 50,000 h or about 8 years of in service use. 
The risk of failure then starts to rise quite dramatically. For example, if this material had been in 
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operation for around 15 years, the chances of it failing in the next year is around 35%, but, if this 
material had been in operation for around 25 years, the chances of it failing in the next three years 
rises dramatically to around 80%. 

 

 
Figure 11. Predicted hazard rates at various times in operation at 823 K and 130 MPa from the model 
given by Equation (19f). 

5. Conclusions 

This paper has provided a summary review of some statistical failure time models with the aim 
of aiding the assimilation of such models with existing predictive models for creep life. This will 
enable an enrichment of prediction to be achieved with a move away from predicting failure times 
on the average towards predicting the safe life associated with a minimum chance of failure This was 
followed by an illustration of one possible assimilation, namely—the deterministic Wilshire equation 
and the statistical discrete hazard model. This statistical model was chosen because it provided the 
capability of estimating failure probabilities in future time intervals for materials that have already 
been in service for various lengths of time. 

Estimation of this model revealed that at a fixed test condition, the log of the probability of 
failure in the next time interval (given survival up to then) is a linear function of time. This log base 
line hazard function then shifted in a parallel fashion with the well-known Wilshire variables of τ* 
and the reciprocal of temperature. Like in the original Wilshire methodology, this shifting nature of 
the base hazard function was different above and below 823 K and τ* = 0.1. The model was shown to 
produce outstanding discrimination with respect to which time interval a specimen would fail in. 
Finally, and as an illustration of the output this model was capable of producing, it was found that if 
this material had been in operation for around 15 years at 823 K and 130 MPa, the chances of it failing 
in the next year is around 35%. However, if this material had been in operation for around 25 years 
under this condition, the chances of it failing in the next year rose dramatically to around 80%. 
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Appendix A. The Generalised F Family of Failure Time Distributions 

Using the change of variables technique, and substituting Z = (Y − μ)/b into the pdf of Equation (9c) 
in Section 3.1.2 yields 
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Using β = 1/b, λ = exp(−μ) and T = exp(Y), it follows that 
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Substituting Equation (A2) into Equation (A1) and using the change of variable technique then 
gives the pdf for T 
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This equation is not valid when k1 = k2 = ∞, which corresponds to the log normal distribution. 
Abramowitz and Stegun [44] show that the gamma function can be approximated by 
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and based on this approximation, it follows that Г (k + 1) = kГ(k) and Г(1) = 1. As mentioned in the 
main text, Z is a standardised variable, and its mean (or expected value E) and its variance are given 
by 

E[Z] = Ψ(k1) − Ψ(k2) + ln(k2) − ln(k1) (A5) 

Var[Z] = Ψ/(k1) + Ψ/(k2) (A6) 

where Var(Z) reads the variance of Z and the di (Ψ) and tri (Ψ/) gamma functions are the first and 
second derivatives respectively of the log gamma function with respect to k and so 
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The distribution of Z is degenerate in that as either k1 or k2 tends to infinity, Ψ/(k) tends to zero 
and so the variance of Z tends also to zero, i.e., the pdf for Z collapses to a single point. However, 
from the rules behind computing expected values, it follows that Var(W) = δ2Var(Z). 

For example, as k2 → ∞, δ2 → k1, Ψ/(k2) → 0 and Ψ/(k1) → 1/k1 and so Var[W] → 1. Thus, W has a 
non-degenerate distribution. 

It follows from Equations (A7) and (A8) and the rules of expected values that: 

E[Y] = μ + bE[Z] (A9) 
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and  

Var(Y) = b2Var(Z) (A10) 

where Var(Y) is the variance of Y. Meeker and Escobar [45] have shown that, when k2 > 1/β the mean 
and variance for T are given by 
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There is no closed form expression for the survivor function, but the pth percentile for T is given 
by 

tp = exp(μ)(wk1,k2,p)(b/δ) (A12) 

where wk1,k2,p is the pth quantile of an F distribution with (2k1, 2k2) degrees of freedom. tp can thus be 
computed for various values of p and a plot of 1 − p against tp defines the survivor function for T. 

Appendix A.1. The Generalized Logistic Family 

Appendix A.1.1. The Burr XII [46] Distribution (k1 = 1) 

Setting k1 = 1 into Equation (A3) gives 
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Further when k1 = 1, Г(1 + k2) = k2 Г(k2) and so Г(k2)/Г(1 + k2) = 1/k2 and Equation (A13) becomes 
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The survivor function is therefore given by 
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Substituting k1 = 1 into Equation (A11) leads to the following expressions for the mean and 
variance of T 

  


/1
2

2

1
2

1

)(

)()1(1
][ k

k

k
TE







  

and  

  22/
2

2

1
2

1

2
]E[

)(

)2()2Γ(11
]Var[ Tk

k

k
T 










  

  



Materials 2017, 10, 1190  26 of 30 

 

Appendix A.1.2. The Burr III Distribution (k2 = 1) 

Setting k2 = 1 into Equation (A3) gives 
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Appendix A.1.3. The Log-Logistic [47] Distribution (k1 = k2 = 1) 

Setting k1 = k2 = 1 into Equation (A3) gives 
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The survivor function can easily be found by substituting k2 = 1 into Equation (A13) 
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Substituting k1 = k2 = 1 into Equation (A11) leads to the following expressions for the mean and 
variance of T 
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The Gumbel [48] distribution has a similar restriction, k1 = k2. 

Appendix A.1.4. The Logistic Distribution (k1 = k2 = σ = 1) 

σ = 1 implies β = 1, Setting k1 = k2 = 1 into Equation (A3) gives 
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The survivor function can easily be found by substituting β = 1 into Equation (A17) 
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Appendix A.2. The Generalised Gamma Family 

Appendix A.2.1. The Generalised Gamma Distribution (k2 = ∞) 

Prentice [37] has shown that, when k2 = ∞, Equation (9c) in Section 3.1.2 reduces to  
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Again, using β = 1/b, λ = exp(−μ) and T = exp(Y), and the change of variable technique  
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Appendix A.2.2. The Weibull (k1 = 1) [49] and Exponential Distributions (k1 = 1 = σ) 

Inserting k1 = 1 into Equation (A22) yields the well-known Weibull distribution 
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Closed form expressions exist for the survivor and hazard function of the Weibull  
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As k2 tends to infinity it can be shown that  
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and substituting this expression and k1 = 1 into Equation (A11) gives the formulas for the mean and 
variance of T when this variable is Weibull distributed 
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If σ also equals 1, then β = 1 and the Weibull distribution collapses to the exponential distribution 

)](exp[])(exp[)λ()f( 111 tttt     (A28) 

Substituting β = 1 into the survivor and hazard functions of the Weibull distribution then gives 
these functions for the exponential distribution 
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Given Г(2) = Г(1) = 1 and, Г(3) = 2, 
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Appendix A.2.3. The Gamma [50] Distribution (σ = 1). 

σ = 1 implies β = 1/1 k  and so  
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Appendix A.2.4. The Log Normal Distribution (k1 = k2 = ∞) 

Lawless [51] has shown that the distribution for W when k2 = ∞ 

 1

1
/

11
1

50
1 eexp

)Γ(
)f( kw

.k

kwk
k

k
w 



 (A32) 

tends to  
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as k1 → ∞. This is the equation for a standard normal distribution, so W is a standard normal variate 
with mean zero and standard deviation of 1. This then implies Y is normally distributed and therefore 
T is log normally distributed with pdf 
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