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0. Numerical Implementation1

The complete set of equations to be solved can be reiterated as follows,

˙̂εe
= ˙̂ε− ˙̂εp ,

˙̂εp
= γ̇∂σ̂Φp ,

˙̂σ = Ce : ˙̂εe ,
ėp = γ̇η : ∂σ̂Φp ,
ḟ = γ̇ [ANη+ BG] : ∂σ̂Φp .


(1)

η := σ̂/
[
[1− f ] σy

]
and BG = BG ( f , dev σ̂) is defined as

BG := [1− f ] 1 + kw f
w (dev σ̂)

σeq
dev σ̂ . (2)

For solving Eqs. (1), an elastic predictor−plastic corrector type of algorithm is used. Letting ∆ (•) =2

∆t× (•̇), the subscript n + 1 denote the (unknown) step at time tn+1 and n denote the (known) step at3

time tn, the solution
{

σ̂n+1, ep
n+1, fn+1

}
is sought for the given

{
T̂n, ep

n, fn

}
and the strain increment4

∆ε̂ with ∆t = tn+1 − tn. The corresponding operator-split is summarized in Table S1.

Table S1. Elastic predictor−plastic corrector type operator split.

Total Elastic predictor Plastic corrector
∆ε̂ 6= 0
∆ε̂p 6= 0
∆σ̂ 6= 0
∆ep 6= 0
∆ f 6= 0

 =


∆ε̂ 6= 0
∆ε̂p = 0
∆σ̂ = Ce : ∆ε̂
∆ep = 0
∆ f = 0

 +


∆ε̂ = 0
∆ε̂p 6= 0
∆σ̂ = −Ce : ∆ε̂p

∆ep 6= 0
∆ f 6= 0

.

5

Elastic Predictor6

Here, a trial step is realized assuming the strain increment ∆ε̂ is purely elastic. Once the7

corresponding value of the flow potential Φp,trial
n+1 is smaller than zero, i.e. Φp,trial

n+1 < 0, the trial8

step is assumed to be correct, otherwise a plastic correction is required.9

Plastic Corrector10

The semi-implicit plastic corrector algorithm relies on exploitation of the first order Taylor series11

expansion of the yield potential around a known step 〈i〉12

Φp〈i+1〉
n+1 ≈ Φp〈i〉

n+1 + r〈i〉n+1 : δσ̂
〈i〉
n+1 + ξ

〈i〉
n+1δep〈i〉

n+1 + ς
〈i〉
n+1δ f 〈i〉n+1 + v

〈i〉
n+1δėp,〈i〉

n+1 , (3)

where
r := ∂σ̂Φp = ∂σeq Φp∂σ̂σeq + ∂σm Φp∂σ̂σm,
ξ := ∂ep Φp = ∂σy Φp∂ep σy,
ς := ∂ f Φp = 2q1 cosh

(
[3/2]

[
q2σm/σy

])
− 2 f q3,

v := ∂ėp Φp = ∂σy Φp∂ėσy .

 (4)

https://orcid.org/0000-0000-000-000X


Version August 14, 2017 submitted to Materials S2 of S4

The increments δ (•)〈i〉 = (•)〈i+1〉 − (•)〈i〉 in (3) read

δσ̂
〈i〉
n+1 = −δγ

〈i〉
n+1C

e : r〈i〉n+1,

δep〈i〉
n+1 = δγ

〈i〉
n+1η

〈i〉
n+1 : r〈i〉n+1,

δ f 〈i〉n+1 = δγ
〈i〉
n+1

[
A〈i〉N,n+1η

〈i〉
n+1 + B〈i〉G,n+1

]
: r〈i〉n+1,

δėp,〈i〉
n+1 = δep〈i〉

n+1/∆t .

 (5)

Using the condition Φp〈i+1〉
n+1 = 0 as required, and substituting (3) into the right-hand side of (5) which

allows factoring out the incremental plasticity parameter, we find δγ
〈i〉
n+1 as

δγ
〈i〉
n+1 =

Φp〈i〉
n+1

r〈i〉n+1 : Ce : r〈i〉n+1 + r〈i〉n+1 : D〈i〉n+1

, (6)

where

D〈i〉n+1 =

ξ
〈i〉
n+1 +

v
〈i〉
n+1
∆t

 η
〈i〉
n+1 + ς

〈i〉
n+1

[
A〈i〉N,n+1η

〈i〉
n+1 + B〈i〉G,n+1

]
. (7)

We start the iterations by assigning an initial guess to the plastic multiplier ∆γ
〈0〉
n+1. This depends on13

the rate dependence of hardening which is assumed to vanish for ėp < ėp
0 , that is ry = 1 as ėp < ėp

0 .14

Consequent numerical difficulty pertaining to the hardening discontinuity is remedied following in the15

lines of [1]. Consequently, once Φp
(

∆t× ėp
0

)
> 0 we use the initial guess ∆γ

〈0〉
n+1 = ∆t× ėp

0 , otherwise16

∆γ
〈0〉
n+1 = 0. State variable updates (•)〈i+1〉 = (•)〈i〉 + δ (•)〈i〉 are continued throughout the iterations17

〈i〉 for the computed increment of the plastic multiplier in (6), until Φp〈i+1〉
n+1 ≈ 0 with a desired accuracy.18

The stress tensor is then rotated back to the current coordinates viz σn+1 = Rn+1 · σ̂n+1 · R>n+1.19

1. Verification of Implementation through Benchmark Problems20

The verification of the implementation is done using the benchmark studies presented in [2], where21

the problems involve uniform field tests conducted on a single finite element with side length of 122

mm. The first problem uses Gurson’s model without shear extension which agrees with the solution of23

the current framework for kw=0. The second problem compares numerical solutions with analytically24

handled results for different kw values.25

1.1. Dilatation26

Dilatation in three directions is supplied by loading three faces of a cube by 0.01 m/s in normal27

direction while the other three faces are let stationary. In addition, all faces are given expansion free28

boundary conditions. The elastic material parameters are selected as E = 200 GPa and ν =0.3. The29

elastic limit of the matrix material is defined by σy0 = 200 MPa. A power law function σy
[
Eep/σy

]n
30

with n = 0.1 is supplied as the flow curve. Extended Gurson’s model parameters are selected as31

q1 = q2 = q3 = 1. The initial void volume fraction is taken as f0 = 0.005. Strain dependent void32

nucleation parameters are taken as eN = 0.3, SN = 0.1 and fN = 0.04. Coalescence parameters are33

chosen to be fc = 0.15 and f f = 0.25. To create a comparison basis with the ABAQUS implementation34

where shear extension does not exist, the shear parameter is set as kw = 0. In Figure S1, comparisons35

are presented between ABAQUS built-in Gurson model (Keyword *Porous Plasticity) and current36

VUMAT implementation using the same input parameters. The results for the modified and original37

Gurson models are identical for uniform expansion as the figures reveal.38
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Figure S1. ABAQUS built-in model and VUMAT implementation comparisons for (a) σm/σy0, (b) void
volume fraction histories during the dilatational loading.

1.2. Simple Shear39

This problem is executed by excluding void nucleation and growth due to triaxiality and coalescence
acceleration to facilitate a comparison with the following analytical solutions for f and σeq which
neglect elasticity for simple shear in (e1, e3) plane [2]

f = f0 exp (kwep) and
σeq

σy0
=

[
Eep

σY

]n
[1− f0 exp (kwep)] (8)

The rest of the material parameters selected are identical to the previous problem. Simple shearing is40

supplied by loading one face with 0.01 m/s to obtain σ = τ [e1 ⊗ e3 + e3 ⊗ e1].41
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Figure S2. Analytical solution and VUMAT implementation comparisons for (a) σeq/σy0, (b) Void
volume fraction histories during the shear loading.

As given in Figure S2 the resulting curves from the VUMAT implementations are in complete agreement42

with those of the analytical solution. As a conclusion, for kw > 0 damage growth under shear43

stresses becomes exponential and increasing kw reduces the localization and fracture strains that could44
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be reached. For kw = 0 conventional Gurson’s model response is carried out without an explicit45

dependence on shear.46

2. Analysis of the Effectiveness of Delocalization47

In order to verify the regularisation property of the developed nonlocal framework, plane strain tensile48

tests on imperfect models are realized. The imperfections are introduced as a smoothly distributed49

width change by 98% to the initially square domains with edges of 1 mm. Three cases with different50

element sizes h = 0.05 mm, h = 0.025 mm and h = 0.0125 mm are run. Thermal effects as an additional51

source of softening are switched off. The analysis is conducted for the ductile interaction radius52

of R = 0, which corresponds to the local analysis, and for R = 0.15 mm. As the contour plots for53

porosity development at the deformed configuration given in Figure S3 suggests, for the local analysis54

strong mesh dependence occurs as the mesh is refined a continuous reduction of the localization size55

results even at relatively low amounts of voidage which shows a clear loss of uniqueness. On the56

simulation results accounting for nonlocality however, it is seen that the localization band width as57

well as the magnitude of the maximum observed porosity could be kept constant. This verifies the58

desired delocalization and regularisation property of the developed framework.59

(a) (b) (c)

Figure S3. Total damage contours and localization patterns for local (top) and nonlocal (bottom)
formulations for three different element sizes, (a) 0.05 mm, (b) 0.025 mm and (c) 0.0125 mm. The rows
differ in investigated time steps since they represent different formulations whereas the columns do
not.
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