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Abstract: Dy single-molecule magnets (SMMs), which have several potential uses in a variety of
applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes
(MWCNTs) by using a capillary method. Encapsulation was confirmed by using transmission electron
microscopy (TEM). In alternating current magnetic measurements, the magnetic susceptibilities of
the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs,
meaning that this hybrid can be used as magnetic materials in devices.
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1. Introduction

Single-molecule magnets (SMMs) [1–4], which are composed of isolated molecules, usually with
large spin angular momenta (S) in the ground state and strong uniaxial magnetic anisotropies (D),
exhibit an extensive range of functional properties, like magnetic bistability [1], quantum tunneling
of magnetization [5–8], and quantum coherence [9]. Thus, they can be considered as not only
molecular equivalents of classical bulk ferromagnets but also as next-generation quantum magnets.
Therefore, SMMs are being developed for application in memory storage and in the processing of
quantum information [10,11]. Moreover, novel applications of SMMs, including their use in molecular
spintronics [12] and quantum computing [13], are being explored.

To use SMMs, we must be able to exploit the functionality of individual SMM molecules and
combine them with other functional materials. There have been a few reports on combining SMMs
with materials. For example, SMMs have been combined with carbon nanotubes (CNTs) [14] and
graphene [15]. From these examples, when lanthanoid SMMs interact with nanocarbon materials,
their electronic properties are affected. Another example involves the encapsulation of SMMs into
nanoscopic one-dimensional pores, such as the internal nano-space of CNTs [16] and metal-organic
frameworks [17], in which SMMs become aligned and their magnetic properties are controlled.
SMM-nanomaterial hybrids may have new structures and unique physical properties. If SMMs
are encapsulated in one-dimensional pores, the stacking structure can be controlled, and the SMM
properties should be enhanced. Furthermore, when SMMs are encapsulated in CNTs, they are protected
from the surrounding environment, and thus, the hybrids are easier to use in real applications.
However, little has been reported on lanthanoid SMMs encapsulated inside CNTs. In this work,
we encapsulated Dy acetylacetonato SMMs [18] in multi-walled CNTs (MWCNTs) by using a capillary
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method [19,20]. Encapsulation was verified by using transmission electron microscopy (TEM). It was
shown that Dy complexes maintained their SMM-like properties in the MWCNTs.

2. Results and Discussion

2.1. Synthesis

MWCNTs with an internal diameter of ~5 nm were purified by using centrifugation [21], and then
the end-caps were opened by heating in air. The impurities in the internal nano-space were removed
by heating in a vacuum. Next, Dy(acac)3(H2O)2 was dissolved in 1,2-dichloroethane, and the solution
was heated at 65 ◦C for 2 h to obtain a saturated solution. Cap-opened MWCNTs were added to the
saturated solution and dispersed by using ultrasonication. Then the solution was left to stand for
3 d in order to encapsulate Dy(acac)3(H2O)2 into the MWCNTs via a capillary phenomenon [19,20].
After filtering and washing the surfaces with 1,2-dichloroethane, Dy(acac)3(H2O)2 encapsulated in
MWCNTs (Dy(acac)3(H2O)2@MWCNTs) were obtained.

2.2. Transmission Electron Microscopy, Elemental Analysis and Thermogravimetry

TEM was used to view the interior of the MWCNT hybrids; the structure images are illustrated
in Figure 1a. In the TEM images, only Dy(acac)3(H2O)2@MWCNTs as free-standing entities were
observed, and there were no complexes on the external surfaces of the MWCNTs (Figure 1b).
In enlarged images, a stark contrast between the Dy(acac)3(H2O)2@MWCNT (Figure 1c) and the
empty MWCNTs was observed, as shown in Supplementary Materials Figure S1, showing that
Dy(acac)3(H2O)2 was encapsulated. In order to confirm the encapsulation and characterize the
material present inside the MWCNTs, energy-dispersive X-ray (EDX) spectroscopy was used to
detect the Dy ions (Figure 1d). The results clearly indicate that Dy(acac)3(H2O)2 is encapsulated
in the MWCNTs. Thermogravimetric analysis (TGA) was performed on pristine MWCNTs and
Dy(acac)3(H2O)2@MWCNT (Figure 2). For the pristine MWCNTs, when T > 600 ◦C, all of the carbon
was lost as CO2. However, in the case of Dy(acac)3(H2O)2@MWCNT, 22.3 wt % of a white compound
remained even when T > 1000 ◦C. This material is thought to be Dy2O3. From the TGA data, the amount
of Dy(acac)3(H2O)2 was estimated to be 1.2 mmol in 1 g of Dy(acac)3(H2O)2@MWCNT.
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Figure 1. (a) Drawings of Dy(acac)3(H2O)2 complex and the complexes encapsulated in multi-walled
carbon nanotubes (MWCNT); (b) Low magnification and (c) high magnification transmission electron
microscopy (TEM) images of Dy(acac)3(H2O)2@MWCNTs; (d) energy dispersive X-ray spectroscopy
(EDX) spectrum acquired for the sample in (c).
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In magnetization (M) vs. H plots, shown in Figure 3b, magnetic hysteresis was not observed. In 
the case of Dy(acac)3(H2O)2 diluted with 20 equivalents of Y(acac)3(H2O)2, slight hysteresis has been 
observed at 2 K because the distance between each Dy(acac)3(H2O)2 is large and quantum tunneling 
of the magnetization (QTM) is suppressed [18]. Therefore, QTM is not suppressed for the 
Dy(acac)3(H2O)2@MWCNTs. In addition, it is possible that the coordination environment of 
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Figure 2. Thermogravimetric analyses of empty MWCNTs (black) and Dy(acac)3(H2O)2@MWCNTs (red).

2.3. Magnetic Properties

To determine the effects of encapsulation of the SMMs in MWCNTs on the magnetic properties,
both static and dynamic magnetic measurements on Dy(acac)3(H2O)2@MWCNTs were performed,
and the results were compared with those for free Dy complexes. Direct current (DC) measurements
were used to obtain molar magnetic susceptibilities (χm), which depended on T and the magnetic
field (H). χmT-T plots for Dy(acac)3(H2O)2@MWCNTs and pure Dy(acac)3(H2O)2 are shown in
Figure 3a. After correcting the diamagnetism of the MWCNTs (see Supplementary Materials
Figure S2), we determined the χm values for Dy(acac)3(H2O)2@MWCNTs by using the ratio obtained
from TGA, and the resulting χmT value at 300 K agrees with that for an isolated Dy(III) ion
(14.2 cm3·K·mol−1), which suggests that the estimated amount of Dy(acac)3(H2O)2 is reliable.
χmT values for Dy(acac)3(H2O)2@MWCNTs decreased with a decrease in T, whereas those for pure
Dy(acac)3(H2O)2 did not. This difference was ascribed to depopulation of high energy mJ states due to
configurational and orientational changes in the ligands upon encapsulation [22,23].
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In magnetization (M) vs. H plots, shown in Figure 3b, magnetic hysteresis was not observed.
In the case of Dy(acac)3(H2O)2 diluted with 20 equivalents of Y(acac)3(H2O)2, slight hysteresis has
been observed at 2 K because the distance between each Dy(acac)3(H2O)2 is large and quantum
tunneling of the magnetization (QTM) is suppressed [18]. Therefore, QTM is not suppressed for
the Dy(acac)3(H2O)2@MWCNTs. In addition, it is possible that the coordination environment of
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Dy(acac)3(H2O)2 changed upon encapsulation in the MWCNTs, which promotes the QTM process
and shortens the relaxation time. Similar behavior for Mn12-acetate SMMs encapsulated in MWCNTs
has been reported [16]. In other words, no hysteresis was observed for the Dy hybrids. Thus, by
controlling the coordination environment via encapsulation in CNTs, the relaxation time of the SMMs
can be tuned.

Next, the dynamic magnetic properties were studied, and the results are shown in Figure 4.
For Dy(acac)3(H2O)2@MWCNTs, an out-of-phase (χ”) signal, which is indicative of slow relaxation
of M, was observed. Furthermore, both the in-phase (χ′) and χ” signals were frequency dependent.
This dependence is due to the Dy(acac)3(H2O)2 complexes because the susceptibilities of the MWCNTs
themselves are not frequency dependent (Supplementary Materials Figure S3). These results indicate
that the observed slow relaxation is due to SMM behavior, that is, there is an energy barrier for
relaxation of the magnetic moment even inside the MWCNTs. However, there was no peak top for
the Dy(acac)3(H2O)2@MWCNTs in the frequency range of 1–1000 Hz, whereas a clear peak top was
observed for the pure complex (Supplementary Materials Figure S4). As seen in Figure 4b, peak top
values of χ” shifted towards higher frequencies. This indicates that the relaxation times for the hybrids
are faster than those for the pure complex. In the χ” versus T plots shown in Figure 5a, a peak top was
still observed in the T region below 2 K, indicating that the magnetic moment was not frozen and that
a different relaxation process, like QTM process, was dominant in the low-T region. We estimated the
pre-exponential factor τ0 and the activation energy ∆E from χ”/χ′ versus T−1 (6–10 K) plots, shown
in Figure 5b, in the ν range of 240–1103 Hz by using the Kramers-Kronig equation [23–27]:

χ′′/χ′ = ωτ (1)

χ′′/χ′ = ωτ0 + exp (∆E/kBT) (2)

ln
(
χ′′/χ′

)
= ln(ωτ0) + ∆E/kBT (3)

where ω (=2πν) is the angular frequency. By fitting the data, the τ0 and ∆E for
Dy(acac)3(H2O)2@MWCNTs were estimated to be in the range of 10−6–10−7 s and 4–5 cm−1,
respectively (Supplementary Materials Table S1). For pure Dy(acac)3(H2O)2, τ0 and ∆E were
determined to be 8.0 × 10−7 s and 45.9 cm−1, respectively [18]. We think that ∆E for the hybrids is
lower because of a conformational change in Dy(acac)3(H2O)2 inside the MWCNTs. The values are
consistent with the decrease in the χmT value and magnetic hysteresis behavior.
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Figure 4. Frequency dependence of the (a) in-phase (χ′) and (b) out-of-phase (χ”) AC magnetic
susceptibilities of Dy(acac)3(H2O)2@MWCNTs. The measurements were performed in an HDC of 0 Oe
and HAC of 3 Oe in the T range of 1.85–10 K. The solid lines are guides for eyes.
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3. Materials and Methods

3.1. General

Distilled water was obtained from a EYELA STILL ACE SA-2100E deionizer (Tokyo
Rikakikai Co., Ltd., Tokyo, Japan). Dy(acac)3(H2O)2 (STREM Chemicals, Inc., Newburyport, MA,
USA), 1,2-dichloroethane and methanol (Wako Pure Chemical Industries, Ltd., Osaka, Japan) were
used as received. MWCNTs synthesized by using the CoMoCAT™ catalytic chemical vapor deposition
method with outer diameters of 10 ± 0.1 nm, inner diameters of 4.5 ± 0.5 nm, and lengths of 3–6 µm
(Sigma-Aldrich Co. LLC., St. Louis, MO, USA) were purchased and used after removing the magnetic
impurities by using a centrifugation method [21]. The MWCNTs (30 mg) were dispersed with 60 mL of
1 wt % sodium cholate in water by using ultrasonication with a tip-type sonicator (UP200S, Hielscher
Ultrasonics GmbH, Teltow, Germany). The obtained black suspension was centrifuged at 18,500 rpm
for ~1 h using a tabletop centrifuge (AS185, AS ONE Co., Osaka, Japan), and the upper 80% of
the supernatant was collected. The well-dispersed MWCNTs were aggregated by adding methanol
and filtered over a Kiriyama filter (Kiriyama glass Co., Tokyo, Japan) having a pore size of 1 µm.
The aggregates were then washed with excess methanol and dried at 200 ◦C in a vacuum overnight,
affording 15 mg of purified MWCNT buckypaper.

3.2. Synthesis

Purified MWCNTs were decapped by heating at 550 ◦C for 5 min in air and degassed by heating in
a vacuum just before using. To a saturated solution of Dy(acac)3(H2O)2 in 10 mL of 1,2-dichloroethane,
which was heated at 65 ◦C for about 2 h to ensure that Dy(acac)3(H2O)2 dissolved as much as possible,
10 mg of decapped MWCNTs were added. After 5 min of ultrasonication using a bath-type sonicator
and letting stand for 3 d, MWCNTs were collected by filtration and washed with 1,2-dichloroethane to
completely remove the Dy(acac)3(H2O)2 from the surfaces of the MWCNTs.

3.3. TEM Observation

High-resolution transmission electron microscopy (TEM) and energy dispersive X-ray
spectroscopy (EDX) were carried out using a JEM2100F (acceleration voltage; 200 kV, JEOL Ltd.,
Tokyo, Japan) with dry SD30GV detector (JEOL Ltd., Tokyo, Japan). The sample was dispersed in
methanol and deposited on a carbon-coated Cu grid, which was dried by heating overnight at 100 ◦C
in a 10−4 Pa vacuum before TEM was performed.



Materials 2017, 10, 7 6 of 8

3.4. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed on a SHIMADZU DTG-60 (Shimadzu
Corporation, Kyoto, Japan) using aluminum oxide powder as a standard material. Several milligrams
of the sample were put in an aluminum cell, and the cell was heated to 1000 ◦C with a heating rate of
2 ◦C/min.

3.5. Magnetic Susceptibility Measurement

Magnetic susceptibility measurements were performed on a SQUID magnetometer
(model MPMS-XL SQUID magnetometer, Quantum Design, Inc., San Diego, CA, USA). Samples
were put into gelatin capsules, and eicosane was added to fix the samples during the measurement.
DC measurements for Dy(acac)3(H2O)2 were performed in an HDC of 500 Oe, and those for the purified
MWCNTs and Dy(acac)3(H2O)2@MWCNTs were recorded in HDC of 1000 Oe. T was changed from
300 K to 1.85 K with a sweep rate of 1 K/min. Field dependent DC measurements were performed
at 1.85 K while changing the magnetic field as follows: 0 Oe→ 70 kOe→−70 kOe→ 70 kOe.
AC measurements were recorded in an HAC of 3 Oe in the frequency range of 1–1500 Hz and T range
of 1.85–10 K. Diamagnetic contributions from the eicosane and Dy(acac)3(H2O)2 were corrected
by using Pascal’s constants, and then the magnetic susceptibility for the purified MWCNTs was
subtracted from that for Dy(acac)3(H2O)2@MWCNTs. Magnetic moments χCNT, χCNT

′ and χCNT”
(Supplementary Materials Figures S2 and S3) were obtained by normalizing the obtained magnetic
moments with the mass of CNT after applying the diamagnetic corrections.

4. Conclusions

In this work, we encapsulated Dy(acac)3(H2O)2 SMMs in the internal nanospace of MWCNTs
by using a capillary method. Encapsulation was confirmed by using TEM. From AC magnetic
susceptibility measurements, both the in-phase and out-of-phase signals were clearly frequency
dependent, indicating that Dy(acac)3(H2O)2 complexes still exhibited SMM-like properties. To the best
of our knowledge, this is the first example of a lanthanoid SMM encapsulated in CNTs. Although the
encapsulation of Dy(acac)3(H2O)2 into MWCNTs did not enhance the SMM properties, this work shows
that it is possible to control the coordination environment and tune the magnetic properties of SMMs
via encapsulation. In addition, we believe that the magnetic and electronic properties of lanthanoid
SMM-CNT hybrids can be combined to bring about new applications in devices, like spintronic devices.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/1/7/s1.
Figure S1: TEM image and EDX spectrum of empty MWCNT, Figure S2: χCNT and χCNTT vs. T plots for
MWCNT and Dy(acac)3(H2O)2@MWCNTs without correction for the diamagnetism of the MWCNTs, Figure S3:
Temperature-dependence of the in-phase (χ′) and out-of-phase (χ”) AC magnetic susceptibilities of MWCNT
and Dy(acac)3(H2O)2@MWCNTs, Figure S4: Frequency-dependence of χ′ and χ” AC magnetic susceptibilities of
Dy(acac)3(H2O)2, Table S1: Selected values of ∆E and τ0 for Dy(acac)3(H2O)2@MWCNTs.
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