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Abstract: The filling of strand corrosion products during concrete crack propagation is investigated
experimentally in the present paper. The effects of stirrups on the filling of corrosion products and
concrete cracking are clarified. A prediction model of crack width is developed incorporating the
filling proportion of corrosion products and the twisting shape of the strand. Experimental data on
cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete
beams are presented. The proposed model is verified by experimental data. Results show that the
filling extent of corrosion products varies with crack propagation. The rust filling extent increases with
the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains
stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation
and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss.
The prediction of corrosion-induced crack is sensitive to the rust-filling extent.
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1. Introduction

Steel corrosion has been identified as one of the most deteriorating factors in concrete
structures [1,2]. During the corrosion process, the metallic iron is transformed to corrosion products [3,4].
This reaction would create an expansive pressure around the concrete and lead to concrete cracking [5].
The corrosion solution can easy diffuse to steel surface through the concrete cracks, which would
further accelerate the corrosion of steel [6]. In addition, concrete cracking also weakens the bond
between steel and concrete [7,8]. These coupling effects decrease the durability and safety of concrete
structures. Cover cracking has been considered as an indicator of the service life end for the existing
concrete structures [9].

A considerable number of studies have been undertaken on corrosion-induced cracking of
reinforced concrete (RC) structures. The amount of corrosion products penetrating into cracks have
also attracted attention. In early studies, some researchers considered that corrosion products fully
filled cracks before cover cracking [10,11]. The recent detections of some existing structures, however,
indicate that corrosion products could not fully fill cracks. This consideration may overestimate the
filling effect of corrosion products. Zhao et al. [12,13] found that corrosion products exhibited the
non-uniform spatial distribution and did not fill cracks inside concrete. Lu et al. [14] reported that
the cracks were not completely filled by corrosion products and the coefficients were introduced to
quantify the filling of corrosion products. These studies focus on the filling of corrosion products before
cover cracking. After cover cracking, non-destructive studies were used to monitor the distribution of
corrosion products [15]. Cracks were being filled with corrosion products gradually over time [16].
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The composition and distribution of chloride-induced corrosion products in cracked concrete subjected
to different loading conditions were also investigated [17]. The filling of corrosion products depends
on many parameters, such as corrosion degree, steel type, and cover [18,19]. How to quantify the
filling of corrosion products is still under discussion.

Predicting crack width with corrosion loss is another important issue to investigate concrete
cracking. Torres-Acosta et al. [6,20] established an empirical relationship between crack width and
corrosion loss based on experimental data. The analytical crack width model considering the combined
effects of steel corrosion and applied load was also derived [21]. Khan et al. [22] predicted the steel
corrosion with crack width for a 26-year-old corroded reinforced concrete beam. These studies aimed
to investigate concrete cracking induced by corrosion of steel bars. The strand consists of several outer
wires twisted around a core wire and has a flower-like cross-section. Concrete cracking caused by
strand corrosion may be different from that caused by steel corrosion. For concrete structures reinforced
with strands, Dai et al. [23] assumed the filling proportion of corrosion products as a constant and
proposed a model to predict corrosion-induced cracking. A summary of studies on strand corrosion
and crack filling are given in Table 1. With further work, the present study aims to quantify the filling
proportion of corrosion products and develop a prediction model of crack width.

Table 1. Summary of studies on strand corrosion and crack filling.

References Specimens Investigation

Vu et al. [24] Steel wires Stress corrosion cracking on stress–strain response of
steel wires

Darmawan et al. [25] Pre-stressing wires Effect of pitting corrosion on capacity of pre-stressing wires

Vélez et al. [26] Pre-tensioned
concrete beams

Electrochemical characterization of early corrosion in
pre-stressed concrete

Pillai et al. [27] Strand Probabilistic models for the tensile strength of
corroding strands

Li et al. [28] Post-tensioned
concrete beams

Corrosion propagation of pre-stressing steel strands in
concrete subject to chloride attack

Wang et al. [29] Post-tensioned
concrete beams

Effect of insufficient grouting and strand corrosion on
flexural behavior of pre-stressed concrete beams

Rinaldi et al. [30] Pre-tensioned
concrete beams

Influence of strand corrosion on flexural behavior of
pre-stressed concrete beams

Li et al. [31] Parallel wire cables Fatigue properties of corroded parallel wire cables

Dai et al. [23] Post-tensioned
concrete beams Corrosion-induced cracking induced by strand corrosion

The proposed study investigates the filling of strand corrosion products during concrete cracking.
A prediction model of crack width is developed to consider the filling proportion of corrosion products
and the twisting shape of the strand. The present study is organized as follows: first, the experimental
design, including material properties, geometry dimensions, accelerated corrosion, and crack width
and corrosion loss measurements are introduced; next, the filling of corrosion products and crack
widths are discussed based on the experimental results. Following this, a model is proposed to
predict crack widths incorporating the filling proportion of corrosion products and the twisting
shape of the strand; finally, some conclusions are drawn based on the experimental results and the
theoretical analysis.

2. Experimental Program

In this section, the details of specimens are given at first. Next, the accelerated corrosion test is
employed to obtain various crack widths. Following this, the measurement methods of crack widths,
corrosion products and corrosion losses are exhibited. Details are shown below.
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2.1. Specimens Details

Twelve specimens were designed with a square cross-section of 150 mm × 150 mm, and 1200 mm
in length. The specimens were divided into two groups: group S and group RS. Each group consists of
six beams. In the group RS, stirrups with 8 mm diameter and 150 mm spacing were arranged. Group S
has no stirrups. The details of beams are shown in Figure 1.
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Figure 1. Details of the beam (unit: mm).

The specimens were arranged with a 15.2 mm diameter, seven-wire steel strand. Four deformed
bars with 10 mm diameters were used as the hanger bars at the corners of the beams. The covers
of the strand and reinforcement were 67.4 and 30 mm, respectively. A 100 mm polyvinyl chloride
(PVC) drive pipe was used to prevent the corrosion solution from flowing out from the beam end.
Tables 2 and 3 show the chemical compositions and mechanical characteristics of the steel. These data
in Table 2 are adapted from [28], with permission from © 2011 Elesevier. The cement used in concrete
was the Type 32.5 Portland cement. The Portland cement contains mainly CaO, SiO2, Fe2O3, and
Al2O3. The mix proportion and the 28-day compressive strength of concrete are given in Tables 4 and 5.
These data in Tables 3 and 5 are tested or obtained based on the method recommended in [32].

Table 2. Chemical compositions (wt %) of steel [28].

Type C Mn Si P S Cr Cu Ni Ti Al

Strand 0.82 0.74 0.21 0.012 0.006 0.17 0.09 0.03 0.03 0.03
Deformed bars 0.2 1.34 0.55 0.033 0.028 / / / / /

Table 3. Mechanical characteristics of steel [32].

Type Diameter (mm) Yield Strength (Mpa) Elastic Modulus (Gpa)

Strand 15.2 1830 195
Deformed bars (HRB335) 10 335 200
Deformed bars (HRB335) 8 335 200

Table 4. Concrete mix proportion.

Water to Cement Ratio Cement (kg/m3) Water (kg/m3) Sand (kg/m3) Stone (kg/m3)

0.43 417 179 676 1026

Table 5. Twenty-eight-day compressive strength of concrete [32].

Beams S6, S9, S10, S11, S12, S13 RS3, RS7, RS9, RS10, RS11, RS12

Concrete strength (MPa) 32.5 35.5

2.2. Accelerated Corrosion of the Strand

The artificially-accelerated corrosion method was employed to obtain various crack widths in the
beams [33]. To clarify the effect of strand corrosion on concrete cracking independently, reinforcement
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was protected with epoxy resin to prevent it from corrosion. The specimens were immersed in the 5%
sodium chloride (NaCl) solution in a designed tank. The corrosion system consisted of a direct current
potentiostat and a stainless steel plate. The strand acted as the anode, and the stainless steel plate
served as the cathode. The direct current flowed from the positive terminals of the potentiostat to the
strand, and then through saturated concrete and saline solution to the stainless steel plate, and finally
back to the negative terminals of the potentiostat. Figure 2 shows the accelerated corrosion system.
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Figure 2. Accelerated corrosion device: (a) Schematic diagram; and (b) photo.

The test specimens were immersed in the saline solution for three days before the accelerated
corrosion. The corrosion rate was determined by the current density. The corrosion current in the total
process was controlled at a constant 0.3 A. The corresponding current density was about 270 µA/cm2.
The theoretical mass loss was roughly estimated based on Faraday’s law. The corrosion times were
referred based on the relationship between the current intensity and mass loss. The accelerated
corrosion time for all the specimens were shown in Table 6.

Table 6. Accelerated time of specimens.

Beams Corrosion Time (Days)

S6 2
S9 9
S10 7
S11 3
S12 5
S13 6
RS3 7
RS7 8
RS9 14

RS10 9
RS11 3
RS12 3

2.3. Crack Width and Corrosion Loss Measurement

Microcracks form, firstly, in the cross-section when tangential stress exceeds the concrete tensile
strength. In the present study, these internal cracks in the fracture process zones are defined as “cracks”.
With increasing corrosion loss, the internal cracks could propagate to the concrete surface. The outer
cracks on the concrete surface usually extend and join together to be a continuous crack along the
specimen, which is named a longitudinal crack in the present study.

After the accelerated corrosion test, the longitudinal cracks were observed on the concrete surface.
The longitudinal cracks have different widths in various regions due to the uncertainty of corrosion
and material properties. A portable microscope with the resolution of 0.01 mm was used to measure
crack widths.
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To investigate the crack patterns in the radial direction and the filling of corrosion products in
cracks, four 15 mm-thick cross-sectional slices were cut out from each beam after the accelerated
corrosion. The location of the four slices is shown in Figure 1 and labeled as A, B, C, and D, respectively.
For example, the four slices of S6 are named as S6A, S6B, S6C, and S6D, respectively. The total number
of slices was 48. The cracking angle was used to describe the crack distribution in the radial direction.
Since the filling of corrosion products in cracks varied at different positions, the average rust-filling
depth was used to reflect the filling of corrosion products in cracks.

The cracking angle was measured using a contour gauge. In the present testing, the maximum
crack was selected to calculate the cracking angle. The measurement program was as follows: first, the
contour shapes of cracks in the radial direction were painted to graph paper; next, the sketch maps of
cracks were scanned into the computer. The cracking angle was defined as the angle of two sides of
the crack; finally, the cracking angles were calculated by the aided drafting program. More details on
the contour gauge can be seen in [34]. The rust-filling depth was also measured using similar methods.

Strand corrosion exhibited variability in various regions. Local area loss and average mass loss
were commonly used to evaluate the corrosion degree. Some experimental studies showed that
the average mass loss correlated well with the corrosion-induced crack widths for slightly corroded
reinforcement [35,36]. In the present experimental testing, slight corrosion loss was found to induce
cover cracking due to the large diameter of the strand. Therefore, the average mass loss of the strand
in 10 mm lengths was also employed to evaluate the corrosion degree.

The mass loss was measured after the accelerated corrosion, and the program was as follows.
First, concrete cover was removed by the destructive method. Next, the strand was taken out and the
concrete on its surface was removed by slightly knocking. Following this, the corroded strand was
cleaned by 12% hydrochloric acid solution and then neutralized with alkali [37]. The strand was kept
in the dry environment (relative humidity less than 25%). Finally, the average mass loss of the strand
in 10 mm length was measured.

3. Experimental Results and Discussion

3.1. Corrosion Morphology, Cracking Propagation, and Corrosion Loss

3.1.1. Corrosion Morphology of the Strand

Strand used in the present study includes the core wire and six outer wires. Figure 3 shows the
corrosion morphology of the strand. The strand showed pitting and crevice corrosion. Some small
corrosion pits were observed on the strand surface. These corrosion pits exhibited oval or circle and
their depths were small. Additionally, the gaps existed between the core wire and outer wires and
could provide a path for the flow of aggressive liquid, resulting in crevice corrosion.
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Figure 3. Corrosion morphology of strand: (a) Pitting and crevice corrosion; (b) crevice corrosion; and
(c) wire corrosion.

The movement of corrosive liquid along the crevices can lead to the range extension of corrosion
along the strand, which will accelerate the corrosion rate of the strand. Corrosion loss in the strand can
be higher than in steel reinforcement due to crevice effects, resulting in a larger corroding area per
unit length.

The corrosion rate of the steel increases with the increase of current density. The uniform corrosion
occurred with a low current density. For a high current density, pitting corrosion occurred extensively
on the steel surface [38]. In the present test, the current density was designed as the constant value.
More studies on various current densities are needed in the future.

3.1.2. Crack Width and Corrosion Loss

With corrosion propagation, the first visible crack was found through the portable microscope.
The crack then widened and extended along the corroded strand. Some corrosion products were found
to flow out from the longitudinal cracks. Figure 4 shows corrosion products on the concrete surface
from 10 mm to 110 mm for S6, S11, and S9, respectively. The average crack widths of S6, S11, and S9
are 0.13, 0.48, and 0.83 mm, respectively. Scarce corrosion products were found to flow out from the
narrow longitudinal cracks. With cracking propagation, more corrosion products appeared on the
concrete surface. The filling of corrosion products propagates with the widening crack.
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The beam ends were not immersed in the saline solution. Some radial cracks were still found at
the specimen ends due to the movement of corrosive liquid. Figure 5 shows the radial crack at the
beam end. The radial crack is vertically inclined to the concrete surface.
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Figure 5. Radial cracks at beam end: (a) One crack; (b) two cracks; and (c) three cracks.

Predicting strand corrosion is one of the most important procedures for structural degradation
evaluation. Corrosion loss is usually difficult to measure in terms of strands embedded into concrete.
Correspondingly, crack widths on the concrete surface are easy to obtain. Khan et al. [22] indicated
that crack width could correlate well with corrosion loss. In the present study, crack widths are also
employed to identify the corrosion degree of strand. Crack width and corrosion loss were measured in
10 mm length. Figures 6 and 7 show the relationship between crack width and corrosion loss for both
groups, respectively.
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The variation of crack width along beam length depends on corrosion degree. Under low corrosion
loss, the variation of crack width is small. With future increasing corrosion, the variation of crack
width increases. Additionally, it can be also found that the cracks in the middle span are usually
wider than that in the beam ends. The reason for this phenomenon is that just the middle span
of the beam has been immersed in the 5% sodium chloride (NaCl) solution during the accelerated
corrosion. The corrosion degrees of the strand at the end regions are smaller than that in the middle
span. Therefore, the crack in the middle span is wider than at the ends of the samples.

To analyze the effect of stirrups on crack width, the linear regression was used to describe the
relation between crack width and corrosion loss and given in Figure 8.
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As Figure 8 shows, stirrups exhibit a significant restraint effect on corrosion-induced cracking.
The cracks of Group S are wider than that of Group RS in the similar corrosion loss. The stirrups
can bear the tangential stress induced by expansive pressure. Using stirrups decreases the
corrosion-induced crack width. In practical engineering, increasing the amount of stirrups can restrain
the crack extension.

Strand corrosion easily leads to concrete cover cracking. Some studies have been performed to
improve the cracking resistance behavior of concrete. It has been reported that the supplementary
cementing materials can significantly improve the concrete resistance against chloride ingress,
lengthening the corrosion initiation time and cracking time of concrete structures under
chloride-affected environment [39,40].

3.1.3. Cracking Propagation

The crack feature inside concrete is an important issue to investigate cover cracking.
Crack propagation inside concrete is usually difficult to observe. To analyze the crack feature in
the radial direction, specimens were cut into 15 mm-thick slices. Figure 9a shows three cracks in a slice
and named as: crack A, crack B, and crack C.
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Figure 9. Schematic diagrams of the crack propagation: (a) Crack distribution; and (b) simplified
crack propagation.

As Figure 9 shows, crack A and crack C are the two forks of one crack in the cross-section.
This separation of the crack could be attributed to the existing aggregate near the bifurcation point.
Crack A is located in the inner concrete and did not extend to the concrete surface. Both cracks B and
C propagated to the concrete surface. Crack B varied small along the radial direction. Crack C was the
widest in the three cracks and it widened with the radius.

Cracks exhibit various width under different corrosion degrees. Figure 9b gives the schematic
diagram of crack propagation. Cracks exhibit three types of shapes at the different stages: the triangle,
the rectangle, and the trapezoid. The similar crack shapes were also observed in the literature [13].
Before cover cracking, the crack inside concrete seems like a triangle, shown as crack A. With increasing
corrosion, the crack propagates to the concrete surface, shown as crack B. This crack shape can still be
considered as a triangle. After the crack appears on the concrete surface, it widens and exhibits the
similar width in the radial direction. In this case, the crack shape is taken as a rectangle, shown as crack
C. With the future increase of corrosion degree, the crack becomes wider along the radial direction.
The crack shape is simplified as a trapezoid, shown as crack D. Corrosion products would accumulate
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at the strand-concrete interface and migrate from the interface to the concrete surface, which induce
the crack shapes to transform from the triangular to the rectangle.

As mentioned previously, each beam was cut into four 15 mm-thick cross-sectional slices. The total
number of slices was 48. The schematic diagram of cracking angle, θ, was given in Figure 9b.
The cracking angle mainly represents the variation of crack width in the radial direction. When
the crack narrows along the radius, the cracking angle is less than zero. With cracking propagation, the
cracking angle equals zero when the crack width is similar in the radial direction. After that, the crack
width on the concrete surface is larger than that at the interface. The cracking angle in this situation is
larger than zero. Figure 10 shows the linear regression and polynomial regression between tanθ and
corrosion loss.
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The tangent of cracking angle increases with increasing corrosion degree. The discreteness of the
correlation between tanθ and the corrosion loss may be attributed to the measurement uncertainty
of the crack width and the corrosion loss. Concrete is a heterogeneous material. The variability of
cracking propagation is inevitable.

As Figure 10 shows, the fitting precision of linear regression and polynomial regression are similar.
In the present study, the linear regression was used to describe the relation between tanθ and corrosion
loss and given as follows:

tan θ = aρ− b (1)

where θ is the cracking angle; a and b are the constants, for Group S, a = 0.1309, b = 0.0048, for Group
RS, a = 0.0999, b = 0.0040; and ρ is the corrosion loss of the strand.

3.2. Filling of Corrosion Products in Cracks

3.2.1. Composition of Corrosion Products

The compositions of corrosion products depends on the alkalinity degree, the oxygen supply, and
the moisture content [41]. Corrosion products also exhibit various colors at different regions in the
present study. Three colors of corrosion products were observed: black, brownish-red, and puce.

Figure 11 shows the black rust at the strand-concrete interface. The cover prevents the oxygen
from reaching the strand-concrete interface. For the reaction with some oxygen, the main compositions
of corrosion products are ferrous oxide (FeO) and ferroferric oxide (Fe3O4) [13,17]. The colors of FeO
and Fe3O4 are black. FeO is unstable and can easily become Fe3O4 in air. Therefore, Fe3O4 is considered
as the primarily composition of black rust.
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Figure 12 shows the brownish-red rust in cracks. Cracks provide a path for oxygen to the inner
concrete. The oxygen supply is sufficient in cracks. The color of iron oxide (Fe2O3) is brownish-red,
and Fe2O3 is regarded as the main composition of the brownish-red rust [13].
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As Figure 3 shows, the puce rust was found in the gaps between the core wire and outer wires.
The oxygen can reach the gaps with the flow of aggressive liquid. The oxygen supply in the gaps may
be lower than those in cracks, and higher than that at the strand-concrete interface. Therefore, the color
of rust in the gaps is between the black and the brownish-red.

3.2.2. Filling of Corrosion Products

Some corrosion products were observed to flow out from the longitudinal cracks during the
corrosion process. The slices were broken down to observe the filling of corrosion products in
cracks. Figure 12 shows the slices profiles of S6B, S9A, and S9C, respectively. Concrete slice profiles
were broken down along the widest cracks. Corrosion products filled principally in the widest
crack. In another small crack, a few corrosion products were found. The similar experimental
observations were also found by Šavija et al. [15]. In their study, the micro-computed X-ray tomography
technique (CT-scanning) was used to monitor corrosion products formation during corrosion process.
The scanning results showed that corrosion products principally penetrated into the widest crack,
and few corrosion products were observed in other small cracks. This phenomenon is similar to the
experimental observation obtained in the present study.

Figure 12 shows the profiles of concrete slices along the widest cracks. It should be noted that the
upper part of the profile is the position of the widest crack and the bottom part is the broken surface
obtained by the destruction method. As mentioned before, the corrosion products mainly filled in the
widest cracks. The salt water can also immerse into the cracks. Therefore, the upper part is overlaid by
the corrosion products and salt powders. Additionally, no aggregates can clearly be observed in that
region. The bottom part, however, is a new surface. Very few, or no, corrosion products can be found,
but the aggregates are clear in that region.

The filling of corrosion products depends on crack widths. The crack widths of the three slices in
Figure 12 are 0.08, 0.39, and 0.91 mm, respectively. The filling of corrosion products is slight in the
narrow crack. Corrosion products principally fill in the wide crack. Corrosion products propagate
with increasing crack width. The filling of corrosion products varies at different positions.

In the experimental testing, the volume of corrosion products is difficult to measure.
Correspondingly, the filling depth of corrosion products is easy to obtain. Based on the geometric
formula conversion, the volume of corrosion products can be obtained with the rust-filling depth.
Therefore, the rust-filling depth was used to describe the rust-filling ratio in the experimental testing.
The average rust-filling depth is used to represent the filling of corrosion products in the slice.
The rust-filling ratio, defined as the ratio of average rust-filling depth to cover, is employed to reflect
the filling of corrosion products:

f =
Ri
C

(2)

where f is the rust-filling ratio; Ri is the average rust-filling depth; and C is the concrete cover.
Before corrosion products full fill cracks, concrete cover would have cracked. From the

experimental testing, corrosion products cannot fully fill cracks, even with severe cracking.
The rust-filling ratio is defined as the ratio of the average rust-filling depth to the cover. Therefore, the
rust-filling ratio is less than 1.0.

Figure 13 shows the linear regression and polynomial regression of rust-filling ratio and crack
width. The rust-filling ratio increases with increasing crack width until a critical value. After that,
the rust-filling ratio can be taken as a constant. This constant is less than one and considered as the
maximum rust-filling ratio in the present study. The maximum rust-filling ratios of group S and group
RS are 0.85 and 0.88, respectively. The critical widths of maximum rust-filling ratio are 0.79 mm and
0.63 mm in group S and group RS, respectively.
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As Figure 13 shows, the rust-filling ratio increases faster in the specimens with stirrups than that
in the specimens without stirrups. The volume of corrosion products can be obtained with the crack
width and rust-filling ratio. In the similar corrosion loss, the volumes of corrosion products in Group S
and Group RS are the same. The stirrups can bear the tangential stress and decrease the crack width,
which would lead to the large rust-filling ratio.

The discreteness of correlation between the rust-filling ratio and crack width may be attributed
to the measurement uncertainty of crack width and corrosion loss. As Figure 13 shows, the fitting
precision of polynomial regression is larger than that of linear regression. The polynomial regression
was used to describe the relation between crack width and rust-filling ratio in the present study. Two
regressed curves of the rust-filling ratio are proposed for the both groups as follows:

fs = {
−0.773w2

s + 1.515ws + 0.1353; ws ≤ 0.79 mm
0.85; ws > 0.79 mm

(3a)

fr = {
−1.4938w2

r + 2.2011wr + 0.085; wr ≤ 0.63 mm
0.88; wr > 0.63 mm

(3b)

where fs and fr are the rust-filling ratios of group S and group RS, respectively; and ws and wr are the
crack widths of group S and group RS, respectively.

The specimens in the present study were immersed in the saline solution and accelerated by the
electrochemical corrosion. The rust-filling ratio obtained in this situation may be different from that in
natural corrosion. The longer corrosion time can induce the higher corrosion degree, which would
lead to the larger crack width and the deeper rust-filling depth.

It should be pointed out that cover depth, crack extension, corrosion rate, and corrosion
environment are size-dependent and can affect the filling of corrosion products. The different concrete
covers might induce the various filling extent of corrosion products. In the practical engineering
structure, the cover ranges from 30 to 50 mm based on the design code [32]. In the present testing, the
cover of 30 mm was used to investigate the filling of corrosion products in cracks. Different corrosion
rate may lead to the various filling extent of corrosion products. The rust-filling ratio obtained in the
electrochemical corrosion may be different from that in natural corrosion. More studies on the filling
of corrosion products in cracks are required.

4. Prediction Model of Crack Propagation

In this section, a model is proposed to predict the crack propagation based on corrosion loss.
The filling of corrosion products and geometric properties of the strand are incorporated in the model.
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During the corrosion process, corrosion products first fill the pores around the strand-concrete interface
and then contribute to the expansive pressure. After that, it would fill the corrosion-induced cracks.
With the principle of volume equal to the corrosion products, the relationship between the crack width
and corrosion loss can be obtained. Details are shown below.

4.1. Corrosion Products at the Micro-Crack Formation

The accumulation of corrosion products would create expansive pressure at the strand-concrete
interface. When the tangential stress reaches the concrete tensile strength, some micro-cracks would
form. Based on the radial deformation at the strand-concrete interface, the volume of corrosion
products at the micro-crack formation can be obtained.

The strand usually has a relative large diameter and slight corrosion may induce cover
cracking [23]. The distribution of corrosion products around the strand surface relates to the corrosion
degrees. Corrosion products are relatively uniform around the strand surface when the corrosion
degree is low [7]. With increasing corrosion loss, the strand corrosion products may exhibit the
non-uniform distribution. Non-uniform corrosion, compared with uniform corrosion, would induce
the large expansive pressure and accelerate the concrete cracking process. In the present experimental
observation, the strand corrosion degree was low and the depths of corrosion pits were small. In terms
of this phenomenon, corrosion products are simplified to uniformly distribute around the strand in
the prediction model. The expansion of corrosion products would produce a uniform pressure on the
surrounding concrete. Figure 14 shows the expansive deformation at the strand-concrete interface
caused by corrosion.Materials 2017, 10, 6  14 of 19 
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Figure 14. Expansive deformation at the strand-concrete interface.

The thick-walled cylinder model has been frequently employed to analyze the corrosion-induced
concrete cracking [3,8,11,21]. This model can be considered as an axisymmetric problem subject to the
uniform pressure, which can be further modeled as the plane stress problem under the symmetric
conditions [42]. The governing stress equilibrium in the radial direction is:

dσr

dr
+

σr − σθ

r
= 0 (4)

where σr and σθ are the radial stress and the tangential stress at any radius r.
For the plane stress problem under the symmetric conditions, the strain-displacement equation is

given as:

εr =
du
dr

(5a)

εθ =
u
r

(5b)
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where εr, εθ , and u are the radial strain, tangential strain, and radial displacement at any radius r.
The constitutive relationship between concrete stress and strain is:

σr =
Ec

(1− v2
c )
(εr + vcεθ) (6a)

σθ =
Ec

(1− v2
c )
(εθ + vcεr) (6b)

where Ec is the elastic modulus of concrete; vc is the Poisson’s ratio of concrete.
Since concrete is a heterogeneous material, a porous zone surrounds the strand-concrete interface.

Corrosion products first diffuse into the porous zone [43]. As corrosion products exceed the quantity
needed to fill the porous zone, these products generate expansive pressure. The radial pressure would
produce a concrete displacement. Combing Equations (4)–(6), the concrete displacement, δr, is:

δr =

(
R0 + δp

)
Ec

(1 + k + vc)Qc (7)

where k is a constant, k = 2
(

R0 + δp
)2/
[
C2 + 2C

(
R0 + δp

)]
; Qc is the expansive pressure; R0 is the

radius of the wire; C is the concrete cover; and δp is the thickness of the porous zone, δp = 10–20 µm [18].
Considering the geometric relationship, the volume of corrosion products per units of length at

the micro-crack formation, Vm, is:

Vm =
4πn
n− 1

[(R0 + δc − δs)
2 − R2

0] (8)

where n is rust expansion ratio, n = 2–4 [18]; δs is the radial loss of wire; and δc is the thickness of
corrosion products, δc = δs + δp + δr.

The units of R0 are millimeters, and the units of (δp + δr) are microns. The value of (δp + δr) is
much smaller than that of R0. The term, (δp + δr)2, is neglected in the calculations. Equation (8) is
rewritten as:

Vm =
4πnR0

n− 1
(δP + δr) (9)

Combining Equations (7) and (9), the expansive pressure, Qc, can be written as:

Qc =
Ec

(1 + k + vc)
(

R0 + δp
) ( (n− 1)Vm

4πnR0
− δp) (10)

The micro-crack forms when the tangential stress exceeds the concrete tensile strength.
The tangential stress is derived with an elastic mechanics axisymmetric stress solution. Then, the
maximum expansive pressure at the micro-crack formation can be obtained. More details can be found
in Dai et al. [23]. The maximum expansive pressure at the micro-crack formation is expressed as:

Qcmax = (0.225 + 0.075
C
R0

) ft (11)

where ft is the concrete tensile strength.
Combining Equations (10) and (11), the volume of corrosion products at the micro-crack formation,

Vm, is:

Vm =
πnR0

(n− 1)Ec
[

(
0.9 + 0.3

C
R0

)
ft(1 + k + vc)

(
R0 + δp

)
+ Ecδp] (12)

4.2. Crack Width on the Concrete Surface

Crack widths can be observed after cover cracking. As described previously, some discrete cracks
were small. Most corrosion products were located in the widest crack. The filling of corrosion products
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in the small cracks are ignored in the present study. The widest crack in the cross-section is selected
as an analysis object. A simplified trapezoid model is proposed to reflect crack shape in the radial
direction. Figure 15 shows the schematic diagram of crack shape incorporating the filling of the
corrosion product.
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As observed in the previous experiment, the filling of corrosion products varies with increasing
crack width. Crack width in the radial direction relates to the cracking angle. The cracking angle
is employed to describe the volume of crack. Considering the filling of corrosion products and the
cracking angle, the volume of corrosion products in the cracks, Vp, can be written as:

VP = [wc + C( f − 2)tanθ]× Ri (13)

where wc is the crack width on the concrete surface.
According to the geometric characteristic, the total volume of corrosion products is:

Vc = nρVs (14)

where Vs is the strand volume per units of length.
With the equal principle of volume, Vc = Vm + Vp. Combining Equations (1) and (12)−(14), the

crack width on concrete surface is:

wc = C( f − 2)(b− aρ) +
nVsρ

C f
−

πnR0

[(
0.9 + 0.3 C

R0

)
ft(1 + k + vc)

(
R0 + δp

)
+ Ecδp

]
(n− 1)EcC f

(15)

The relationship between crack width and the rust-filling ratio is given in Equation (3). Combining
Equations (3) and (15), the crack width can be calculated by the corrosion loss. Results show that
the filling of corrosion products, cover, rust expansion ratio, concrete tensile strength, and geometric
properties of the strand can affect the corrosion-induced cracking. These parameters should be
incorporated in the predicted model.

The material and shape of strands are different to those of steel bars. These would induce the
corrosion mechanisms of strands differ from that of steel bars. Nowadays, no suitable model exists to
relate the corrosion degree and the corrosion time for the strand. Therefore, the prediction model in
the present study was proposed based on the corrosion loss. More studies are needed in the future to
incorporate the time factor into the corrosion-induced cracking model.
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4.3. Verification of the Prediction Model

The proposed model was used to predict the corrosion-induced cracking in the present testing.
Some parameters in the present model were selected as follows: the rust expansion ratio and the
thickness of the porous zone were selected as 3 and 15 µm, respectively; the proposed rust-filling
ratio was incorporated into the prediction. Figure 16 shows the comparison between the predicted
and test crack widths. The predicted errors are 13.56% and 11.79% for group S and group RS,
respectively. The average error of both groups is 12.68% and the variation coefficient is 0.175 with a
95% confidence interval.
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The predicted errors may attribute to the measurement uncertainty of crack width, corrosion
loss, and cracking angle. Another reason is that the filling of corrosion products in the small cracks is
ignored in the present model. Additionally, the heterogeneity and variability of materials may also
affect the prediction. These errors can be accepted in view of the complexity of the corrosion-induced
cracking process.

To clarify the filling effect of corrosion products, the theoretical crack widths under the various
rust-filling ratios are also given in Figure 17. As Figure 17 shows, P1 and P2 represent the predicted
results considering the rust-filling ratios as 1 and 0.5, respectively. The rust-filling ratio is a sensitive
parameter for the proposed model. The P1 is smaller than the test value. The P2 is larger than the
test result. The main cause of the discrepancy between the predicted values and the test results is
the filling of corrosion products into cracks. To predict crack widths, it is essential to determine the
rational amount of corrosion products penetrating into cracks.

The predicted values by the proposed method are expressed as the P3. As described previously,
the filling of corrosion products varies with the crack width. By using the proposed rust-filling ratio,
P3 agrees well with the test result. The filling of corrosion products has a significant influence on the
predicted model. The corrosion-induced cracking model should incorporate the rational filling effect
of corrosion products.
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5. Conclusions

An experimental investigation is proposed to study the filling of strand corrosion products in
cracked concrete. A prediction model of crack widths is developed incorporating the filling proportion
of corrosion products and the twisting shape of the strand. The following conclusions are drawn based
on the experimental test and theoretical analysis:

• The filling extent of corrosion products varies with crack propagation. The rust-filling ratio
increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling
extent remains stable. Using stirrups can decrease the critical crack width.

• Stirrups can restrict the corrosion-induced crack propagation. The tangent of cracking angle
increases with the increasing corrosion degree. Using stirrups decreases the corrosion-induced
crack width.

• The proposed model can provide a reasonable prediction for corrosion-induced crack width.
The prediction of corrosion-induced cracks are sensitive to the rust-filling extent. The prediction
model should incorporate the rational filling effect of corrosion products.

It should be pointed out that the specimens in the present study were subjected to an
electrochemically-accelerated corrosion. The concrete cracking process induced by the artificial
corrosion may be different from that induced by natural corrosion situations. The effect of pre-stressing
on corrosion-induced cracking is also not incorporated. The difference caused by these factors needs
to be studied in the future.
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