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Abstract: Large offshore wind turbines are founded on jacket structures. In this study, an elastic
full-space jacket structure foundation in an elastic and viscoelastic medium is investigated by using
boundary integral equations. The jacket structure foundation is modeled as a hollow, long circular
cylinder when the dynamic vertical excitation is applied. The smooth surface along the entire
interface is considered. The Betti reciprocal theorem along with Somigliana’s identity and Green’s
function are employed to drive the dynamic stiffness of jacket structures. Modes of the resonance
and anti-resonance are presented in series of Bessel’s function. Important responses, such as dynamic
stiffness and phase angle, are compared for different values of the loss factor as the material damping,
Young’s modulus and Poisson’s ratio in a viscoelastic soil. Results are verified with known results
reported in the literature. It is observed that the dynamic stiffness fluctuates with the loss factor,
and the turning point is independent of the loss factor while the turning point increases with load
frequency. It is seen that the non-dimensional dynamic stiffness is dependent on Young’s modulus
and Poisson’s ratio, whilst the phase angle is independent of the properties of the soil. It is shown that
the non-dimensional dynamic stiffness changes linearly with high-frequency load. The conclusion
from the results of this study is that the material properties of soil are significant parameters in the
dynamic stiffness of jacket structures, and the presented approach can unfold the behavior of soil and
give an approachable physical meaning for wave propagation.

Keywords: offshore foundation; mathematical model; boundary integral; damping in viscoelastic
media; resonance

1. Introduction

There are more than 7000 offshore structures around the world. Structures to support wind
turbines come in various shapes and sizes; the most common are monopile, jacket, tripod, gravity base
and floating structures (Figure 1). There are several kinds of platforms, but a fixed structure in a
jacket structure is considered in the present paper. The tendency of large-sized offshore wind turbines
has increased during the last 10 years. As wind turbines get larger and are located in deeper water,
jacket structures are expected to become more attractive. Generally, a fixed platform is described as
consisting two main components; the substructure and the superstructure. Superstructure or “topside”
is supported on a deck, which is mounted on the jacket structure. The substructure is either a steel
tubular jacket or a prestressed concrete structure.

Support structures for offshore wind turbines are highly dynamic, having to cope with combined
wind and hydrodynamic loading and complex dynamic behavior from the wind turbine. The offshore
jacket platform is a complex and nonlinear system, which can be excited with harmful vibration by
the external loads. It is vital to capture the integrated effect of the total loads. However, the total
loading can be significantly less than the sum of the constituent loads. This is because the loads are not
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coincident and because of the existence of different kinds of damping, such as aerodynamic and soil
damping, which damps the motions due to the loads. The axial dynamic stiffness of tubular piles is
important for offshore wind turbines supported by jacket structures because, in case of overturning
moments on the foundation, jacket structures, which are multi-legged structures, mainly rely on
vertical capacity. Due to the fixation in the frame, the piles of a jacket (multi-legged) structure deform
in an S-shape, mobilizing at the same time horizontal soil resistance. The overturning moment
is then transferred as axial loads to opposing foundation piles. The forces are transferred to the
seabed by axial forces in the members. The dynamic stiffness indicates the stability and resonance
behavior. In fact, the overall weight of modern wind turbines is minimized, which makes them
more flexible and, by corollary, more secretive to low frequency dynamics. On the other side, wave
propagation in elastic and viscoelastic medium is a considerable issue specially when the medium
is earthquakes. In modern offshore wind turbines, the instabilities or stability occur due to the
coupled damping of the upper side of the wind turbine and the lower part of that as the foundation.
Most of the failure phenomena are caused by fatigue, while the first natural frequency plays an
important role. In this aspect, stiffness has a predominant role to evaluate the first natural frequency.
The first estimation for the stiffness of the foundation comes through the analysis of soil-structure
interaction (SSI). Applying inaccurate algorithms in the soil-structure media may also occur when two
different numerical methods are coupled, e.g., the boundary element method (BEM) and the finite
element method (FEM); this problem may become even more serious when coupled algorithms and
different physical media are considered simultaneously in the same analysis [1]. SSI can be analyzed
based on two methods, namely substructure and direct methods, which are highlighted by Wolf [2,3].
Maheshwari and Khatri [4] analyzed an SSI for a combined footing and supporting column on soft soil
by using an iterative Gauss elimination technique, while the footing was modeled as a beam having
finite flexural rigidity. Soares and Mansur [1] modeled wave propagation in fluid-SSI by using an
iterative procedure in BEM based on different kinds of Green functions in order to present the linear
and non-linear behavior of elastoplastic regions. Kim et al. [5] studied the two-dimensional wave
propagation in a porous seabed by using BEM based on the integral equation, while the numerical
results were validated with an analytical solution. Srisupattarawanit et al. [6] applied BEM and a
computation method to compute nonlinear random finite depth waves in order to be coupled with
an elastic structure. Guenfoud et al. [7] employed Green’s function to solve the integrals resulting
from Lamb’s problem in order to study the interaction between soil and structures subjected to a
seismic load. Padrón et al. [8] studied the SSI between nearby pile-supported structures in a viscoelastic
half-space by using BEM-FEM in the frequency domain. Genes [9] applied a parallelized coupled
model based on BEM-FEM to analyze the SSI for arbitrarily-shaped, large-scale SSI problems, and the
validation was shown. Comprehensive reviews on applying the methods pertaining to SSI have been
done by Mahmoudpour et al. [10] and Wang et al. [11], respectively.

Gravity base    Monopile           Jacket

Figure 1. Generic foundation types for offshore wind.
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FEM was employed to solve the equations of motion for a two-phase medium by several
researchers ([12–15] and the the references therein). The time domain response of a jacket offshore
tower with the soil resistance to the pile movement was modeled using p–y and t–z curves to account
for soil nonlinearity and energy dissipation, presented by [16] by employing an finite element (FE)
package to do the parameter study. Andersen and Nielsen [17] applied FEM with a transmitting
boundary element (BE) and presented a solution in the frequency domain of an elastic half-space
to a moving force on its surface. The latter model has been coupled with an FE scheme for the
analysis of the shielding efficiency of trenches and barriers along a railway track [18]. Furthermore,
a two- and three-dimensional combined FEM and BEM has been carried out for two railway tunnel
structures in order to investigate what reliable information can be gained from a two-dimensional
model to aid a tunnel design process or an environmental vibration prediction based on “correcting”
measured data from another tunnel in similar ground in [19]. Then, the steps in the FEM and
BEM formulations were discussed, as well as the problems with describing material dissipation in the
moving frame of reference investigated by [20]. Andersen et al. [21] used a numerical method to analyze
a nonlinear stochastic p–y curve for the calculation of the monopile response. The time-domain results
for soil–foundation–structure interaction by considering the dependence of the foundation on the
frequency of excitation were presented by Cazzani and Ruge [22] by using FEM. Furthermore, due to
the unbounded nature of a soil medium, the computational size of these methods is very large. For this
reason, it is important to establish some simple mathematical models that reduce the computational
cost of analysis, as well as increase the accuracy of the results. The FEM requires the discretization of
the domain, which has to be simulated as infinite in most SSI problems. This implies a high number of
elements, leading to a large and sometimes impracticable processing time. This becomes more viable
solving these problems with the BEM, once only the boundary of the domains involved is discretized.
This allows reducing the problem dimension, implying less processing time. This advantage is explored
in several works [23,24] (see the references therein).

BEM provides a powerful numerical tool for the calculation of dynamic structure response in the
frequency and time domain. By implementing the boundary integral method, equations of motion
and also boundary conditions are discretized only on the boundary. As we know, soil can be modeled
as a semi-infinite domain in SSI analysis. The energy radiation into a surrounding medium is modeled
correctly, which is very applicable for infinite and semi-infinite domains. By using this method,
the problem dimension is reduced by one and by fulfilling the radiation condition, which represents
its advantage for unbounded domains. By employing BEM on the stress-strain relation is a differential
or integration method [25]. BEM has the advantages of simplicity to model far field, as the radiation
conditions can be satisfied in the analytical fundamental solutions [26]. Betti’s reciprocal theorem has
the advantage of linking the solution of two different problems for the same domain of an elastic body.
Once the required Green’s functions are obtained, the BEM is formulated with the help of the numerical
interpretation of Somigliana’s identity [27]. SSI problems can be investigated in a time domain or a
frequency domain. Since the effect of wave propagation in infinite soil is well represented through the
frequency-dependent dynamic stiffness of the sub-grade, the frequency domain is advantageous [28].

It may be noted that existing literature on offshore monopile foundations as cited above has
been solved experimentally or theoretically based on numerical and analytical methods. To the best
of our knowledge, no work has been reported to date that analyzes the jacket foundation as a long
hollow cylinder by using an appropriate mathematical approach and employing Green’s function
and the integral method. This study attempts to concentrate on this investigation. In this paper, an
offshore jacket foundation in an elastic and viscoelastic media is investigated by modeling that as a
long tubular pile. The integral method, along with the Betti reciprocal theorem, Somigliana identity
and Green’s function, is employed. The vertical loads with low and high frequency are applied on the
smooth surface along the entire interface. The effect of material properties, such as Young’s modulus
and Poisson’s ratio, on the dynamic stiffness and phase angle are illuminated. This work aims to
investigate the effect of some basic factors, such as geometry, damping and frequency, on stiffness,
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phase velocity and mode of resonance and anti-resonance in the monopile foundation. The singularity
of Bessel’s function is investigated. The exact solutions are obtained in the elastic and frequency
domain. The modes of resonance and anti-resonance are presented in a series of Bessel functions.

2. General Definition of the Model

Consider a thin axisymmetric smooth long cylinder with constant thickness and mean radius R
as shown in Figure 2. This cylinder is subject to harmonically-varying forced displacement with cyclic
frequency ω and applied in the x3-direction, along the center axis. In this case, the pure antiplane,
shear wave propagation (shear/secondary horizontal (SH)-waves) is utilized, which means that there
is no displacement in the x1- or x2-direction. Axial symmetry in geometry and loading is assumed,
and cylindrical coordinates are considered.

The geometry of an infinite cylinder and the definition of polar coordinates: (ξ, ζ)-plane and
(ξ, θ)-plane. An observation point x with the plane coordinates (x1, x2) = (−1, 0) is considered, and
the material is present on both sides of the cylindrical interface, where the boundaries Γ1 and Γ2 are
related to domains in Equations (1) and (2), respectively.

Figure 2. Geometry of the monopile foundation, Cartesian and polar coordinate systems.

3. Theoretical Formulation and Equilibrium Equations

Somigliana’s identity is the simplest theory based on the dynamic reciprocity theorem and the
fundamental solution that is used for wave propagation in elastic media. The three-dimensional
frequency-domain of Somigliana’s identity reads:

C(x)Ui(x,ω) +
∫

Γ P∗il (x,ω; y)Ul(y,ω)dΓ(y)
=
∫

Γ U∗il(x,ω; y) Pl(y,ω)dΓ(y) +
∫

Ω U∗il(x,ω; y) ρ Bl(y,ω)dΩ(y)
(1)

where:

U∗il(x,ω; y) =
∫ ∞

−∞
u∗il(x, t; y, 0) e−iωt dt (2a)

P∗il (x,ω; y) =
∫ ∞

−∞
p∗il(x, t; y, 0) e−iωt dt (2b)

where C(x) is a coefficient dependent on the position (x). In particular, for any interior point within
the domain Ω, the constant takes the value C(x) = 1. Actually, the value of C(x) simply corresponds
to the part of the point that is included in the domain Ω. Hence, C(x) = 0 at an exterior point
and C(x) = 1

2 for a point on a smooth part of the boundary Γ. Further, at the apex of a cone or pyramid
with the internal solid angle φ, the geometry constant is C(x) = φ

4π , and at a wedge point with the
internal angle Φ, C(x) = Φ

2π . A mathematically-sound proof regarding the values of C(x) for different
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geometries of the surface is beyond the scope of the present paper. A detailed derivation for a smooth
part of a surface can be found in the work by Dominguez [27]. Finally, in the general case, finding C(x)
may be difficult, especially at the intersection of multiple curved surfaces.

By assuming that the displacement field, surface traction and body force in the physical state vary
harmonically with the circular frequencyω, then:

ul(x, t) = Ul(x,ω) e−iωt, pl(x, t) = Pl(x,ω) e−iωt, bl(x, t) = Bl(x,ω) e−iωt (3)

where ul(x, t) are the components of the displacement field, the surface traction pl and bi(x, t) is
the load per unit mass in coordinate direction i. Vector x is the position in space, and t is the time.
Furthermore, based on the Cauchylaw (σij), the relation between surface traction and the Cauchy
stress tensor is: pl(x, t) = σij(x, t) nj(x).

U∗il(x,ω; y) and P∗il (x,ω; y) are the Green’s functions for the displacements and the surface
traction in the frequency domain or, in other words, they are the Fourier transforms of u∗il(x, t; y, 0)
and p∗il(x, t; y, 0), respectively. It can be mentioned here that Green’s function for a vector field is a
second-order tensor with the components gil(x, t; y, τ), which provides the response at point x and
time t in coordinate direction i due to a unit magnitude concentrated force acting at the point y and
time τ in coordinate direction l. Hence, whereas the displacement field u(x, t) is a vector field with
the components ui(x, t), the corresponding Green’s function is a tensor field u∗(x, t; y, τ) with the
doubly-indexed components u∗il(x, t; y, τ).

3.1. Frequency-Domain Equation of the Motion of the Shear/Secondary Horizontal-Wave

The antiplane shear assumption induces the displacement components u1 and u2, which are
identically equal to zero, and partial derivatives with respect to x3 vanish; only the displacement
component u3 in the direction out of the (x1, x2)-plane exists, and it is constant along the x3-direction.
In the case of elastodynamics, this corresponds to the propagation of SH-waves in the (x1, x2)-plane.
When antiplane shear is considered, only the third component of the displacement field is different
from zero. This holds for both the physical field and Green’s function. Hence, Somigliana’s identity
simplifies to a scalar integral equation as:

C(x)U3(x,ω) +
∫

Γ P∗33(x,ω; y)U3(y,ω)dΓ(y)
=
∫

Γ U∗33(x,ω; y)P3(y,ω)dΓ(y) +
∫

Ω U∗33(x,ω; y)ρB3(y,ω)dΩ(y)
(4)

Further, since the surface is smooth along the entire interface, Somigliana’s identity in Equation (4)
for the two domains is reduced to:

1
2

U(1)
3 (x,ω) +

∫
Γ1

P∗33(x,ω; y)U(1)
3 (y,ω)dΓy =

∫
Γ1

U∗33(x,ω; y)P(1)
3 (y,ω)dΓy (5)

1
2

U(2)
3 (x,ω) +

∫
Γ2

P∗33(x,ω; y)U(2)
3 (y,ω)dΓy =

∫
Γ2

U∗33(x,ω; y)P(2)
3 (y,ω)dΓy (6)

where U(1)
3 (x,ω) and U(2)

3 (x,ω) are the displacements in the x3-direction along the boundaries Γ1

and Γ2, respectively, whereas P(1)
3 (x,ω) and P(2)

3 (x,ω) are the corresponding surface traction. In
the derivation of Equations (5) and (6), it has been utilized that the surface of the circular cylinder
is smooth. The value C(x) = 1 for points inside domain Ω2 and for points on the pile surface is
C(x) = 1/2; more details are presented by Dominguez [27]. In order to investigate the continuity
conditions in the common boundary between domains Ω1 and Ω2, we are interested in calculations
regarding the pile surface. Meanwhile, several shortcomings can be highlighted by considering the
infinite length of the pile, such as: dynamic stiffness (S) for an infinite cylinder is greater than that for
a finite cylinder (this is illustrated in Figure 3); the results cover vertical response, while for finite piles
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transverse and axial responses are included; and finally, for a finite length, some responses are related
to P-waves and shear/secondary vertical (SV)-waves in addition to SH-waves.

Figure 3. Geometry of the viscoelastic media, domains Ω1 and Ω2, boundaries Γ1 and Γ2.

3.2. Green’s Function

The fundamental solutions for the antiplane displacements are (the details and procedure to
obtain the fundamental solution are presented in Appendix A):

U∗33(x,ω; y) =
1

2πµ
K0(ikS$), $ = |x− y|, i =

√
−1 (7)

where µ is the shear modulus, Km represents the modified Bessel function of the second kind and order
m and kS is the wavenumber. the relation between wavenumber and phase speed cS is:

kS =
ω

cS
(8)

where cS is dependent on the material properties of the porous media, and it is defined as:{
For hysteretic materials damping : c2

S = (1 + iη) µρ
For materials without damping : c2

S = µ
ρ

(9)

where η is the loss factor, and ρ is the material density. For a homogeneous isotropic linear elastic
material, the generalized Hooke’s law forming the relation between stresses, σij(x, t), and strains,
εij(x, t), simplifies to:

σij(x, t) = λ1∆(x, t)δij + 2λ2εij(x, t) (10)

where λ1 and λ2 are the Lame constants, δij is the Kronecker delta and ∆(x, t) = εkk(x, t) is
the dilation. Substituting the fundamental displacements (U∗33(x,ω; y)) from Equation (7) into
Hook’s law (Equation (10)) and applying the Cauchy stress law, the fundamental surface shear
stresses are obtained:

P∗33(x,ω; y) = − ikS
2π

∂$

∂n
K1(ikS$) (11)

where ∂$/∂n defines the partial derivative of the distance $ between the source and observation points,
x and y, in the direction of the outward normal:

∂$

∂n
=

{
$̂(x, y) · n̂(y) = cos(ϕ) for x ∈ Γ1;
−$̂(x, y) · n̂(y) = − cos(ϕ) for x ∈ Γ2;

where $̂(x, y) =
x− y
|x− y| (12)

Here, ϕ is the angle between the distance vector $ = $$̂ and the normal vector n̂.
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3.3. Continuity Conditions

The continuity conditions at the interfaces of the displacements across the interface for the forced
displacement with constant amplitude Û3(ω) and in phase along the cylindrical interface, Γ ≡ Γ1,
provide the result:

U(1)
3 (x,ω) = U(2)

3 (x,ω) = Û3(ω), P(1)
3 (x,ω) = P̂(1)

3 (ω), P(2)
3 (x,ω) = P̂(2)

3 (ω), x ∈ Γ (13)

The continuity conditions for Equations (5) and (6), together with the constant amplitude for the
forced displacement, yield a set of linear integral equations:

Û3(ω)

(
1
2
+
∫

Γ
P∗33(x,ω; y)dΓy

)
= P̂(1)

3 (ω)
∫

Γ
U∗33(x,ω; y)dΓy (14)

Û3(ω)

(
1
2
−
∫

Γ
P∗33(x,ω; y)dΓy

)
= P̂(2)

3 (ω)
∫

Γ
U∗33(x,ω; y)dΓy (15)

3.4. Analysis

According to the frequency-domain equation of motion for each domain, inside and outside of the
cylinder, the dynamic stiffness can be obtained. Eliminating P∗33(x,ω; y) from Equations (14) and (15),
the constant amplitude can be written in terms of the traction on the interface, as follows:

Û3(ω) = 2P̂3(ω)
∫

Γ
U∗3 (x,ω; y)dΓy (16)

where the mean traction on either side of the interface (P̂3(ω)) is:

P̂3(ω) =
1
2

(
P̂(1)

3 (ω) + P̂(2)
3 (ω)

)
(17)

The general dynamic stiffness (S33(ω)) per unit surface of the interface related to displacement
along the cylinder axis for arbitrary geometry of the infinite cylinder becomes:

S33(ω) = 2LΓ
P̂3(ω)

Û3(ω)
=

LΓ

α
, α =

1
2

Û3(ω)

P̂3(ω)
=
∫

Γ
U∗3 (x,ω; y)dΓy (18)

where LΓ is the length of the interface Γ, measured in the (x1, x2)-plane. In the presented case, an
offshore foundation is considered as an infinite circular cylinder with radius R that is with LΓ = 2πR.
In order to compute α, the cylindrical polar coordinates (ξ, θ, ζ) are introduced (Figure 2), such that:

x1 = ξ cos θ, x2 = ξ sin θ, x3 = ζ (19)

In these coordinates, the boundary Γ is defined by ξ = R, 0 ≤ θ < 2π, −∞ < ζ < ∞.
In particular, when an observation point x with the plane coordinates (x1, x2) = (−1, 0) is

considered (Figure 2), the distance $ between the source and observation point becomes:

$ = R
sin 2ϕ
sinϕ

= 2R cosϕ (20)

Making use of the fact that θ = 2ϕ, Equation (16) may then be evaluated as:

α =
1

2πµ

∫ 2π

0
K0(ikS$)Rdθ =

1
π

R
µ

∫ π
0

K0(2ikSR cosϕ)dϕ =
R
µ

J0(kSR)K0(ikSR) (21)
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Here, J0 is the Bessel function of the first kind and order zero. It is noted that K0(ikSR)→ ∞ for
kS → 0. Hence, S33(ω) → 0 for ω → 0. Furthermore, J0(kSR) has a number of zeros for η = 0 and
kS > 0. At the corresponding frequencies, S33(ω) becomes singular.

3.5. Reference Solution by Coupled Boundary Element Method/Finite Element Method

By considering Somigliana’s identity presented in Equation (1) and assuming that no forces are
applied in the interior of the domain, Somigliana’s identity is evaluated by the discrimination of the
displacement (U(x,ω)) and traction (P(x,ω)) fields into the nodal values and interpolation by local
shape functions φj(x) at the nodes of BE j over space as:

U(x,ω) = φj(x)Uj(ω), P(x,ω) = φj(x)Pj(ω) (22)

Substituting Equation (22) into Equation (1) presents the system of equations for a BE domain as:

H(ω)U(ω) = G(ω)P(ω) (23)

On the other side, the FEM, the equation of motions can be written as:(
−ω2M + iC + K

)
U(ω) = KFE(ω)U(ω) = F(ω) (24)

where M, C and K are the mass, hysteretic damping and stiffness matrices, respectively, while the
hysteretic material damping is C = ηK. U and F are the nodal displacements and forces, respectively,
which represent the coupling between FE and BE regions. This entails that each BE domain can be
transformed into macro FE, as shown in Figure 4. Here, T in Figure 4 is a transform matrix, which
is frequency independent, expressing the relationship between the nodal forces in the FE domain
and surface traction in the BE domain. Quadratic shape functions by using Green’s functions as
weight functions and as shape functions in a standard Galerkin FEM scheme were employed by
Andersen and Jones [29]. More information is in [29]. The three-dimensional coupled BE/FE has been
implemented in the computer code BEASTS [30].

Figure 4. Coupling of finite element (FE) with a boundary element (BE) domain.

For the verification of the results of the present study, the results from the BEASTS program
created by Andersen and Jones [29] to estimate the dynamic stiffness of a simple model of an offshore
wind turbine with different lengths were considered. A graph of the dynamic stiffness against
non-dimensional frequency is given in Figure 5 having the material properties as: E = 1× 108 N

m2 ,

density ρ = 2000 kg
m3 , Poisson’s ratio υ = 0.05, loss factor η = 0.05 and also R = 3.0 m. As shown in

Figure 5, the results for the dimensionless stiffness of this study are very well comparable with those of
Andersen et al. [31]. As expected, by increasing the length of the pile in BEASTS, the results converge
to those in a pile with infinite length. The radius is considered three (m), and then, different lengths of
pile are considered, which are multiples of the radius, the main reason being to have a large value of
length with respect to radius. The same pattern can be seen in Figure 5 and the presented results in [31].
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It can be noted that the same kind of phenomenon is investigated (in Figure 5 and [31]); only one type
of wave is involved. The results in Figure 5 show more or less the same overall trend; the stiffness
is going to increase and then decrease, and this pattern is going to repeat by varying the normalized
frequency (the same as Figure 5 in [31]). The results quantify the finite pile with the infinite pile.
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Figure 5. Comparison between dimensionless stiffness from the presented study and the results from
boundary element method (BEM)/finite element method (FEM) in BEASTS by Andersen and Jones [30].

4. Numerical Results

For numerical illustration of the elastic solutions of this study, a thin long hollow cylinder with
mean radius R = 3.0 m is considered. Young’s modulus is considered between E = 9411× 103 N

m2 and

E = 13596× 103 N
m2 , while the density is ρ = 1861 kg

m3 , the same as considered in [32]. The interval of
the loss factor (η) related to the damping is 0.01–0.1 [33].

4.1. Results and Discussion

In the following, results are presented in non-dimensional frequency a0 = ω×R
cS

and

the normalized dynamic stiffness | S33(ω)
Z |, where the impedance Z = 4πRρcS by considering

different values of material properties, such as Young’s modulus, loss factor, resonance and
anti-resonance frequencies.

Figure 6 illustrates the non-dimensional dynamic stiffness based on the small deformation theory
due to axial force. This figure contains graphs for different values of the loss factor η in Equation (8)
using E = 9411× 103. The value of stiffness increases with the increase of the load frequency until
reaching a peak point, then decreases to a local minimum for a certain value of frequency and, again,
increases with the increase of the load frequency to the next peak point. This procedure is repeated
in an oscillatory manner. The local peak point for dynamic stiffness decreases with increasing loss
factor, whilst the local minimum point of the stiffness increases with decreasing the loss factor. It can
be noticed that the turning point, at which the concave curve changes into the convex curve, is the
same for all different loss factors.

Figure 7 shows the effect of Young’s modulus E on the variation of the dynamic stiffness vs. load
frequency. The non-dimensional dynamic stiffness has a greater value with respect to soil with a
lower Young’s modulus for all values of load frequency. It is worth mentioning that the difference
between dynamic stiffness for a higher value of load frequency is greater than those for lower load
frequency. As expected, these results confirm that soil with a greater Young’s modulus has greater
dynamic stiffness, and this conclusion is the same as in earlier results reported by [27,33] and the
presented results from Andersen and Jones [30], as shown in Figure 5.
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Figure 6. Non-dimensional dynamic stiffness per unit length of an infinite cylinder due to dynamic
vertical load in the axial direction for different values of the loss factor η, when E = 9411× 103 and
ν = 0.495.
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Figure 7. Non-dimensional dynamic stiffness per unit length of an infinite cylinder due to dynamic
vertical load in the axial direction for different values of the Young’s modulus E = 9411× 103 and
E = 13596× 103 when loss factor η = 0.1 and ν = 0.495.

The variation of the dynamic stiffness with load frequency is shown in Figure 8 for different
values of Poisson’s ratio. It is observed that the smaller Poisson’s ratio introduces greater dynamic
stiffness. The difference between stiffness is increasing when the load frequency is increased, which is
the same observation in Figure 7, which is related to different values of the shear modulus.
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Figure 8. Non-dimensional dynamic stiffness per unit length of an infinite cylinder due to dynamic
vertical load in the axial direction for different values of the Poisson ratio ν = 0.25 and ν = 0.495 when
the loss factor η = 0.1 and E = 9411× 103.
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The results of Figures 7 and 8 can be summarized to conclude that the dynamic stiffness in
an infinite cylinder with a greater shear modulus and a smaller Poisson’s ratio is larger than those
with a smaller shear modulus and a greater Poisson’s ratio. A similar result has been reported
in [27,30,33], respectively.

Figure 9 in the following compares the phase angle for dynamic stiffness vs. non-dimensional
load frequency with different values of the loss factor. As seen, the phase angle oscillating around line
π
2 and the amount of fluctuation around this line decreases with the increase of load frequency. It can
be noted that the absolute value of the maximum or minimum value of the phase angle and central
line (line π2 ) decreases with the increase of load frequency.
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Figure 9. Phase angle of an infinite cylinder due to dynamic vertical load in the axial direction for
different values of the loss factor ηwhen loss factor µ = 0.495 and E = 9411× 103.

Figures 10 and 11 concern the comparison of the phase angle for dynamic stiffness versus
non-dimensional load frequency for different values of Young’s modulus and Poisson’s ratio.
In contrast with the results for different values of the loss factor, other material properties, such
as Young’s modulus and Poisson’s ratio, do not have any effect on the phase angle, like the results
reported in [27,33].
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Figure 10. Phase angle of an infinite cylinder due to dynamic vertical load in the axial direction for
different values of Young’s modulus E = 9411 KPa and E = 13596 KPa when the loss factor η = 0.1
and ν = 0.495× 103.
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Figure 11. Phase angle of an infinite cylinder due to dynamic vertical load in the axial direction
for different values of Poisson’s ratio ν = 0.495 and ν = 0.25 when the loss factor η = 0.1 and
E = 9411 KPa.

4.2. High Frequency Results

In the high frequency limit, the complex stiffness becomes a pure impedance [27]. Based on the
similarity of direct electrical and alternating current principles and borrowing the concept of ohmic
resistance from Ohm’s law to present the electrical impedance, the acoustic impedance (z) is defined
as the ratio between the pressure, p, and the particle velocity, v, on an imaginary surface in a sound
wave, p = zv. An acoustic impedance is ρc, where ρ is the mass density of the material and c is a
characteristic phase velocity of the wave propagation in the material. Thus, in contrast to the electrical
impedance, which is a complex quantity in the frequency domain, the acoustic impedance is real
valued. The impedance at a point on the inside or the outside of the cylinder is z = ρcS. Integrating
over the area of the cylinder, including the interior, as well as the exterior surface, the impedance of
the cylinder per unit length in the axial direction becomes Z = 4πRρcS. R is the radii of the pile.

The dynamic stiffness in the high frequency limit is derived from the definition of the impedance.
In the time domain, the surface traction is related to the particle velocity as p̂∞

3 (t) = −z ˙̂u∞
3 (t), where the

superscript ∞ indicates that the limitω→ ∞. Accordingly, in the frequency domain, the relationship
becomes P̂∞

3 (ω) = −iωzÛ∞
3 (ω). Hence, including the contributions from both sides of the cylinder,

Γ1, as well as Γ2, the dynamic stiffness may be written as:

S∞
33(ω) = 4πR

P̂∞
3 (ω)

Û∞
3 (ω)

= −iωZ = −4iωπRρcS (25)

The dynamic stiffness due to high frequency load versus non-dimensional load frequency is
shown in Figure 12. As seen in the figure, the non-dimensional dynamic stiffness changes linearly with
the load frequency as expected from Equation (25). The other results for different values of the loss
factor in low frequency have been shown in order to compare the results for high frequency and low
frequency loads. In Figure 12, the dynamic stiffness S33(ω) approaches the high frequency solution
S∞

33(ω) forω→ ∞ and increasing values of the loss factor. Hence, when η = 0.1, the dynamic stiffness
is almost identical to S∞

33(ω), even at relatively low values of the non-dimensional frequency a0.
It is evident from Figure 13 that the phase angle of dynamic stiffness for high-frequency load

is constant and equal to π
2 , as expected from Equation (25). It is noted that the phase angle of the

dynamic stiffness is always negative. Hence, − arg(S33(ω)) has been plotted in the figure.
Further, it is known that the solution for η = 0 is singular at a number of frequencies within the

considered frequency interval. Actually, these singularities occur at the roots of J0(kSR).
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Figure 12. Dynamic stiffness due to high frequency vertical load in the axial direction (continuous line),
which is accompanied by the low frequency results (dash lines) with different values of the loss factor
when ν = 0.495 and E = 9411 KPa.
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Figure 13. Phase angle of dynamic stiffness due to high frequency vertical load in the axial direction,
which is accompanied by the low frequency results with different values of the loss factor when
ν = 0.495 and E = 9411 KPa.

4.3. Mode of Resonance and Anti-Resonance

To present the mode of resonance and anti-resonance, the load frequency related to the minimum
and maximum value dynamic stiffness is needed. In order to calculate the related frequency,
the maximum non-dimensional frequency shown in Figure 14, which is related to Section A in
Figure 14, is needed. Furthermore, the frequency related to Section B in Figure 14 is needed.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

a
0
 = (ω × R)/c

S

|(
S

33
(ω

))
/Z

|

 

 

η = 0.1
High−Frequency
Root of Bessel’s function

η = 0.0

η = 0.1

High−frequency

x = 8.67
y = 205.1

x = 2.42
y = 154

x = 5.53
y = 178.7

Section A

Section B

x = 11.83
y = 233.6

Figure 14. Non-dimensional dynamic stiffness due to high and low frequency vertical load in the axial
direction for different values of loss factor η = 0.0 and η = 0.1 when ν = 0.495 and E = 9411 KPa.
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Figure 15 presents the schematic wave mode inside the cylinder versus $ ($ = 2R cosφ, from
Equation (20)). The value of non-dimensional frequency is taken from Section A in Figure 14, and here,
a0 = 5.53 is employed to highlight the mode shape of two points on the pile surface with the biggest
distance. Actually, by selecting each value of a0 to correspond with the peak point (such as a0 = 2.42,
(or =) 5.53, (or =) 8.67, (or =) 11.83), the resonance mode can be seen. As was mentioned, the presented
mode for two points has a distance equal to the pile diameter. For these two points and the mentioned
frequency, the resonance mode is observed. The continuous line represents the wave motion from
the left-hand side of the cylinder toward the right-hand side, and the dashed line represents the
wave motion from the right- to left-hand side of cylinder. As seen, the wave motion on the left-hand
side or right-hand side has the same sign; in the figure, both of them are positive, which means the
resonance phenomena.
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Figure 15. Scaled mode shape resonance due to load with non-dimensional a0 = 5.53 when the loss
factor η = 0.0 and E = 9411 KPa.

Figure 16 presents the schematic anti-resonance mode inside the cylinder versus $. The value of
non-dimensional frequency is taken from Figure 14, which belongs to Section B in Figure 14, and here,
a0 = 3.8. As seen, the wave motion on the left-hand side or right-hand side does not have the same
sign. In the figure, one of them is positive, and the other is negative, which means the anti-resonance
phenomena. It should be mentioned that for the mentioned frequency, while the distance of the two
points is equal to the pile diameter, the anti-resonance is observed. However, for the same frequency
and employing the other two points, the resonance and anti-resonance can be observed. As can be
seen from the continuous (or dashed) line, most points on the continuous (or dashed) line are positive,
which is conducted to have the maximum stiffness with the employed frequency.
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Figure 16. Scaled mode shape resonance due to the load with non-dimensional a0 = 5.53 when the
loss factor η = 0.0 and E = 9411 KPa.
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5. Conclusions

Offshore jacket wind turbine foundations are modeled as smooth long cylinders, while being
subjected to dynamic vertical excitation. A mathematical approach, like the boundary integral method,
is employed to find the exact dynamic stiffness of the jacket foundation, phase angle, resonance and
anti-resonance mode. The jacket foundation is considered in a viscoelastic media, and elastic responses
are presented by using the Betti reciprocal theorem, Somigliana’s identity and Green’s function. The
behavior of the soil with damping and without damping is explored. Furthermore, the effects of
material properties, such as Young’s modulus and Poisson’s ratio, are investigated. The results for the
soil with the loss factor are validated and compared. Some general observations of this study can be
summarized as:

• The dynamic stiffness increases with the increase of the load frequency until reaching a peak point,
then decreases to a local minimum for a certain value of frequency and, again, increases with
the increase of the load frequency to the next peak point. This procedure is repeated in an
oscillatory manner.

• The local peak point for dynamic stiffness decreases with the increasing loss factor, whilst the local
minimum point of the stiffness increases with decreasing the loss factor. It is worth mentioning
that the turning point at which the concave curve changes into convex curve is the same for
all different loss factors. Furthermore, the turning point increases with the increase of the load
frequency whilst it is independent of the loss factor for a certain value of load frequency.

• The phase angle for dynamic stiffness is changing with the variation of the loss factor, whilst it is
constant for different values of Young’s modulus and Poisson’s ratio.

It is observed using a mathematical approach that pertains to the vertical vibration analysis
that this provides a good understanding about the behavior of soil, besides the wave propagation
and different modes of the wave. The results reveal that the presented approach gains the physical
understanding for offshore foundations in the geomechanics field.
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Appendix A: Fundamental Solution

Wave propagation in the full space is governed by the Navier equations. Inserting the specific
body forces b∗il(x, t; y, τ) = δ(x − y)δ(t − τ) into the Navier equations, the time-domain Green’s
function for scalar wave propagation in a homogeneous isotropic full space is defined by the equation:

ρc2 ∂2u∗(x, t; y, τ)
∂xj∂xj

+ δ(x− y)δ(t− τ) = ρ
∂2u∗(x, t; y, τ)

∂t2 = ρü∗(x, t; y, τ) (A1)

In order to solve the above equation, by assuming that the load is applied at the origin, y = 0,
and applying the Laplace operator, the symmetry condition, the divergence theorem, physical reasons
and Fourier transformation on the obtained time-domain solution, the frequency-domain fundamental
solution reads:
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U∗33(x,ω; y) =
1

4iρc2
S

H(2)
0 (kS$) =

1
2πρc2

S
K0(ikS$) (A2)

where H(2)
0 is the Hankel function of the second kind and order zero, whereas K0 is the modified Bessel

function of order zero. It is noted that πH(2)
0 (x) = 2iK0(ix). More details and further information can

be found in [27].
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