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Abstract: Wind power prediction research shows that it is difficult to accurately and effectively
estimate the probability distribution (PD) of wind power. When only partial information of the
wind power probability distribution function is available, an optimal available transfer capability
(ATC) assessment strategy considering the uncertainty on the wind power probability distribution is
proposed in this paper. As wind power probability distribution is not accurately given, the proposed
strategy can efficiently maximize ATC with the security operation constraints satisfied under any
wind power PD function case in the uncertainty set. A distributional robust chance constrained
(DRCC) model is developed to describe an optimal ATC assessment problem. To achieve tractability
of the DRCC model, the dual optimization, S-lemma and Schur complement are adopted to eliminate
the uncertain wind power vector in the DRCC model. According to the characteristics of the problem,
the linear matrix inequality (LMI)-based particle swarm optimization (PSO) algorithm is used to
solve the DRCC model which contains first and second-order moment information of the wind power.
The modified IEEE 30-bus system simulation results show the feasibility and effectiveness of the
proposed ATC assessment strategy.

Keywords: transmission system; wind power; available transfer capacity; uncertainty; distributional
robust; linear matrix inequality (LMI)

1. Introduction

Wind power energy has become one of the fastest growing renewable energies in recent years.
However, the intermittency, randomness and unpredictability of wind power increase the power
volatility of the transmission system [1]. With increasing uncertainty in the transmission system, the
available transfer capability (ATC) of the transmission system will be influenced greatly. Currently, the
wind power prediction accuracy, which to a certain extent has a prediction error, is limited, and it is
difficult to obtain the accurate probability distribution function wind power. To improve the security
of the transmission system, the wind power uncertainty should be considered in the ATC assessment.
Therefore, the probability distribution uncertainty of wind power should be considered to carry out
robust and economical ATC assessment strategies [2,3].
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In recent years, the research topic of ATC assessment with consideration of wind power uncertainty
has seen much activity. The genetic algorithm [4,5], particle swarm optimization [6], optimal power
flow method [7], probability analytical method, stochastic programming method [8], Monte Carlo
simulation [9,10], and the enumeration method [11] were adopted for this purpose. For describing the
wind power uncertainty, the statistical probability method [12-15] and scene analysis method [16] are
adopted. Both of these methods assume that the probability distribution function of wind speed or
wind power is determined. In [12], under the determined wind power probability distribution function,
the Monte Carlo simulation sampling method is adopted to simulate renewable energy output, and the
ATC of transmission system is calculated using optimal power flow under specific grid system status,
constraints and parameters. Luo et al. [16] employed the Latin hypercube sampling and scenes cluster
analysis to assess ATC with large wind power integration. Shayesteh et al. [17] and Huang et al. [18]
assumed that the probability distribution function of wind power is normally distributed. In [18], the
ATC assessment problem is described as a kind of chance constrained optimization problem. However,
the above proposed statistical probability method and scene analysis method did not consider the
uncertainty of the wind power probability distribution function. Due to the fact that the probability
distribution function of wind power which is used to describe the uncertainty is also uncertain, the
ATC assessment methods mentioned in [12-18] may be ineffective.

In wind-integrated transmission systems, due to the fact that the wind power prediction
technology is limited, adding the geographical complexity, the climate variability and other factors,
it is difficult to accurately and effectively estimate the probability distribution function of wind power.
Instead, only partial wind power information is available, such as the first and second order moment
information [19]. In the prior scenario-based simulation methods and probabilistic analysis methods,
wind speeds are assumed to follow a normal distribution [20,21], beta distribution [22,23], Laplace
distribution [24,25], Cauchy distribution [26] or other probability distribution functions [27]. However,
there is no such uniform probability distribution that is suitable to describe the wind power in all
different situations. Based on the available partial information, the exact probability distribution of the
wind power even cannot be obtained. Instead, the probability distribution is uncertain and related to a
special set of distributions. Therefore, as the above scenario analysis method or probability analytical
method do not take this uncertainty into account, they cannot ensure the effectiveness of the ATC
assessment strategies.

With the above background, the motivation for this work was to optimize the ATC assessment for
wind integrated transmission systems with consideration of all the possible wind power probability
distributions. The ATC assessment problem is described as a distributional robust chance constrained
(DRCC) model. The dual optimization, Schur complement and S-lemma [28,29] are adopted to
eliminate the random variables, and then convert the probabilistic DRCC model into a deterministic
model. The linear matrix inequality (LMI)-based particle swarm optimization (PSO) algorithm is
used to solve the problem according to its characteristics. This optimization strategy can efficiently
maximize the ATC of the transmission system with consideration to all the possible wind power
probability distributions with the security operation constraints satisfied. The simulation and analysis
of the modified IEEE 30-bus test system verify the feasibility and effectiveness of the proposed strategy.

The rest of this paper is organized as follows: Section 2 introduces the ATC assessment
optimization model for wind-integrated transmission systems, which include the chance constrained
optimal ATC assessment model and the DRCC optimal ATC assessment model. The solving method
for DRCC optimal ATC assessment model, which includes the reformulation of distributional robust
chance constraints, the modeling for branch power and node voltage constraints and the determination
model for DRCC, is presented in Section 3. Section 4 gives the LMI-based PSO algorithm for the
optimal ATC assessment model. Section 5 provides numerical example and case studies. Finally,
conclusions are drawn in Section 6.
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2. Optimal Available Transfer Capability (ATC) Assessment Model

2.1. Traditional Chance Constrained Optimal Available Transfer Capability (ATC) Assessment Model

For optimal ATC assessment for wind integrated transmission systems considering the uncertainty
on the wind power probability distribution chance constrained programming is employed to avoid
the operational scheme being limited by small probability events and satisfy the security constraints of
the transmission system. The chance constrained optimal ATC assessment model is as follows: the
objective function is to maximize the all tie-line power output between a given interface, say, from
area a to area b [29]:

ATC = maxz P,y 1)

where P,_,;, denotes all tie-line power output from area a to area b.

2.1.1. Active and Reactive Power Balance Constraint

Py +Pg —Pp —S[;P, =0 2)

Qw+Qc+Qc—Qp —S[;QL =0 €)

where Py and Qyy denote the active and reactive power output of wind farms, respectively; Pg and
Q¢ denote the active and reactive power output of conventional generators, respectively; Pp and Qp
denote active and reactive loads, respectively; P; and Q) denote the active and reactive power flow,
respectively; Q. indicates the actual capacity of reactive power compensators; S;; denotes the node
branch incidence matrix, which is defined as:

1if link I] starts at node [
Sy =4 —1liflink I] ends at node I
0 else

2.1.2. Conventional Unit Generating Capacity Constraints

PG,min < PG < PG,max (4)

QG,min S QG S QG,maX (5)

where P max and Pg min denote the upper and lower active power limits of conventional generation,
respectively; Qg max and Qg min denote the upper and lower reactive power limits of conventional
generation, respectively.

2.1.3. Active and Reactive Wind Power Output Constraints

0 S PW § PW,max (6)

0 < QW < QW,max (7)

where Py max and Qw max represent the maximum active and reactive power output of corresponding
wind farms, respectively.

2.1.4. Chance Constraints of Node Voltage

P1’¢ {Vmin <V< Vmax} > B (8)
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where V, Vinax and Vin represent the actual voltage amplitude, upper limit and lower limit of voltage
amplitude, respectively. Pry, is the probability under ¢, where ¢ is a placeholder for a probability
distribution; B is the confidence level.

2.1.5. Chance Constraints of Branch Power

Pre, {|PL] < PLmax} > B )

where Py max indicates the upper limit of branch power.

Random variables Py and Qy exist in the chance constrained optimal ATC assessment model,
thus the node voltage and branch power constraints become complicated. The traditional approach to
solve the above chance constraints is to use Boole’s inequality [28] to convert these problems into a
single chance-constrained problem. The Monte-Carlo sampling method is adopted under the given
probability distribution function. However, this method is only efficient if the wind power probability
distribution is defined and comprehensively described.

2.2. Distributional Robust Chance Constrained Model

Due to the fact that the wind speed prediction accuracy is limited, the wind speed fluctuates
significantly at different seasons over a year, even during different hours over a day. Besides that,
geography and climate influence the wind speed a lot. There is lots of uncertain information
about wind power and the decision-makers can not get all the information about the probability
distribution of wind power. Instead, partial information on wind power such as the first and
second order moments can be collected from the historical data. Denote the active output
expectations and covariance matrix of m wind farms are p = [y, ... ] and T, respectively. Define
E={PweR":0< Py < Pymax Qw € R" : 0 < Qw < Qw max}- Denote ®z(p, I') as the set of all
the distributions whose mean and covariance are L and T'.

The wind probability distribution function may be any one of set ®z(, I'), and the predetermined
node voltage and branch power constraints should be satisfied under all possible wind power
probability distributions.

Therefore, the distributional robust chance constrained model is adopted to describe the optimal
ATC assessment problem. When the probability distribution of random variables is uncertain
distributional robust chance constrained programming is an effective way to solve such problems [22].

In the node voltage constraints in Equation (8) and branch power constraint in Equation (9), since
the probability distribution of the random vector Pw and Q are uncertain, Py and Qy can be any
possible realization under the set ®z(y, I'), therefore wind power output influences the node voltage
and branch power. Therefore, the infimum is introduced in Equations (8) and (9) in the distributional
robust chance constrained model to express that for any possible probability distribution function,
branch power and node voltages should satisfy the constraints, which is shown in Equations (10)
and (11), where infycq, (. r)Pre {A} represents the minimum probability of A under all possible
probability distributions.

infd)eq)g(u,l") PT’¢, {Vmin V< Vmax} > B (10)

infoews(wr) Pre {IPLl < PLmax} > B (11)

If the probability distribution of wind power isn’t specified, the optimal ATC assessment programs
should meet the pre-set confidence level for node voltage and branch power under any possible
probability distribution function of set ®z(u,I'). The difficulty in solving the model is how to handle
constraints in Equations (10) and (11) with system node voltage and branch power constraints satisfied
when only first and second moment of wind power PD are given.
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3. Solving Method for Distributional Robust Chance Constrained Optimal Available Transfer
Capability (ATC) Assessment Model

It is impossible to accurately estimate the wind power probability distribution function in the
optimal ATC assessment model as analyzed above. The solving process for distributional robust
chance constrained ATC assessment model is as follows: firstly, the wind power vector is separated
into active and reactive power balance Equations (2) and (3). Secondly, employing the node voltage
and reactive power model [30,31], the branch power constraints and node voltage constraints are
expressed as a function of wind power. Thirdly, dual optimization, S-lemma and Schur complement
are adopted to eliminate the random variable. Finally, the probabilistic based constraints are converted
into deterministic constraints.

3.1. Reformulation of Distributional Robust Chance Constraints

Rewrite the node voltage constraints in Equation (10) as follows:

. Vimax+Vmin Vinax —Vinin
infpeds(ur)Pre {’V* 7 ’ < ( 2 )} =

& infyean(unPro {|aV] < (Yoot ) 1 > g (12)

Employing the node voltage and reactive power model [31], AV = JAQ, where AV is the voltage
vector increment, AQ is the node reactive power injection increment, J is the contraction of Jacobian
matrix V — Q. The Newton-Raphson power flow calculation method is adopted in this paper. The core
idea is to gradually linearize the nonlinear equations using the Taylor series expansion method. If the
initial value is chosen appropriate, which means the first derivative of the initial value is relatively
small in the equation, and the second order and higher order term can be omitted. Here in the equation
AV =]JAQ, AQ is the last correction term which can meet the real value of the power balance equation.

The specific power flow calculation of AV = JAQ is as follows:

(1) Give the initial value of Q(A) and V(A), where A = 0 at the beginning, it denotes the initial value.

(2) Substitute Q(A) and V(A) into the power balance equation [31] to calculate the correction term
AV(A) and AQ(A).

(3) Iteration stops when AV(A) = JAQ(A), otherwise, go to Step (4).

(4) Use AV(A) and AQ(A) to correct Q(A) and V(A), then obtains QA + 1) and V(A + 1), let A=A +1,
go back to Step (2).

Here, AV = J(Qw + Qg — Qp — SIT]QL). Substitute AV into the node voltage constraint in
Equation (12) and eliminate the random variable. Equation (12) can be reformulated as Equation (13),
where Prob;(Q¢) denotes the maximum probability value which satisfies the node voltage constraint
under all possible wind power probability distributions:

13
} - (13)

Proby (Q6) = infycan(ur)Pro {|J (Qw + Qo — Qb — Sk, Qu)| < (Yemytn )} >

& Proby (Qg) = infyeaws(1,r)Pro {‘[ ] J(Qc—Qp—S§.Qu) ] { 1

Let [J ] (Qc —Qp — SL;Q1)] = B (Qq), z1 = [Qw 1]7, rewrite Equation (13) as:

_ . 2
Proby (Qc) = infcas(ur)Pro {[Pl(Qc)zﬂz < (g Youn } >p (14)
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Let [(TIT]) (TIT]) - (Pg — PD)} = F(Pg), zo = [Pw 1]", where TIT] is the power transmission
distribution coefficient matrix [31]. The active power flow P can be formulated as follows [31]:

P = (T; ) (Pw + P — Pp)
= () (Th)-(Pc—Po) |- [ o ] (15)
= FK(Qc)z2

Thus, recall infg e, () Pre {A}, denote Proby(Pg) as the maximum probability value which
satisfies the branch active power constraint under all possible wind power probability distributions:

Proby(P) = infyeas(ur) Pro{[F2(P6)z2)* < (Pmax)’} > B (16)

3.2. Determination Model for Distributional Robust Chance Constraint

According to the dual theory [20], Prob;(Qg) and Proby(P¢) in Equations (14) and (16) correspond
to the optimal value of sub-optimization problem in Equations (17) and (18), respectively. The detailed
derivation is shown in Appendix A:

Proby (Qg) = inf Tr (N - Myq)
Mjq =My TeR™ 1

_v..\2 - 17
s.t. ZlTMk121 >1,Vz1 € {[Fl (QG)Zl]z < (%) } N (17)
ZlTM]le >0,Vz1 € B
Prob, (Pg) = inf Tr (N - Myo)
MkZ:MkZTERWH—l (18)

s.t. 22T Mypzy > 1,V25 € {[Fz (Pg)20]* < (PL,maX)Z} nNE
ZZTMkzzz >0,Vzp € &

where Tr(-) denotes the trace operations, N = [I' + up®, w; 1T, 1], Myq and My, are symmetric matrices
containing all the dual variables.

In a similar way, employing the dual optimization, S-lemma and Schur complement [20,21], the
random wind power in the optimization model is eliminated [28], and Equations (17) and (18) are
converted into linear matrix inequalities as shown in Equations (19) and (20). The detailed derivation
is shown in Appendix B:

Proby (Qg) = inf  Tr(N-My)
Mg =M] eR"*!
s.t. Tkl,ll Z 0, ll = 1,. oom
i, = 0
Tk3,ll > O, ll = 1,...,7’/’1 (19)
M + 2% T, Wi, =20

; Vm X i 2 n T
[ My —diag { 04,1 — Tio [%] +z;1 T Wi, ol (Qc)

o1, F1 (Qg) Tho, ),

>0
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where in matrix W), € RHDX(m+1) the (1;, ;)-th element is 1, and the (I, m + 1)-th and (m + 1, I;)-th
element is —Qw may,1, /2, the rest of the elements is 0, and there are m wind farms. The maximum
reactive power output of the /1-th wind farms is Qw max., -

Proby (Pg) = inf Tr (N X M)
Mjo =M}, eR" !
st Ty, >0, b=1,...,m
Tk, = 0
Tk3,1, >0, lz =1,...,m (20)
Mo + X2 Tra, 1, Wi, > 0
m
My, — diag (On, 11— (PL,max)z) + 121 TaL,Wi, TionF! (Pc) >0
2= -
To1, F2(PG) k2,1,

In matrix W, € RMDX(m+1) the (I, I)-th element is 1, and the (I, m + 1)-th and (m + 1, Ip)-th
element is — Py max 1, /2, the rest of the elements is 0, and there are m wind farms. The maximum active
power output of the l>-th wind farms is Py maxi, -

Substitute Equations (19) and (20) into the DRCC optimal ATC assessment model (Equations (1)—(7),
(10) and (11)) to replace the node voltage constraint in Equation (10) and branch power constraint in
Equation (11), the DRCC-ATC deterministic model is shown in the following equation:

max)_ P,
inf  Tr(N-Mg) =B, inf  Tr(N-My)>pB
Mkz:M;ZzeRerl My :MIQ 6Rm+1
Pg,Qc € R":
PG,min < PG < PG,max
QG,min < QG < QG,max
Ty = 0Tk, 2 0,0 > 0,7k, = 0,3y 20,3, > 0,11, =1,...,m 1)
S.T. Mg + Y7 T, oW, >0, Mg + Y72 T ), Wiy >0
2 m
4 Vmax_Vmin
[ My — diag (On,l — Tro [72 ] ) +121 o, W, o BT (Qg) ] >0
1= =
o, F1(Qc) Tkl
. 2 m
[ My, — diag <0n,1 — Ti2,, (PLmax) ) + lzl T, W, TionB! (P) ] -0
= >
Tio, 1, F2(PG) k2,

After the above derivations, it is obvious that the wind power Py and Qw do not exist in the
optimization problem in Equation (21), and only the first and second moment information of the wind
power probability distribution function is needed.

4. Linear Matrix Inequality (LMI)-Based Particle Swarm Optimization (PSO) Algorithm for
Available Transfer Capability (ATC) Assessment Problem

The optimal ATC assessment in Equation (21) only needs the first and second order moments of
the wind power probability distribution information. It is relatively difficult to solve the nonlinear
problem as it includes LMI and nonlinear constraints. The PSO algorithm [32] is used in this paper to
solve the problem in Equation (21).

Particle swarm optimization was first proposed by Eberhart and Kennedy. The design of the PSO
algorithm is as follows: initialize a group of random particles, each particle represents a candidate
solution. The particles update themselves through tracking the personal best position and the optimal
solution for the entire population called global minimum, the position of the best particle that give the
best fitness value in the entire population. The PSO algorithm has a clear searching direction and it
converges quickly at the beginning, however, the PSO algorithm can easily fall into local minimum
of convergence speed and precision during the course of evolution. Thus we combine the immune
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algorithm and PSO, which is expected to address the convergence speed shortcomings of the local
minimum of the PSO.

In the PSO updating process, the particles which have high fitness value will be retained. However,
if such particles are too concentrated, it can easily to fall into a local optimum. Those particles
which have lower fitness value but maintain good evolutionary trends will not be eliminated, so the
vaccination strategy based on the diversity of concentration mechanism can efficiently ensure all
fitness levels by maintaining a certain concentration, the i-th concentration value of particles is defined

as follows: )

D(x;) = ,i=1,2,...,num (22)

num

Y |f(x) - f(x)]
j=1

where x; and f(x;), 1 = 1,2, ... ,num, refer to the i-th particle and the fitness value of the i-th particle,
respectively. num refers to particle number.
The probability of the particle concentration is defined as follows:

1
L §1|f(xi)—f(x/)|
Prob(x;) = Vo= _= ,i=1,2,...,num (23)

num 1

Lo T )]
i=1 j=1

o
=]

= [

We can see from the above equation that, if particle j is similar to particle i, then Prob(x;) is less,
which means the chance of particle i to be chosen is less. If the particle j is more different from particle i,
then Prob(x;) is larger. Therefore, the particles have higher diversity.

Immune selection is inspired by the biological immune system. The biological immune system
is an intricate network of specialized tissues, organs, cells, and chemicals with the capability of
distinguishing entities within the body as “self” or “non-self” and eliminating those that are non-self.
If the fitness value of particles is inferior to those of their parent, then the vaccination process is
canceled, otherwise, the particles are retained.

The specific flow chart for the LMI-based PSO algorithm for ATC assessment is shown in Figure 1.
The specific procedures are as follows:

(1) Input grid original parameters, the first and second order moments of the wind power, PSO
control parameters and control variables. The branch power and node voltage constraints in
Equations (10) and (11) can be converted into LMI form as shown in Equations (19) and (20).

(2) Initialization: set the initial solution P(O; and Q%, calculate the fitness value, and let the iteration
counter K =0.

(3) Parameter optimization: substitute Pz = Plé and Qg = Qlé into sub-problems in
Equations (19) and (20). Solve the resulting LMI problem and obtain the optimal solution

K _ K _ K _
Tzuz Tltz,lz TZ3,ZZI and set TeLl, = Tltl,lz' T, = Tltz,lz' T3, — TZE;,ZZ'

(4) Optimal decision: substitute T, = TkKl,lg’ T, = Tsz,lg’ T3, = Tf&lz into
Equation (21), solve the matrix positive condition and power flow calculation to obtain
the updated optimal solution P7 and Qg and the corresponding objective value ) P ., .
Vaccine selection and immune selection are defined as shown in Equations (22) and (23),
the particle Pg;, Qg,; with high Prob(Pg;, Qg;) value would be selected, and set

K+1 _ K+1 __ K+1 __
PE = Pz and QKT = Qp, TPNH = £ P,

(5) Termination: If the iteration counter K meets the predefined value, then the final optima
PIG<+1, Qg“ and Y Pf_f; are obtained, and the algorithm ends. Otherwise, let K=K + 1, and
repeat Steps (3) and (4).
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Figure 1. Flowchart of the linear matrix inequality (LMI)-based particle swarm optimization
(PSO) algorithm.

5. Numerical Example

The modified IEEE 30-bus transmission system used for simulation calculation is shown in
Figure 2. It is divided into three regions, and the revised system includes six conventional generators,
the specific parameters of which are shown in Table 1. There are 22 P-Q buses (where bus 11 and bus
24 are reactive power compensation points, the compensation step is 0.048), one balance bus (bus 1),
and the rest are P-V buses. Upper and lower limits of node voltage are 1.1 pu (per unit) and 0.95 pu.
There are 41 branches in the transmission system. The transformer parameters are shown in Table 2.
There are six wind farms integrated to the transmission system, which are connected to the grid at bus
3,16, 23,26, 27 and 28.

To illustrate the validity of the proposed strategy, we compare the results of the DRCC optimal ATC
assessment (DRCC-ATC) model and the TCC optimal ATC assessment (TCC-ATC) model. Wind power
is assumed to follow the normal distribution in the TCC model. In order to analyze the impact of wind
power on the optimal ATC assessment, we test the ATC assessment strategy under different confidence
levels and covariance values.
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Figure 2. The modified IEEE 30-bus test system.
Table 1. Generator parameters and limits.
Node 1 2 5 8 11 13
P G,max
(MW) 139 58 35 21 18 10
PG min (MW) 130 32 30 13 17 10
Table 2. Transformer parameters and limits.
Branch No. Tmax T min Tap Ratio Unit Capacity
11 1.1 0.9 17 0.0125
12 1.1 0.9 17 0.0125
15 1.1 0.9 17 0.0125

36 1.1 0.9 17 0.0125
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5.1. Comparison of the Distributional Robust Chance Constrained ATC (DRCC-ATC) Model and the
Traditional Chance Constrained ATC (TCC-ATC) Model

To compare the distributional robust chance constrained ATC (DRCC-ATC) model and the
traditional chance constrained ATC (TCC-ATC) model, we set the expectation of wind power
probability distribution to 2.0 MW, and the covariance of the wind power probability distribution
to 0.4 MW?2. The optimal values of the DRCC-ATC model and the TCC-ATC model under different
confidence levels are shown in Figure 3.

* ' ! ' ! : !

e e e

i s e
26 - S

s S S S

ATCMW)

R e e e

eV S — - S

T IR S SR R S ]

Dl e e e e

06 0.65 0.7 0.75 08 0.85 09 0.95
Confidence level

Figure 3. Optimal ATC obtained by the DRCC and TCC models for the modified IEEE 30-bus system.

Figure 3 illustrates the effect of the confidence level on the ATC. It is shown in Figure 3 that
with increasing confidence level, the ATC obtained by the DRCC and TCC both gradually decrease
to satisfy the security constraints caused by the wind power uncertainty. For a given confidence
level, the ATC under the DRCC model is smaller than that of the TCC model. In the DRCC model,
the node voltages and branch power should meet the constraints at a given confidence level under
any given wind power probability distribution. In the TCC model, the node voltage and branch
power should meet the constraint at a given confidence level for only one kind of wind power
probability distribution. Therefore, the DRCC model argues for a more rigid security constraint for the
wind-integrated transmission system, which results in a smaller ATC when this model is employed.

5.2. Available Transfer Capability (ATC) under Different Expectations of Wind Power Probability Distribution,
Where Covariance = 0.4 MW?

Figure 4 illustrates the relationship between ATC and the wind power probability distribution
expectation. Given the same covariance of wind power PD and confidence level, we compare ATC
values under different expectations of wind power probability. We can find in Figure 4 that with the
increase of the confidence level, ATC gradually decreases. When the confidence level increases, ATC
decreases to avoid breaking the security constraints.
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Figure 4. ATC under different expectations of wind power PD for the modified IEEE 30-bus system,

where the covariance = 0.4 MW?2.

5.3. Available Transfer Capability (ATC) under Different Covariance of Wind Power Probability Distribution,
Where Expectation = 2.0 MW

Figure 5 illustrates the relationship between ATC and the covariance of the wind power probability
distribution. Given the same expectation of wind power PD and confidence level, we compare ATC
under different covariances of wind power probability. We can find that the greater the covariance is,
the smaller the corresponding ATC is. If the covariance is greater, which means the fluctuation range
of wind power is increased, therefore the branch flow and node voltage change more, which results in

an ATC decrease under more strict security constraints.
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Figure 5. ATC under different wind power covariances for the modified IEEE 30-bus system, where

expectation = 2.0 MW.

In the actual wind integrated transmission system operation, the transmission system should set
a reasonable confidence level according to the actual situation with the security satisfied to thus obtain

an effective ATC assessment scheme.
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6. Summary

This paper proposes an ATC evaluation strategy considering the uncertainty on the wind power
due to the fact that the exact probability distribution of wind power is not given. With respect to
the fact that the partial information such as the first and second order moments of wind power
probability distribution can be collected from historical data, a DRCC model is presented for ATC
assessment. The proposed method can meet the system requirements for security operation under
any possible wind power probability distribution. The DRCC model is converted into a deterministic
model. For solving the deterministic model, the PSO algorithm based on the LMI is employed.
The effectiveness and feasibility of the proposed optimal ATC evaluation strategy method is verified
through numerical examples. In modeling the ATC assessment strategy for a wind integrated
transmission system, it is more in accord with the actual engineering situation using the apparent power
in the branch power and node voltage model, which we will concentrate on in future research work.
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Appendix A. Dual Problem of Node Voltage Constraints
Proby (Qg) in Equation (13) can be regarded as a sub-optimization problem, the decision variable

is Q¢. The dual problem of sub-optimization problem is as follows:

Probi (Qg) = inf Tr (N - Mjq)

MkleleeRm+1
2
s.t. 21T Mz > 1,Vz1 € {[Fl (Qc)z1)* < (M) } N

leMklzl >0,Vz1 € B

(Al)

[1]

where Tr( ) denotes the trace operation, N = [T + TITLARTETE 1], My, is a symmetric matrix including
all the dual variables.

2
Proof. Denote the measurable indicator function I_S(z1) = z] F} (Qg)F1(Qg)z1 — (%) <0,

T
random variables z; = { Ow 1 } . Consider the maximum expectations of measurable function

I_S(z1) under all possible probability distribution.
0(z1) = sup Eu{I_S(z1)} (A2)
pedz (1)

where ¢ is the probability distribution of z;. Denote @z (, I') as the set of all the distributions whose
mean and covariance are pand I'.
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0 (z1) in Equation (A2) can be expressed in integral form as follows [29]:

0(z1) =2 = sup [ I_Z(z1) $(dz1)
fEM4R™

st [ d(dz) =1
Rm
J z1¢(dz1) =n

Rm

|z (dzy) =T+ ppu’
Rnl

(A3)

where M represents the cone of nonnegative Borel measures on R™. Note that the first constraint
forces ¢ to be a probability measure. The other two constraints enforce consistency with the given
first- and second-order moments, respectively.

The following problem in Equation (A4) is the dual problem in Equation (A3), which matches the
strong duality theorem, which means that Z = ZP.

Z0 = infyo+yTu+Tr (T+uul)Y
Yoy, Y
st yo €ER,y e R",Y = YT € R"*™

Yo+ylzy +Trziz; 1Y > 1.S(z),Vz; € R"

(A4)

where yo € R,y € R, and Y € S are the dual variables of the first, second and third constraint in
Equation (A4), respectively.

Therefore, we can get the optimal value of the original problem 0, by solving the dual
problem ZP.

Define the following variables:

My =

1
1YT 2 N =
YY" Yo

The dual question Z D can be rewritten as [29]:

ZP = inf Tr(N,My)
Mklesk+1 (A5)
T
s.t { 47 1 }Mkl { z7 1 } > 1.5 (z1)

Proby (Qg) in Equation (12) is:

st. Ep{z1} =1 (46)

Eq) {lelT} =T+ HHT

Consider the range of Qw is & 1.S(z1) is the indicator function which indicates

(R (Qg)zaf? 2 (Moot}

[1

1, z€4[R(Qc)z) > (%)2 N
2 (A7)

[.S(z1) = Is (z1) =
0, z1€{[F(Qc)z) < (Ymuytun)™bn

[x1
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Thus:
2 Vmax — Viin z _
Pro YR (Qo)z1l” 2 ( — 5 ) ( =Eo{ls(z1)} (A8)
According to Equations (A5) and (A7), we can obtain that:
Proby (Qg) = inf  Tr(N.My)
M:MTERM_H (A9)

S.t. Z1TMk121 >1I5(z1),Vz1 € E

According to the definition of the indicator function in Equation (A7), the constraints in
Equation (A9) can be written as:

.\ 2 _
ZlTMklzl Z 1IVZ1 c {[Fl (QG) 21]2 Z (%) } n=

(A10)
z1TMk121 >0,Vz1 € B
Combining Equation (A9) with Equation (A10), the optimal value of Prob; (Qg) is:
Proby (Qg) = inf Tr (N - My)
My :MleeRnHH
(A11)

2
st 21T Mz > 1,Yz; € { [F (Qg) z1)* > (%) }ﬁE

Z1TMk121 >0,Vz1 € &

Appendix B. Eliminate Random Vector and Convert Matrix Inequalities

The random vector z; in constraints in Equation (A11) can be eliminated according to the S-lemma.
The Equation (A11) is converted into the matrix inequalities according to Schur complement.

Prob; (Qg) = inf Tr (N - Myq)
Mklek]TGRWH»l
s.t. Tkl,l] Z 0, ll = 1,...,111
Tk, 1, = 0
TkS,ll 2 0, 11 = 1,...,m
My + 2% T, 1, Wi, >0

; VmaX*Vmin 2 & T
My —diag ( 0n, 1 — Ty, {72 } + 121Tk3’ Wi e, B (Qc)
pl

>0
T, 1, F1 (Qc) T2, 1,
Proof. Rewrite the second constraint in Equation (A11) as:
21 TMyyzy > 0,z € E = {zl ER": 2 TW,z <0, I = 1m} (B1)

In matrix Wy, € RODX(m+1) the (11,11)th element is 1, the (I1,m + 1)th and (m + 1,1;)th element is
—Qw,max, /2, the rest of the elements is 0. There are m wind farms. The maximum output power of
the I1th wind farms is Qw,max, -

Notice the constraint condition of Equation (B2):

{ HTkl,ll ZW(?, 11 =1,...,m (BZ)
Mia + 20 =1 T, Wiy, 20
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According to the S-lemma, Equation (B1) is satisfied if and only if Equation (B2) is satisfied.

And when m =1, Equation (B2) is equal to Equation (B1). Meanwhile, the first constraint in constraint
in Equation (A11) can be written as:

21T (Myy — diag (0,,1))z; > 0

Vz1 € {—le [PlT (Qc) Fy (Qg) — diag (On/ (Vmagimm)2>} 2 < O} . (B3)

Apply the S-lemma to eliminate the random variables z; in Equation (B3), Equation (B3) is satisfied

if and only if Equation (B4) is satisfied.

Ity >0,
ElTkB,ll 2 0, ll = 1,. oom
My — diag (0y,1) — (B4)

2 m
Tkl [HT (Qc) F1 (Qg) — diag (On/ (%) )} +121 T3, Wi, =0
=

Apply the Schur complement, rewrite Equation (B4) as:

It >0,
E|Tk3,11 Z 0, 11 = 1,...,m

. v 12 L B5
My — diag <0n/1 — Tk, [M] ) + 1;1 T, W, T b’ (Qc) >0 B9
o1, F1 (Qg) Tho, ),
Thus, the optimal solution to sub-optimization problem in Equation (A11) is:
Proby (Qg) = inf Tr (N - My)
Mjq=M], eR" 1
St T, 2 0, h=1,...,m
Tk, = 0
Tk3,ll 2 0, ll = 1,...,m (B6)
Mg + L% T, Wi, >0
—di _ Vinax—Vinin | > o W T
My —diag ( 0n, 1 — Ty 5 +121 T, W, o Bt (Qg) >0
= >

Tio,1, F1 (Qc) Tio )y
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