
energies

Article

An Integrated Decision-Making Model for
Transformer Condition Assessment Using Game
Theory and Modified Evidence Combination
Extended by D Numbers

Lingjie Sun 1,2, Yingyi Liu 1,*, Boyang Zhang 1, Yuwei Shang 3, Haiwen Yuan 1 and Zhao Ma 3

1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
sunlingjie@buaa.edu.cn (L.S.); zbyang@buaa.edu.cn (B.Z.); yhw@buaa.edu.cn (H.Y.)

2 School of telecommunications, Taizhou Vocational & Technical College, Taizhou 318000, China
3 China Electric Power Research Institute, Beijing 100192, China;

shangyuwei@epri.sgcc.com.cn (Y.S.); ma_zhao@hotmail.co.uk (Z.M.)
* Correspondence: 09339@buaa.edu.cn; Tel.: +86-10-8231-6147

Academic Editor: Issouf Fofana
Received: 29 April 2016; Accepted: 18 August 2016; Published: 31 August 2016

Abstract: The power transformer is one of the most critical and expensive components for the
stable operation of the power system. Hence, how to obtain the health condition of transformer
is of great importance for power utilities. Multi-attribute decision-making (MADM), due to
its ability of solving multi-source information problems, has become a quite effective tool to
evaluate the health condition of transformers. Currently, the analytic hierarchy process (AHP)
and Dempster–Shafer theory are two popular methods to solve MADM problems; however,
these techniques rarely consider one-sidedness of the single weighting method and the exclusiveness
hypothesis of the Dempster–Shafer theory. To overcome these limitations, this paper introduces
a novel decision-making model, which integrates the merits of fuzzy set theory, game theory
and modified evidence combination extended by D numbers, to evaluate the health condition
of transformers. A four-level framework, which includes three factors and seventeen sub-factors,
is put forward to facilitate the evaluation model. The model points out the following: First, the
fuzzy set theory is employed to obtain the original basic probability assignments for all indices.
Second, the subjective and objective weights of indices, which are calculated by fuzzy AHP
and entropy weight, respectively, are integrated to generate the comprehensive weights based
on game theory. Finally, based on the above two steps, the modified evidence combination
extended by D numbers, which avoids the limitation of the exclusiveness hypothesis in the
application of Dempster–Shafer theory, is proposed to obtain the final assessment results of
transformers. Case studies are given to demonstrate the proposed modeling process. The results show
the effectiveness and engineering practicability of the model in transformer condition assessment.

Keywords: power transformer; multi-attribute decision-making (MADM); game theory;
fuzzy analytic hierarchy process (AHP); D numbers

1. Introduction

As a key piece of equipment in power systems, the power transformer comprises up to 60% of the
total investment in substations and affects the safety and stability of power supply [1,2]. With the rapid
expansion of the power system network, sudden failures of transformers will affect the security
of life and property more seriously than before [3]. Therefore, grasping the health condition of
transformers accurately is of significant importance, which involves transformers’ operation and
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maintenance [4]. Health diagnosis methods provide feasibility for changing the maintenance strategy
and, accordingly, maximizing the practicable operating efficiency and optimum life, while minimizing
the risk of premature failure [5,6].

In past years, many techniques, such as neural network [7], support vector machine [8] and
fuzzy logic [9], were applied to transformer fault diagnosis. These approaches usually focused on a
single factor (e.g., DGA analysis, thermal modeling, winding fault analysis, etc.). Results indicated
that these research works could evaluate the transformer fault condition effectively to a certain
extent. Nevertheless, these attempts were not sufficient to obtain an overall and precise health condition
of the transformers [5,6]. They usually gave a qualitative description of transformers whether in good
or bad condition. In fact, the transformer health condition is affected by many factors, which reflect
its condition from different aspects, degrees and levels. The health condition of power transformers
is often somewhere between good and bad. For example, some indices may have deviated from
their permissible thresholds, but the overall condition is still acceptable. On the other hand, some
indices may be below the thresholds, but the overall condition is bad, since timely maintenance is
required. Therefore, it is difficult for power utilities to obtain accurate evaluation results due to varied
information sources from transformers, which can be regarded as an MADM problem [5,6].

To address such MADM problems, some researchers have attempted to integrate the merits
of AHP and evidence theory to evaluate the electric primary devices including diverse condition
information [5,10]. The AHP method, established by Satty, which has been successfully employed
under many actual decision-making situations [11–14], is a popular approach for determining the
weights of alternatives in MADM problems involving qualitative data [15,16]. In addition, the
Dempster–Shafer theory (also called evidence theory), initially presented by Dempster [17] and
then developed by Shafer [18], is applied to handle the uncertain information in MADM problems [5,6].
The kernel of evidence theory is the combination rule, which can be adopted to obtain an evaluation
result considering various kinds of condition information [19].

However, these previous studies are still one-sided and unsystematic because of several challenges
or drawbacks remaining.

• For the classical AHP approach, the scale of pair-wise comparison judgment, derived from experts,
is confined to crisp numbers [20]. However, in many practical applications, such as condition
assessment of transformers, expert objective predilection may be fuzzy [21], and the experts may
not be willing to provide exact values for pair comparisons [22].

• For the calculation of weights, determining a suitable weight is a very important step in the
decision process. However, both objective and subjective weight have limitations. The objective
weight neglects the decision maker’s knowledge and actual situation. On the contrary,
the subjective weight is heavily influenced by expert experiences and prejudices, resulting in high
subjectivity [23].

• For the traditional evidence theory, it is strongly confined to the definition of exclusiveness
hypothesis and the completeness constraint [24]. Therefore, this limits the actual application of
evidence theory, especially the application in the health condition assessment of transformers,
including five intersection grades (health, sub-health, minor defect, major defect and critical defect)
based on human judgment [25,26]. Unfortunately, little attention has been paid to the rigorous
mathematical definition of evidence theory.

To effectively overcome these shortcomings of existing methods, several techniques,
such as fuzzy extended AHP, game theory and D numbers, have been developed. The fuzzy
extended AHP, extending the classical AHP by using a triangular fuzzy number [27], has become
an outstandingly effective tool to determine the weights of evaluation criteria in an actual
complex system. Recently, it has been successfully applied in many fields, like green product
designs [28], ship selection [29] and teaching performance evaluation [30]. Game theory, a strategic
bargaining behavior [31], has been developed and employed for various fields from economics to
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engineering [32]. It can play a better role when it comes to dealing with the conflicts among two or
more participants [23]. Similarly, subjective and objective weight can be considered as two participants
of a game, and the comprehensive weight is the result of the ‘weight’ game [23]. D numbers, a novel
theory initially proposed by Deng [24], has become a powerful method to deal with the uncertainty in
actual engineering applications due to its capacity of avoiding the mutually-exclusive hypothesis of
the frame of discernment [25,26,33,34].

Herein, a novel MADM model, which integrates the merits of fuzzy set theory, game theory and
modified evidence combination extended by D numbers, is adopted to evaluate the health condition
of transformers in this paper. Three factors, (i) dissolved gas analysis (DGA) date; (ii) electrical testing;
(iii) oil testing and seventeen sub-indices are involved in the evaluate framework. The followings
have been investigated in this paper: (i) adopting the fuzzy set theory to generate the original basic
probability assignments for all indices; (ii) applying the game theory to obtain a comprehensive weight
based on the subjective and objective weight, which are calculated by fuzzy extended AHP and the
entropy weight, respectively; (iii) employing the distance of D numbers to modify original basic
probability assignments and obtain final assessment results for transformers. The proposed model is
verified by evaluating a realistic transformer and compared to a typical method. The results indicate
that the model can evaluate the transformer health condition effectively.

This paper unfolds in the following fashion. Section 2 presents the framework for
transformer condition assessment. Section 3 demonstrates the detailed procedures of the condition
assessment model, including the fuzzy set theory, game theory and modified evidence combination
extended by D numbers. Section 4 takes two cases for example to show the efficiency of the model,
and final conclusions are illustrated in Section 5.

2. Framework for Transformer Condition Assessment

During the whole service period of the power transformer, various subsystems of the power
transformer are aging gradually. Although the health condition of the power transformer cannot be
observed directly, it can be reflected by all kinds of condition information [5,6]. Thus, diverse evaluation
indices are acquired to evaluate the health condition of the transformer, which is regarded as an MADM
problem. The selected evaluation indices should be typical and reasonable, so as to the reflect health
condition of the transformer. Based on the aging mechanisms and fault properties of the transformer,
three factors, DGA data, electrical testing and oil testing, are chosen in the evaluation framework.

The evaluation framework, a four-layer structure, is established as shown in Figure 1. Level 1, the
objective level, represents the final condition evaluation result of the power transformer. Level 2, the
factor level, describes the condition information of the transformer from three aspects. Level 3, the
sub-factors’ level, involves corresponding indices’ information. For example, f1 = { f11, f12, f13, f14, f15}
represents the DGA data with five indices. Level 4, the assessment result level, indicates the evaluation
grades of each index.

Based on previous research [6,21] and experts’ experiences, the evaluation grades, relating to
maintenance purposes, can be divided into five grades (health, sub-health, minor defect, major defect
and critical defect) and are given by:

H = {H1, H2, H3, H4, H5}
= {health, sub− health, minor de f ect, major de f ect, critical de f ect}

(1)

The relationship between the assessment grades and maintenance strategy is described in Table 1.



Energies 2016, 9, 697 4 of 22

Condition

outcome

F

DGA f1

C2H2 Content f11

H2 Content f12

CO2 relative

Production f13

Total Hydrocarbon

content f14

CO relative

production f15

Oil Testing

f2

water Content f21

Breakdown Voltage

of oil f22
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Interfacial Tension

f24

Polymerization

degree f25

Dielectric Loss of oil

f26

Flash Point f27

Electrical

Testing

f3

Core Earthing

Current f31

Volume Resistivity

f32

Absorbtance f33

Polarization Degree

f34

Dielectric Loss of

winding f35

Objective layer Factor layer Indices layer

Assessment grade : H5

Assessment grade

Assessment grade : H4

Assessment grade : H3

Assessment grade : H2

Assessment grade : H1

Figure 1. Condition information framework of the power transformer.

Table 1. Assessment grades’ relation to the maintenance.

Grade Condition Description Maintenance Schedule

Health

Each property reaches the standard level, with a
sufficient margin for all of the corresponding critical
characteristic quantities and a strong ability to resist
risks and adapt to the environment.

One may properly delay the maintenance schedule.

Sub-health

All of the properties can reach the standard level,
but some of the critical characteristic quantities’ values
are close to the standard limit values. Additionally,
the ability to resist risks and adapt to the
environment declines.

Conduct maintenance as originally planned.
Pay attention to the parts that are close to standard
limit values of the characteristic quantities.

Minor defect

Some of the critical characteristic quantities are out of
limit, but the comprehensive influence is small. There
appear slight defects of the ability to resist risks and
adapt to the environment.

Arrange to carry out the maintenance schedule in
advance; intensify tour inspection, operation
monitoring, on-ling inspection, etc.

Major defect

There appears serious degeneration of some properties,
and corresponding critical characteristic quantities are
out of the limit. The comprehensive influence is large,
and there exist obvious defects of the ability to resist
risks and adapt to the environment.

Timely arrange to carry out the maintenance
schedule; intensify tour inspection, operation
monitoring, on-ling inspection, etc. The defect
elimination time is recommended to not exceed
one week.

Critical defect

The transformer cannot normally carry out the
regulated functions, but its functions can be recovered
after overhaul.

Promptly arrange maintenance, and the defect
elimination time is recommended to not exceed
24 h.
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3. Methodology

A novel hybrid MADM model, which integrates the merits of fuzzy set theory, game theory
and modified evidence combination extended by D numbers, has been proposed in this paper.
The assessment process consists of three key steps. First, the original basic probability assignments
for all indices are obtained by the fuzzy set theory. Second, based on game theory, the subjective and
objective weights of indices, which are calculated by fuzzy AHP and the entropy weight, respectively,
are integrated to generate the comprehensive weights. Third, the modified evidence combination
extended by D numbers is proposed to obtain the final assessing result.

3.1. Fuzzy Set Theory

Due to different dimensions or magnitudes, various indices need to be first normalized so as to
obtain the membership grades for quantitative indices. Let xij be the j-th index of the i-th factor, and
the normalization mapping xij : f → [0,1] is given as follows [6].

If the indices are benefit attributes, the standardization process is:

γij =
xij −min

(
xij
)

max
(
xij
)
−min

(
xij
) (2)

If the indices are cost attributes, the standardization process is:

γij =
max

(
xij
)
− xij

max
(
xij
)
−min

(
xij
) (3)

where γij is the standardized value.
The membership function is adopted widely in the condition assessment of electrical equipment.

Nonetheless, there is no unified standard within fuzzy theory for constructing suitable
membership functions [10]. Recently, a trapezoidal membership function is usually employed in the
health diagnosis of transformers [35,36], and the trapezoidal model is also in accordance with the
health condition of transformers [21]. Hence, the trapezoidal model is adopted to obtain the assessing
grades in this paper. The design of the membership function is shown in Figure 2 [21] and can be
described as follows.  fr

(
xij
)
=

(Zr+1−xij)
(Zr+1−Zr)

r = 1, 3, 5, 7

fr
(

xij
)
=

(xij−Zr−1)
(Zr−Zr−1)

r = 2, 4, 6, 8
(4)



µ1
(

xij
)
=


1 xij ≤ Z1

f1
(

xij
)

Z1 ≤ xij ≤ Z2

0 xij > Z2

µ2
(

xij
)
=


f2
(

xij
)

Z1 ≤ xij ≤ Z2

1 Z2 ≤ xij ≤ Z3

f3
(

xij
)

Z3 < xij < Z4

µ3
(

xij
)
=


f4
(

xij
)

Z3 < xij < Z4

1 Z4 ≤ xij ≤ Z5

f5
(
xij
)

Z5 < xij < Z6

µ4
(

xij
)
=


f6
(
xij
)

Z5 < xij < Z6

1 Z6 ≤ xij ≤ Z7

f7
(
xij
)

Z7 ≤ xij ≤ Z8

µ5
(

xij
)
=


0 xij ≤ Z7

f8
(
xij
)

Z7 ≤ xij ≤ Z8

1 xij ≥ Z8

(5)
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After extensive field testing and validations, the interval values are given as: Z1 = 0.05, Z2 = 0.25,
Z3 = 0.3, Z4 = 0.45, Z5 = 0.5, Z6 = 0.75, Z7 = 0.8, Z8 = 0.95, respectively.

health sub health minor defect major defect critical defect

1

0
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 1

( )1 ijfm ( )2 ijfm ( )3 ijfm ( )4 ijfm ( )5 ijfm

Figure 2. Membership function for the condition evaluation of indices.

By using Equations (2)–(5), the fuzzy membership matrix is then:

Yi (H) =


µ1 (xi1) µ2 (xi1) · · · µ5 (xi1)

µ1 (xi2) µ2 (xi2) · · · µ5 (xi2)
...

...
...

...
µ1 (xim) µ2 (xim) · · · µ5 (xim)

 (6)

where Yi(H) stands for the index membership matrix of the evaluation level of the i-th factor.

3.2. Comprehensive Weights Based on Game Theory

3.2.1. Fuzzy Extended AHP

Several fuzzy AHP methods have been developed to determine the weights of alternatives [37].
Among these methods, the fuzzy extended AHP, proposed by Chang [27], is employed widely in
different application areas due to its lower computation complexity than the other methods [30].
In this paper, the fuzzy extended AHP is adopted to calculate the weights of alternatives based on
experts’ opinions.

Since the hierarchical structure is constructed, the triangular fuzzy comparison matrix [27],
based on expert judgments, is given by:

A =
(
aij
)

n×n =


(1, 1, 1) (l12, m12, u12) · · · (l1n, m1n, u1n)

(l21, m21, u21) (1, 1, 1) · · · (l2n, m2n, u2n)
...

...
...

...
(ln1, mn1, un1) (ln2, mn2, un2) · · · (1, 1, 1)

 (7)

where:

aij =
(
lij, mij, uij

)
, a−1

ij =
(
lij, mij, uij

)−1
=
(

1
uij

, 1
mij

, 1
lij

)
i, j = 1, · · · , n and i 6= j

The triangular fuzzy numbers and corresponding linguistic description are illustrated in Table 2.
The linguistic description should be converted into fuzzy scales, which aims to be convenient for
mathematical operation. The steps of fuzzy extended AHP are demonstrated as follows [27].
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Table 2. Scale values of triangular fuzzy numbers.

Triangular Fuzzy Numbers Linguistic Description

(1, 1, 1) Equally important
(2, 3, 4) Moderately important
(4, 5, 6) Fairly important
(6, 7, 8) Strongly important
(9, 9, 9) Absolutely important

(1, 2, 3) (3, 4, 5) (5, 6, 7) (7, 8, 9) Intermediate preference values

Step 1: Sum up each row of the fuzzy comparison matrix A, then normalize the row sums.
The fuzzy synthetic extent values of the i-th object are:

Si =
RSi

n
∑

j=1
RSj

=

n
∑

j=1
aij

n
∑

k=1

n
∑

j=1
akj

=


n
∑

j=1
lij

n
∑

k=1

n
∑

j=1
ukj

,

n
∑

j=1
mij

n
∑

k=1

n
∑

j=1
mkj

,

n
∑

j=1
uij

n
∑

k=1

n
∑

j=1
lkj

 , i = 1, 2, · · · , n (8)

Step 2: Compare the degree of possibility
(
Si ≥ Sj

)
. Thus:

V (S1 ≥ S2) = 1 i f f m1 ≥ m2

V (S2 ≥ S1) = hgt (S1 ∩ S2) = µS1 (d) =
l1−u2

(m2−u2)−(m1−l1)
(9)

where S1 = (l1, m1, u1), S2 = (l2, m2, u2) and d is the intersection point between µS1 and µS2 (Figure 3).
Step 3: Compute the minimum degree of possibility. We have:

V
(
Si ≥ Sj|j = 1, · · · , n; j 6= i

)
= min

j∈{1,··· ,n}j 6=i
V
(
Si ≥ Sj

)
, i = 1, · · · , n (10)

Assume that:
d (Ai) = min

j∈{1,··· ,n}j 6=i
V
(
Si ≥ Sj

)
, i = 1, · · · , n (11)

Then, the weight vector is:

W
′
= (d (A1) , d (A2) , · · · , d (An))

T (12)

where Ai (i = 1, 2, . . . , n) are n design alternatives.
Step 4: Normalize the weight vectors. The final weight vector is given by:

W = (W1, W2, . . . , Wn) (13)

where W1, W2, . . . , Wn are non-fuzzy numbers.

0

V(S2≥S1)

S2 S1

l2
m2 l1 d u2 u1m1

Figure 3. The degree of possibility V (S2 ≥ S1).
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3.2.2. Entropy Weight

The information entropy theory was first set forth from thermodynamics to information systems
by Shannon [38]. Based on the information entropy theory, the entropy weight can reflect the useful
quantitative information of evaluation indices [39]. Assume that there are m evaluation objects and n
indices for decision-making problems. The procedures are demonstrated as follows [40].

Step 1: Calculation of the entropy. Information entropy of index j is:

fij =
γij

m
∑

j=1
γij

Hj = −(ln m)−1 m
∑

j=1
fij ln fij

(14)

where γij is the normalization value of the quantitative index.
Step 2: Acquisition of the weight. The weight acquired from information entropy is:

ωoj =

(
1− Hj

)(
n−

m
∑

j=1
Hj

) (15)

where 0 ≤ woj ≤ 1,
n
∑

j=1
woj = 1.

3.2.3. Game Theory

As discussed previously, there are certain limitations to consider a single weighting method under
many situations. The objective weight neglects the decision-maker’s knowledge and actual situation.
On the contrary, the subjective weight is heavily influenced by expert experiences and some prejudices,
resulting in high subjectivity. Therefore, the comprehensive weight, combining the subjective and
objective weight with an effective algorithm, is more reasonable in the decision-making process.

Game theory, the research of strategic interaction, is an important branch of modern
mathematics. Specifically, game theory is adopted to obtain the optimum equilibrium solution
among two or more conflicts. In game theory, a decision is made either individually or collectively.
Additionally, the decision can maximize the utility payoffs out of participants’ expectations. Thus, a
decision of either a consensus or compromise is suggested. Analogously, the comprehensive weight,
which reaches a compromise between the subjective weight and the objective weight, can be regarded
as an optimum equilibrium solution. The calculation steps of comprehensive weight based on game
theory are described as below [23].

Step 1: Generate m weights using m kinds of weighting approaches. Then, establish a basic weight
vector set w = {w1, w2, · · · , wm}. Thus, a possible weight set is formed by m vectors with the form of
an arbitrary linear combination, expressed as:

W =
m

∑
j=1

αjwT
j (αj > 0) (16)

where w is a possible weight vector in set W and αj is the weight coefficient.
Step 2: Calculate the optimum equilibrium weight vector w∗ of the possible weight vector sets

based on game theory, indicating that a consensus is reached among m weights. Such a consensus can
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be taken as the optimization of the weight coefficient αj, which is a linear combination. The purpose of
the optimization is to minimize the deviation between w and wj using the following formula.

min

∥∥∥∥∥ n

∑
k=1

αk ×wT
k −wT

i

∥∥∥∥∥
2

(i = 1, 2, · · · , n) (17)

Based on the differentiation property of the matrix, the condition of the optimal first-order
derivative in Equation (17) is determined as:

n

∑
k=1

αk ×wi ×wT
k = wi ×wT

i (i = 1, 2, · · · , n) (18)

Then, we have:
w1 ·wT

1 w1 ·wT
2 · · · w1 ·wT

n
w2 ·wT

1 w2 ·wT
2 · · · w2 ·wT

n
...

...
...

...
wn ·wT

1 wn ·wT
2 · · · wn ·wT

n




α1

α2
...

αn

 =


w1 ·wT

1
w2 ·wT

2
...

wn ·wT
n

 (19)

Step 3: Compute the weight coefficient (α1, α2, · · · , αn) by using Equation (19), then normalize
them using the following equation.

α∗j = αj/ ∑n
j=1 αj (20)

Step 4: Obtain the final comprehensive weight with the following formula:

w∗ =
n

∑
j=1

α∗j ·wT
j (21)

3.3. Modified Evidence Combination Based on D Numbers

Although the evidence theory is widely applied to solve MADM problems, many issues are still
unsolved in some situations. Among these problems, the definition of mutually-exclusive and conflict
evidence have attracted more attention. Recently, two methods, D numbers and weighted average
combination, are proposed by Deng et al. [24,41] to address the mentioned problems effectively.
Inspired by the two methods, a modified evidence combination extended by D numbers is formulated
as follows.

3.3.1. Dempster–Shafer Theory

Dempster–Shafer (D-S), also named evidence theory, is mainly introduced to solve the MADM
problems with uncertainty. In the evidence theory, a sample set Θ that is collectively exhaustive and
mutually exclusive, called a frame of discernment, is defined as [6]:

Θ = (H1, H2, · · ·HN) (22)

The power set of Θ is described as 2Θ, namely:

2Θ = {φ, {H1} , · · · , {HN} , {H1, H2} , · · · , {H1, H2, · · · , Hi} , · · · , Θ} (23)

If A ∈ 2Θ, A is called a proposition. The combination rule is one of the most important
performances in evidence theory. Suppose there are two pieces of evidence indicated by m1 and
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m2 on the same discernment framework Θ, and the combination rule is performed [6], with the
following signs:

m (A) =
1

1− k ∑
A1∩A2=A

m1 (A1)m2 (A2) (24)

where:
k = ∑

A1∩A2=Φ
m1 (A1)m2 (A2) (25)

In (25), k is a conflict coefficient, which reflects the conflict degree between the two pieces of
evidence m1 (A1) and m2 (A2).

3.3.2. D Numbers

As mentioned above, the frame of discernment is a strong hypothesis of being mutually exclusive.
However, it is inevitable that linguistic assessments based on human judgment intersect each other,
such as “health”, “sub-health”, “minor defect”,”major defect” and “critical defect”. Therefore, it is not
reasonable to apply D-S theory under such circumstances. To address this problem, a novel technique,
D numbers, was proposed.

Let Θ be a finite nonempty set, and a D number is a mapping defined by [24,26]:

D : Θ→ [0, 1] (26)

with:

∑
A⊆Θ

D (A) ≤ 1 and D(φ) = 0 (27)

where φ is an empty set and A is a subset of Θ.
Since the frame of discernment does not need to be a mutually-exclusive set in D numbers theory,

the five grades of transformer health condition from health to critical defect can be regarded as a frame
of discernment of D numbers.

3.3.3. Distance between D Numbers

A relative matrix, explaining the relationship between each D number, is described as follows [26].
Let the number i and number j of m linguistic constants be expressed by Mi and Mj, the union region
between Mi and Mj be Uij and the intersection region between Mi and Mj be Tij. The nonexclusive
degree Nij is expressed as below.

Nij =
Tij

Uij
(28)

The relative matrix is established as:

R =



1 N12 · · · N1i · · · N1n
N21 1 · · · N2i · · · N2n

...
...

...
...

...
...

Ni1 Ni2 · · · 1 · · · Nin
...

...
...

...
...

...
Nn1 Nn2 · · · Nni · · · 1


(29)

For instance, suppose m linguistic constants are shown in Figure 4. The non-exclusive degree
Nij is obtained to stand for the non-exclusive degree between two D numbers based on the region of
union Uij and intersection Tij between Mi and Mj.
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Then, an intersection degree of two subsets is described as below.

I (T1, T2) =
∑ Nij

|T1| · |T2|
(30)

where i 6= j, T1, T2 ∈ 2Θ. In the relative matrix R, the variable i represents the row number of the
first element of set T1 and the variable j represents the column number of the first element of set T2.
|T1| shows the cardinality of T1, and |T2| shows the cardinality of T2. Note that when i = j, I = 1.

12
U

1
M

2
M

12
T

i
M

1i
M

+

1ii
T

+

1n
M

- n
M

1n n
T

-

Figure 4. Example for linguistic constants.

Based on the above, the distance between two D numbers d1 and d2 is defined as:

dD−number(d1,d2) =

√
1
2

(−→
d1 −

−→
d2

)T
D · I

(−→
d1 −

−→
d2

)
(31)

where D and I are two 2N × 2N matrices. Their elements are defined as:

D (A, B) =
∣∣∣ A∩B

A∪B

∣∣∣ , A, B ∈ 2Θ

I (A, B) =
∣∣∣ ∑ Eij
|A|·|B|

∣∣∣ , A, B ∈ 2Θ(when i = j, I = 1)
(32)

3.3.4. Modified Evidence Combination Based on D Numbers

After obtaining the distance of D numbers, we can construct a n× n matrix as:

D =



0 d12 · · · d1j · · · d1n
...

...
...

...
...

...
di1 di2 · · · dij · · · din
...

...
...

...
...

...
dn1 dn2 · · · dnj · · · 0


(33)

Let sim
(
mi, mj

)
be the similarity value between mi and mj, then the similarity value is given

as [41]:
Sim

(
mi, mj

)
= 1− D

(
mi, mj

)
(34)

It is obvious that the bigger the value of the distance is, the smaller the similarity of them will be,
and vice versa. The similarity matrix is expressed as [41]:

Sim =



1 Sim12 · · · Sim1j · · · Sim1n
...

...
...

...
...

...
Simi1 Simi2 · · · Simij · · · Simin

...
...

...
...

...
...

Simn1 Simn2 · · · Simnj · · · 1


(35)



Energies 2016, 9, 697 12 of 22

The support degree of each evidence is illustrated as [41]:

Sup (mi) =
n

∑
j=1
j 6=i

Sim
(
mi, mj

)
(36)

To normalize Sup (mi), the objective weights of evidence are obtained as [41]:

w (mi) =
Sup (mi)

n
∑

i=1
Sup (mi)

(37)

where
n
∑
i=‘

w (mi) = 1.

Considering the relative importance of different factors in the power transformer, the optimum
equilibrium weights of evidence (three factors), by integrating the objective and subjective weights
of evidence, are determined based on game theory, described as:

w∗ = w(mi)⊕ w′(mj) (38)

where w′
(
mj
)

are the subjective weights of three factors (DGA date, electrical testing and oil testing).
After obtaining the optimum equilibrium weights of each piece of evidence, the new modified

pieces of evidence are defined as [41]:

MAE (m) =
n

∑
i=1

(w∗ ×mi) (39)

In this study, we take the modified pieces of evidence as independent of each other. If there are n
pieces of evidence, we can apply the traditional Dempster–Shafer’s combination rule to combine the
new modified evidence n− 1 times.

3.4. Procedures for Transformer Condition Assessment

The detailed procedures of the novel multi-attribute decision-making model for transformer
condition assessment are shown in Figure 5 and can be summarized as the following steps.

Step 1: Construct a framework of transformer condition assessment. Three factors and seventeen
indices are involved in the assessment framework. The evaluation grades are divided into 5 grades
(health, sub-health, minor defect, major defect, critical defect), defined by using Equation (1).

Step 2: Establish a fuzzy membership matrix. Due to the fact that various indices have different
dimension values, a uniform standard, obtained by the fuzzy membership function, is needed in the
assessment framework of the transformer. After determining the fuzzy membership function by using
Equations (4) and (5), a fuzzy membership matrix for all of the indices is constructed in Equation (7).

Step 3: Calculate the subjective and the objective weight. The subjective weight is computed
based on the fuzzy extended AHP by using Equations (8)–(14), and the objective weight is solved
based on the entropy weight method by using Equations (15) and (16).

Step 4: Compute the comprehensive weight. As the subjective weight and objective
weight are obtained, the comprehensive weight is generated based on the game theory by using
Equations (17)–(22).

Step 5: Determine the original basic probability assignments. The original basic probability
assignments are obtained through the additive weighting method, expressed as:

Mi (H) =
n

∑
j=1

wijYi (H) (40)
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where Mi(H) can be regarded as the original basic probability assignment of the i-th factor, Yi(H)

stands for the index membership matrix of the evaluation level of the i-th factor and wij reflects the
comprehensive weight of index fij.

Step 6: Combine the modified pieces of evidence to generate the evaluation results of the
transformer health condition by using Equations (24) and (25).

Step 7: Judge the final evaluation results based on the decision-making rule. The decision rule is
defined as [42]: {

M (H1) = max {M (Hi) , Hi ∈ Θ}
M (H1)−M (H2) > ε

(41)

where ε = 0.04.
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Figure 5. Flowchart of transformer condition assessment.

4. Case Study

4.1. Case 1

A 220-kV main transformer (SFPSZ7-120000/220) used in the substation of Beijing in China is
taken as an example to verify the effectiveness of the proposed model. The preventive test data in 2014
and 2015 are shown in Table 3, and the evaluation procedures are demonstrated as follows.
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4.1.1. Assessment Grades by Fuzzy Set Theory

From Table 3, the membership grades of indices are given by using Equations (2)–(5), and the
results are shown in Table 4.

Table 3. Preventive test data of the transformer.

Index Term 12 December 2013 16 September 2015 Attention Values Initial Value

C2H2 1.2 (µL/L) 2.1 (µL/L) 10 (µL/L) 0 (µL/L)
C2H4 10 (µL/L) 42 (µL/L) 50 (µL/L) 5.3 (µL/L)
CH4 15.2 (µL/L) 68 (µL/L) 100 (µL/L) 8.7 (µL/L)
C2H6 23 (µL/L) 58 (µL/L) 65 (µL/L) 2.6 (µL/L)

H2 (hydrogen content in oil) 48 (µL/L) 65 (µL/L) 150 (µL/L) 5.1 (µL/L)
Water content 7.2 (mg/L) 13.1 (mg/L) 25 (mg/L) 2.6 (mg/L)

Breakdown voltage of oil 49 (kV) 55 (kV) 35 (kV) 60 (kV)
Furfural 0.012 (mg/L) 0.032 (mg/L) 0.2 (mg/L) 0 (mg/L)

Interfacial tension 31 (mN/m) 35 (mN/m) 19 (mN/m) 45 (mN/m)
Polymerization degree 853 816 250 1000

Dielectric loss of oil 1.92% 2.51% 4% 0.21%
Flash point 153 (◦C) 143 (◦C) 130 (◦C) 160 (◦C)

Core earthing current 40 (mA) 72 (mA) 100 (mA) 10 (mA)
Volume resistivity 37 × 109 (Ω·m) 35 × 109 (Ω·m) 5 × 109 (Ω·m) (≤300 ◦C) 65 × 109 (Ω·m)

Absorptance 2.12 1.88 1.3 2.5
Polarization index 2.21 1.96 1.5 2.9

Dielectric loss of winding 0.38% 0.42% 0.6% 0.15%

Table 4. Membership degrees to assess grades.

Membership Degrees of Indices Assessment Grades

H1 H2 H3 H4 H5

f11 0.2 0.8 0 0 0
f12 0 0 0 0.87 0.13
f13 0 0 0.4 0.6 0
f14 0 0 0 0.4 0.6
f15 0 0.27 0.73 0 0
f21 0 0 1 0 0
f22 0.25 0.75 0 0 0
f23 0.45 0.55 0 0 0
f24 0 0.47 0.53 0 0
f25 0 1 0 0 0
f26 0 0 0.7 0.3 0
f27 0 0 0.72 0.28 0
f31 0 0 0.24 0.76 0
f32 0 0 1 0 0
f33 0 0 1 0 0
f34 0 0 0.32 0.68 0
f35 0 0 0.6 0.4 0

4.1.2. Calculation of Weights

Based on the fuzzy extended AHP and entropy weight, the subjective and objective weights
of indices are calculated by using Equations (7)–(15). Then, combining the subjective and objective
weights based on game theory, the comprehensive weights are obtained by using Equations (16)–(21).
All types of weights of indices are shown in Table 5. For fuzzy AHP, the fuzzy comparison matrices of
corresponding indices are provided in Appendix A (see Tables A1–A3).

Figure 6 describes the results in Table 5. As shown in Figure 6, the laws of the curves for the
subjective and the objective weight, which are calculated by the fuzzy AHP and entropy weight,
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respectively, are not consistent, and the comprehensive weights based on game theory are optimum
equilibrium values between the subjective and the objective weights. Actually, the weight coefficient
reaching the Nash equilibrium decides the proportion of subjective and objective weight. Therefore,
the comprehensive weights based on game theory are more reasonable to apply to determine the
weights of indices in the evaluation process.

Table 5. Weights of indices.

Indices Fuzzy AHP Entropy Weight Game Theory

f11 0.3800 0.0300 0.1653
f12 0.2800 0.4000 0.3536
f13 0.1000 0.4300 0.3024
f14 0.0900 0.1300 0.1145
f15 0.1500 0.0100 0.0641
f21 0.1600 0.1500 0.1515
f22 0.2400 0.3700 0.3507
f23 0.2800 0.2400 0.2460
f24 0.0200 0.0100 0.0115
f25 0.1300 0.0100 0.0279
f26 0.1300 0.0100 0.0279
f27 0.0200 0.2000 0.1732
f31 0.4500 0.5300 0.5200
f32 0.3000 0.0500 0.1000
f33 0.0400 0.3200 0.2300
f34 0.0400 0.0500 0.0500
f35 0.1600 0.0500 0.0800

0
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Figure 6. The calculation method of weights.

4.1.3. Modified Evidence Combination Based on D Numbers

From Tables 4 and 5, the original basic probability assignment matrix is obtained by using
Equation (39):
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M(H) =


H1 H2 H3 H4 H5

0.03 0.15 0.17 0.53 0.12
0.2 0.43 0.3 0.07 0
0 0 0.51 0.49 0


Based on the decision-making rule, the evaluation results of three factors are shown in Table 6.

Figure 7 indicates the results in Table 6. As shown in Figure 7, the three curves corresponding to
three different factors are various. Obviously, the evaluation results, considering an individual factor,
are not accurate. Therefore, a multi-source information fusion is needed to determine the final health
condition of the transformer.

Table 6. Basic probability assignment.

Evidence
M(H)

Assessing Results
H1 H2 H3 H4 H5

f1 0.03 0.15 0.17 0.53 0.12 H4
f2 0.2 0.43 0.3 0.07 0 H2
f3 0 0 0.51 0.49 0 unknown

 

Figure 7. Evaluation grades of three factors.

As previously discussed, the basic probability assignment is regarded as three groups of
D numbers. Therefore, we have:

d1 (H1) = 0.03, d1 (H2) = 0.15, d1 (H3) = 0.17, d1 (H4) = 0.53, d1 (H5) = 0.12.
d2 (H1) = 0.2, d2 (H2) = 0.43, d2 (H3) = 0.3, d2 (H4) = 0.07.
d3 (H3) = 0.51, d3 (H4) = 0.49.

From Figure 3, in order to facilitate the calculation, the union region (Uij) and the intersection
region (Tij) are given as:

UH1 H2 = 0.45, UH2 H3 = 0.7, UH3 H4 = 0.65, UH4 H5 = 0.5 ;
TH1 H2 = 0.2, TH2 H3 = 0.15, TH3 H4 = 0.25, TH4 H5 = 0.15 .
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Therefore, we have:

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , I =


1 0.44 0 0 0

0.44 1 0.21 0 0
0 0.21 1 0.38 0
0 0 0.38 1 0.3
0 0 0 0.3 1


Based on the distance function method of D numbers, the distance matrix can be calculated by

using Equations (28)–(33), given as:

D =

 0 0.44 0.25
0.44 0 0.52
0.25 0.52 0


By using Equations (34)–(37), the objective weights of evidence are generated as:

w (m1) = 0.37; w (m2) = 0.29; w (m3) = 0.34

In addition, from Table A4 in Appendix A, the subjective weights of evidence (three factors) are
computed based on the fuzzy AHP, denoted as:

w′ (m1) = 0.446; w′ (m2) = 0.329; w′ (m3) = 0.225

Therefore, based on game theory, the optimum equilibrium weights of each piece of evidence are
given as:

w∗1 = 0.44; w∗2 = 0.32; w∗3 = 0.23

Then, using Equation (39), the modified pieces of evidence are calculated as:

M (H) = [0.08, 0.2, 0.29, 0.37, 0.06]

Finally, there are three pieces of evidence, and we take the traditional D-S combination rule two
times. By using Equations (24) and (25), the final results are obtained as:

M(H) = [0.01, 0.1, 0.29, 0.61, 0]

4.1.4. Analysis of the Evaluation Results

The final evaluation results are shown in Table 7. As shown in Table 7, when two factors
are combined, such as f1 and f2, the evaluation results indicate that the transformer health condition
can be either good or bad, which gives little information on the maintenance schedule. Finally, when
all three factors are combined and analyzed using the proposed method, the evaluation result clearly
suggests a major defect since H4 is far greater than the rest of the three evaluation grades.

The accuracy of this evaluation result is further consolidated by investigating the factual
transformer condition. A field test suggests that the core is connected to the clamping pieces. Therefore,
under the action of magnetic flux, the ring current is formed between the core and the clamping pieces.
This leads to the deterioration of the insulation.

To conclude, the proposed method can effectively evaluate the health condition of the
power transformer.
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Table 7. Result of evidence combination.

Evidence
M(H)

Assessing Results
H1 H2 H3 H4 H5

f1 ⊕ f2 0.05 0.34 0.23 0.36 0.012 unknown
f1 ⊕ f2 ⊕ f3 0.01 0.1 0.29 0.61 0 H4

4.2. Case 2

The performance of the presented model is further compared with the method proposed in the
literature [6]. From [6], the original basic probability assignment matrix is given as:

M (H) =


H1 H2 H3 H4 H5

0.0042 0.1112 0.3942 0.4904 0
0 0.4152 0.2513 0.1452 0.1883
0 0.4293 0.1867 0.2981 0.0859


Therefore, the D numbers are obtained as:

d1 (H1) = 0.0042, d1 (H2) = 0.1112, d1 (H3) = 0.3942, d1 (H4) = 0.4904
d2 (H2) = 0.4152, d2 (H3) = 0.2513, d2 (H4) = 0.1452, d2 (H5) = 0.1883
d3 (H2) = 0.4293, d3 (H3) = 0.1867, d3 (H4) = 0.2981, d3 (H5) = 0.0859

From the literature [6], the union region (Uij) and the intersection region (Tij) are given as:

UH1 H2 = 4
13 , UH2 H3 = 8

13 , UH3 H4 = 8
13 , UH4 H5 = 6

13 ;
TH1 H2 = 2

13 , TH2 H3 = 2
13 , TH3 H4 = 2

13 , TH4 H5 = 2
13 .

Then, we have:

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , I =


1 0.5 0 0 0

0.5 1 0.25 0 0
0 0.25 1 0.25 0
0 0 0.25 1 0.33
0 0 0 0.33 1


By using Equations (28)–(33), the distance matrix of D numbers is obtained as:

D =

 0 0.34 0.29
0.34 0 0.11
0.29 0.11 0


Based on Equations (34)–(37), the objective weights of evidence are computed as:

w (m1) = 0.3; w (m2) = 0.34; w (m3) = 0.35

In addition, the subjective weights of factors are given as:

w′(m1) = 0.446; w′(m2) = 0.329; w′ (m3) = 0.225

Therefore, based on game theory, the optimum equilibrium weights of each piece of evidence are
generated as:

w∗1 = 0.4343; w∗2 = 0.3332; w∗3 = 0.2405
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By using Equation (39), the modified pieces of evidence can be given as:

M(H) = [0.002, 0.29, 0.3, 0.33, 0.08]

There are three pieces of evidence, and we combined the evidence two times. The final assessment
results are given as:

M (H) = [0, 0.28, 0.3, 0.42, 0]

In the literature [6], the evaluation results are provided as:

M′(H) = [0.0011, 0.2445, 0.3432, 0.3472, 0.0336]

Figure 8 describes the comparison results between the proposed method and the
compared method. As shown in Figure 8, the final assessing result of the proposed method is
confirmed to be grade H4 (H4 = 0.42), which accurately reflects the actual condition of the transformer
according to the literature [6]. Nevertheless, the evaluation results of the compared method indicated
by grade H3 (H3 = 0.3432) and H4 (H4 = 0.3472) are very close to each other, which may lead to
an ambiguous condition-assessing result. Therefore, the proposed model can evaluate the health
condition of the transformer effectively without ambiguousness, which facilitates the implementation
of the maintenance plan.

 

Figure 8. Comparison of the evaluation results of two methods.

5. Conclusions

A novel decision-making model, which integrates the merits of fuzzy set theory, game theory and
modified evidence combination extended by D numbers, is proposed in this paper. The presented
decision-making model provides a new scientific method for transformer condition assessment.
The main results of this paper can be summarized in the following points.

• A four-level framework within three factors, DGA date, electrical testing and oil testing, as well
as seventeen sub-indices, has been soundly established to facilitate the evaluation model.

• A comprehensive weight, determined by game theory, can be regarded as an optimum equilibrium
solution by reaching a compromise between subjective and objective weight to overcome the
limitations of the single weighting method. The subjective weight is given based on the fuzzy
extended AHP, which extends traditional AHP and can better address the uncertainty existing in
the comparison matrix given by experts. In addition, the objective weight is computed based on
the entropy weight method. The final evaluation results can be obtained by the modified evidence
combination extended by D numbers. D numbers, a novel theory, can avoid the limitation of the
exclusiveness hypothesis in the application of Dempster–Shafer theory.
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• Case studies indicate that the proposed model can effectively reflect the actual health condition
of the transformer. Furthermore, compared to the evidential reasoning-based method, the final
evaluation result of the presented method can clearly show the health condition of the transformer.

• The proposed approach is not aiming at replacing the expert judgments in the test site or
IEC standards. Instead, this paper offers a practical and effective approach for decision-makers,
who do not necessarily have in-depth knowledge on power transformers, to evaluate the health
condition of power transformers with uncertain and incomplete information.

In the future, several issues can be taken into consideration. First of all, developing a software
assessment system based on the proposed model will be recommended. Secondly, some qualitative
information could be further taken into consideration in the evaluation model, such as the on-load
tap changer, breathing apparatus, etc. Finally, similar applications can be done under other criteria
and jobs.
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Appendix A. Fuzzy Comparison Matrix

In this section, the fuzzy comparison matrices of three factors and corresponding indices are
given as below. Tables A1–A3 give the corresponding fuzzy comparison matrix for the indices of
different factors, and Table A4 shows the fuzzy comparison matrix of three factors (DGA data, oil
testing and electrical testing).

Table A1. Fuzzy comparison matrix of the indices of DGA.

Indices f11 f12 f13 f14 f15

f11 (1, 1, 1) (1, 3/2, 2) (2, 5/2, 3) (2, 5/2, 3) (3/2, 2, 5/2)
f12 (1/2, 2/3, 1) (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 3/2, 2)
f13 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1, 1, 1) (1/2, 3/2, 2) (1/2, 1, 3/2)
f14 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1/2, 2/3, 2) (1, 1, 1) (1/2, 1, 3/2)
f15 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (2/3, 1, 2) (2/3, 1, 2) (1, 1, 1)

Table A2. Fuzzy comparison matrix of the indices of the oil testing factor.

Indices f21 f22 f23 f24 f25 f26 f27

f21 (1, 1, 1) (1/2, 2/3, 1) (1/3, 1/2, 2/3) (2, 5/2, 3) (1/2, 1, 3/2) (1/2, 1, 3/2) (3/2, 2, 5/2)
f22 (1, 3/2, 2) (1, 1, 1) (1/2, 1, 3/2) (5/2, 3, 7/2) (1, 3/2, 2) (1, 3/2, 2) (2, 5/2, 3)
f23 (3/2, 2, 3) (2/3, 1, 2) (1, 1, 1) (5/2, 3, 7/2) (3/2, 2, 5/2) (3/2, 2, 5/2) (2, 5/2, 3)
f24 (1/3, 2/5, 1/2) (2/7, 1/3, 2/5) (2/7, 1/3, 2/5) (1, 1, 1) (1/2, 2/3, 1) (1/2, 2/3, 1) (1/2, 1, 3/2)
f25 (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2, 2/3) (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (3/2, 2, 5/2)
f26 (2/3, 1, 2) (1/2, 2/3, 1) (2/5, 1/2, 2/3) (1, 3/2, 2) (1, 1, 1) (1, 1, 1) (3/2, 2, 5/2)
f27 (2/5, 1/2, 2/3) (1/3, 2/5, 1/2) (1/3, 2/5, 1/2) (2/3, 1, 2) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) (1, 1, 1)
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Table A3. Fuzzy comparison matrix of the indices of the electrical testing factor.

Indices f31 f32 f33 f34 f35

f31 (1, 1, 1) (1, 3/2, 2) (2, 5/2, 3) (2, 5/2, 3) (3/2, 2, 2)
f32 (1/2, 2/3, 1) (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 3/2, 2)
f33 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1, 1, 1) (1/2, 3/2, 2) (1/2, 1, 1)
f34 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (1/2, 2/3, 1) (1, 1, 1) (1/2, 1, 1)
f35 (1/2, 1/2, 2/3) (1/2, 2/3, 1) (1, 1, 2) (1, 1, 2) (1, 1, 1)

Table A4. Fuzzy comparison matrix of three factors.

Indices f41 f42 f43

f41 (1, 1, 1) (3/5, 1, 4/3) (3/2, 2, 5/2)
f42 (3/4, 1, 5/3) (1, 1, 1) (2/3, 1, 3/2)
f43 (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1)
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