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Abstract: This paper presents application of a new effective metaheuristic optimization method
namely, the Jaya algorithm to deal with different optimum power flow (OPF) problems. Unlike other
population-based optimization methods, no algorithm-particular controlling parameters are required
for this algorithm. In this work, three goal functions are considered for the OPF solution: generation
cost minimization, real power loss reduction, and voltage stability improvement. In addition,
the effect of distributed generation (DG) is incorporated into the OPF problem using a modified
formulation. For best allocation of DG unit(s), a sensitivity-based procedure is introduced.
Simulations are carried out on the modified IEEE 30-bus and IEEE 118-bus networks to determine
the effectiveness of the Jaya algorithm. The single objective optimization cases are performed both
with and without DG. For all considered cases, results demonstrate that Jaya algorithm can produce
an optimum solution with rapid convergence. Statistical analysis is also carried out to check the
reliability of the Jaya algorithm. The optimal solution obtained by the Jaya algorithm is compared with
different stochastic algorithms, and demonstrably outperforms them in terms of solution optimality
and solution feasibility, proving its effectiveness and potential. Notably, optimal placement of DGs
results in even better solutions.

Keywords: optimal power flow; Jaya algorithm; generation cost; power losses; voltage stability
enhancement; distributed generation

1. Introduction

Optimum power flow (OPF) solutions are crucial tools in electric power network operation [1,2].
It is an astute power flow that utilizes optimization algorithms to regulate power grid control settings
optimally amid diverse constraints [3,4]. Many classical optimization algorithms have been utilized to
deal with the OPF problem, like non-linear programming [5,6], the Newton algorithm [7], quadratic
programming [8], and decomposition algorithms [9]. A comprehensive review of the deterministic
(conventional) optimization algorithms previously employed is presented in [10]. Although these
methods can achieve the globally optimal solution in some cases, they have certain shortcomings,
such as getting trapped in local optima (i.e., insecure convergence properties), inability to tackle
non-differentiable goal functions, and high sensitivity to initial search points. Furthermore, these
algorithms cannot guarantee a global solution. Thus, proposing alternative methods to address the
above-mentioned drawbacks is a necessity.

The significant development of computers in recent years has resulted in a trend of solving OPF
problems using nature-inspired optimization techniques. Various stochastic optimization techniques
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have been suggested and utilized to deal with OPF problems, like the genetic algorithm [11–13],
particle swarm optimization (PSO) [2], differential evolution (DE) [14], harmony search (HS)
algorithm [15], artificial bee colony algorithm [4,16], gravitational search algorithm (GSA) [17],
distributed algorithm (DA) [18], and biogeography-based optimization (BBO) [19,20]. A survey
of the non-deterministic search (stochastic search) algorithms utilized to solve variants of OPF is
presented in [21]. These algorithms are more efficient in discovering global solutions to different
nonlinear OPF problems and are not entangled in local optima. This advantage is achieved through
fast and simultaneous evaluation of many points in the solution space. Their universality and the
simplicity of implementation make them suitable for large-scale optimization problems. These methods
can also handle integer and discrete variables. Unfortunately, regardless of their advantages, each
of these population-based optimization algorithms requires appropriately tuned algorithm-specific
controlling parameters, because improper tuning of such parameters will raise the computational
burden (i.e., affects the convergence property) or leads to a sub-optimal solution.

One of the newly developed population-based optimization methods is the Jaya algorithm,
which was proposed by Rao [22] in 2016 to address the aforementioned drawback. Unlike other
population-based methods, the optimization procedure of the Jaya algorithm does not involve tuning
any algorithm-specific controlling parameters. As mention above, the controlling process of such
parameters is not trouble-free. With this feature, a significant benefit of the Jaya algorithm can be
achieved in terms of omitting the difficulty of controlling such parameters and decreasing the time
necessary for carrying out optimization process. Furthermore, the technique is simple to code and easy
to apply. The optimization approach of this technique is inspired by the notion that the solution to
a specific problem has to proceed toward the optimum solution and avert inferior ones. Accordingly,
one of the main benefits of using the Jaya algorithm is that it has the merit of evading being trapped
in local optima, unlike many other population-based optimization algorithms. This notable feature
of the Jaya method makes it superior than other population-based optimization methods. In [22],
the comparative results of 13 constrained benchmark functions obtained by the Jaya algorithm and
many algorithms revealed the superiority of the Jaya algorithm in terms of finding the expected global
optimal solutions.

This research was motivated by several factors. First, the application of the Jaya algorithm to solve
the optimum power flow problem has not been yet studied. Second, many population-based algorithms
produce infeasible solutions for many kinds of OPF problems in terms of violation of operational
variables constraints, as reported in [4,20,23]. Lastly, the DG effect when solving the OPF problem
using the above-mentioned algorithms has not been examined. Hence, using a powerful optimization
algorithm that can effectively solve the OPF problem with and without DG effect is important.

To contribute to the field of OPF solution, the application of the Jaya algorithm to solve different
OPF problems is suggested and presented for the first time in this article. The most important
contribution is proposing a novel Jaya-based procedure to deal with OPF solution. Furthermore,
a modified formulation of the OPF problem which includes DG’s effect is introduced. An extended set
of state variables is utilized in the proposed OPF formulation. The set includes active power generation
outputs, real power generation of DGs, regulating transformers tap setting, generation node voltage
magnitudes, and reactive power injection of shunt capacitors. Three objectives are considered for single
optimization in this paper: reduction of generation cost, reduction of real power loss, and voltage
stability enhancement. This article also represents a considerable contribution to the field of optimal
DG placement in meshed networks, based upon the sensitivity of loss and generation cost to active
and reactive power injection.

The modified IEEE 30-bus and IEEE 118-bus networks (i.e., portions of the American electric
power system (in the Midwestern US)) are used to examine, validate and exhibit the efficacy of
Jaya method. The remainder of this article is arranged as follows: Section 2 presents the proposed
mathematical problem formulation for OPF problems that considers the DG effect. Section 3 briefly
presents the Jaya algorithm. Section 4 summarizes the application of the Jaya algorithm to the OPF
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problem. Results, discussion, and comparison with other algorithms are demonstrated in Section 5.
Conclusions regarding the implementation of the Jaya algorithm are given in Section 6.

2. Problem Formulation

In this paper, three objectives are selected to deal with the OPF issue with and without
incorporating DG effect: minimizing total fuel cost of power generation, real power loss minimization,
and voltage stability improvement. The total fuel cost of a specified power network is represented by
the following function:

F1(x, u) = Cost =
NG

∑
i=1

fi (1)

where NG is the number of generation units, whereas fi represent the fuel cost of the i-th generation
unit that can be expressed by quadratic function as follows:

fi = ai + bi (PGi) + ci (PGi)
2 ($/h) (2)

where ai, bi, and ci represent the fuel cost coefficients of the i-th generation unit, whereas PGi is the
active power output of the ith generator. Meanwhile, the total system active power losses Ploss can be
defined as:

F2(x, u) = Ploss =
N

∑
i=1

N

∑
i = 1
j 6= i

Gij

2

[
|Vi|2 +

∣∣Vj
∣∣2 − 2 |Vi|

∣∣Vj
∣∣ cos

(
δi − δj

)]
(3)

where N is the number of network nodes; Vi and Vj are the voltage magnitudes for the i-th and j-th
nodes, respectively; δi and δj are the node voltage angles of the i-th–j-th branch; and Gij refers to the
conductivity between node i and node j.

The voltage stability of a particular power grid can be assessed using the widely utilized indicator,
L-index, that is, Lmax [24]:

F3(x, u) = Lmax = max[Lk], k = 1, 2, . . . , NL (4)

where Lk is the L-index of the kth load bus and NL is the number of load buses.
Additionally, the optimization of the real power generation of DG units is another target toward

achieving a superior solution to the OPF problem. Hence, DGs optimum penetration has been
incorporated into the suggested formulation as an additional control variable. Mathematically,
the proposed formulation of OPF problem that considers DG can be expressed as:

Minimize Fi(x, u) i = 1, 2, . . . , Nobj (5)

subject to:

a Equality constraints which stand for load flow equationsin polar form:

PGi − PDi = Vi

N

∑
j=1

Vj
(
Gijcosδij + Bijsinδij

)
(6)

QGi −QDi = Vi

N

∑
j=1

Vj
(
Gijsinδij − Bijcosδij

)
(7)

where PGi and QGi are the real and imaginary power generations at the i-th bus, respectively; PDi and
QDi are the real and imaginary power demands at the same i-th bus, respectively; and Bij is the
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susceptance through node i and node j. δij = δi−δj is the voltage angle variance. It is worth mentioning
that other equivalent formulations for power flow equations are discussed in [25].

b Inequality constraints that represent the control variable constraints:

PGi
min ≤ PGi ≤ PGi

max i = 1, 2, .. . . . , NG − 1 (8)

Ti
min ≤ Ti ≤ Ti

max i = 1, 2, . . . .., NT (9)

VGi
min ≤ VGi ≤ VGi

max i = 1, 2, . . . .., NG (10)

QCi
min ≤ QCi ≤ QCi

max i = 1, 2, . . . .., Nc (11)

PDGi
min ≤ PDGi ≤ PDGi

max i = 1, 2, . . . .., NDG (12)

The modified vector of control variables that considers the real power generation of DGs can be
stated as:

u =
[
PG2, . . . , PGNG , T1, . . . , TNT , VG1, .., VGNG , QC1, .., QCNC , PDG1, . . . , PDGNDG

]T (13)

where PG refers to the active power generation outputs with the exception of swing bus, Ti is the
tapping ratio of the i-th transformer, VGi is the voltage magnitude of the unit i, QCi is the imaginary
power injection by the i-th shunt capacitor, PDGi is the real power generation of the i-th DG unit, NG is
the number of generator buses, NT is the number of tap changing transformers, NC is the number of
shunt capacitors, and NDG is the number of DG units.

c Inequality constraints that comprise the dependent variable constraints.

Pmin
Slack ≤ PSlack ≤ Pmax

Slack (14)

VLi
min ≤ VLi ≤ VLi

max i = 1, 2, . . . .., NL (15)

QGi
min ≤ QGi ≤ QGi

max i = 1, . . . NG (16)

Slinei ≤ Smax
linei i = 1, 2, . . . .., Nl (17)

QDGi
min ≤ QDGi ≤ QDGi

max i = 1, 2, . . . .., NDG (18)

The developed version of the vector of dependent variables that considers the reactive power
generation of DG units can be defined as:

x =
[
PSlack, VL1, .. . . . , VLNL , QG1, .. . . . , QGNG , Sline1, .. . . . , SlineNl

, QDG1, .., QDGNDG

]T (19)

where PSlack is the active power of the slack bus, VLi is the voltage of i-th load node, Sline,i is the loading
of the i-th transmission line, QDGi is the imaginary power generation of the i-th DG unit, NL is the
number of load buses, and Nl is the number of transmission lines.

The literature shows several approaches to handling dependent variable constraints in
population-based optimization algorithms. One efficient approach is to incorporate these constraints
into the goal function as quadratic penalty expressions (i.e., the penalty factor method). Each term
added to the goal function comprises a given penalty factor multiplied by the square of the violated
value of a dependent variable. Consequently, any obtained infeasible candidate solution is denied.
In this work, the modified goal function includes quadratic penalty terms of the extended set of
dependent variables (i.e., PSlack, VL, QG, Sline, and QDG). Notably, a quadratic penalty term for the
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reactive power of DG is added. The mathematical formulation of the modified i-th goal function can
be stated as follows:

F′i = Fi + λP
(

PSlack − Plim
Slack

)2
+ λV

NL
∑

i=1
(VLi −Vlim

Li )2 + λQ
NG
∑

i=1
(QGi −Qlim

Gi )
2 + λS

Nl
∑

i=1
(Sline,i − Smax

line,i)
2 + λDG

NDG
∑

i=1
(QDGi −Qlim

DGi)
2 (20)

where Fi is the i-th goal function to be optimized, F′i is the i-th modified goal function, and λP, λV,
λO, λS and λDG are the penalty factors which can be assigned subjectively by a decision maker.
Normally, using high penalties is desirable to insure that any infeasible solution is declined. xlim is the
upper/lower bound value of the dependent variable x that can be stated in the following formulation:

xlim

{
xmin x < xmin

xmax x > xmax
(21)

It is worth mentioning that the above mathematical formulation of the modified goal function is
just used in case a dependent variable(s) violates the upper/lower limit. The main aim is to detect
and avoid any discovered infeasible solution(s) during the optimization process. Notably, the choice
of the penalty terms (λP, λV, λO, λS and λDG) play a crucial role. Based on application and designer
experience, the penalty terms may be different for different boundaries. Using of different penalty
factors lead to different solutions. To address this issue, a high unity penalty of 10000 has been
considered in this paper for each dependent variables in case of violation the upper/lower limit.
However, it would be desirable to update the penalty terms in the objective function dynamically in
the algorithm.

3. The Jaya Algorithm

Jaya is a new population-based optimization algorithm introduced by Rao [22] to produce optimal
solutions for constrained and unconstrained optimization problems. Unlike other population-based
heuristic algorithms, Jaya has no algorithm-specific controlling parameter, and involves only the
two ordinary controlling parameters of population size (m) (that is, the number of candidate solutions)
and the number of generations (Gn) (that is, the total iterations). The optimization process of this
technique is elicited on the basis of the idea that the solution determined for a specific problem have to
shift toward the optimum solution and evade the inferior solution [22]. The basic Jaya algorithm has
only one phase according to the aforementioned concept, making it a simple optimization technique.
Figure 1 illustrates the flowchart of Jaya algorithm.

4. Application of Jaya Algorithm to OPF Problem

The following steps describe the proposed process of applying the Jaya algorithm to solve the
OPF problem:

Step 1 Define the branch data, active and reactive power load levels, and generation units data.
Specify the initial values of active power generation of PV buses, real power production
of the DGs (in case of considering DG), reactive power injection for shunt compensators,
voltage magnitudes of generation buses, and the tap setting of regulating transformers.

Step 2 Run the initial status load dispatch. Calculate the values of the goal functions for the
initial status, that comprise generation cost reduction, real power loss reduction, and
voltage stability improvement, using Equations (1), (3), and (4) , respectively.

Step 3 Allocate the DG unit(s) to suitable site(s) on the basis of the sensitivity of active power
loss and generation cost to both active and reactive power injection as stated in the
following formulations:
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[
∂Ploss

∂Pi
∂Ploss
∂QK

]
= [Jac]T

−1

[
∂Ploss

∂δi
∂Ploss
∂VK

]
with i = 2, . . . , N and k = 1, 2, . . . , NL

(22)

where ∂Ploss/∂Pi and ∂Ploss/∂QK represent the sensitivities of active power losses to injected active
power at the i-th bus and to injected reactive power at the k-th load bus, respectively. ∂Ploss/∂δi is
the sensitivity of active power losses to voltage angle of i-th bus, whereas ∂Ploss/∂VK represents the
sensitivity of active power losses to voltage magnitude of kth load bus. [Jac] is the Jacobian matrix.[

∂Cost
∂Pi

∂Cost
∂QK

]
= [Jac]T

−1

[
∂Cost

∂δi
∂Cost
∂VK

]
with i = 2, . . . . . . , N and k = 1, 2, . . . , NL

(23)

where ∂Cost/∂Pi and ∂Cost/∂QK represent the sensitivities of generation cost to each of active and
reactive power injection at the i-th and k-th bus, respectively. ∂Cost/∂δi is the sensitivity of generation
cost to the voltage angle of the i-th bus, while the term ∂Cost/∂VK represents the sensitivity of
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generation cost to voltage magnitude of kth load bus. Note: This step 3 is used in case of considering
DG effect.

Step 4 Define the i-th objective function Fi(x,u) to be optimized (that is one of the objective
functions described in Section 2). Initialize the number of control (design) variables (n),
population size (m) (that is, the number of candidate solutions), number of iterations
(Gn), and minimum and maximum limits of design variables (UL, LL).

Step 5 Create an initial random population based on the defined controlling parameters within
the pre-specified limits of design variables. This population is formulated as follows:

population =


X1,1 X1,2 · · · X1,n
X2,1 X2,2 · · · X2,n

...
...

...
...

Xm,1 Xm,2 · · · Xm,n


with k = 1, 2, 3, . . . , m and j = 1, 2, 3, . . . , n

(24)

where n is the number of control (design) variables, whereas m is the number of candidate solutions.
The value of the j-th control variable (Xk,j) in the k-th candidate solution can be written as follows:

Xk,j = Xmin
j + rand(.)

[
Xmax

j − Xmin
j

]
(25)

where rand(.) is a randomly produced number within the domain of (0–1); Xmax
j and Xmin

j are the upper
and minimum boundaries of the j-th control variable. For more explanation, the physical elements of
Xk,j in the optimization work can be described as follows:

population =


PG1,2, . . . , PG1,NG , T1,1, . . . , T1,NT , VG1,1, .., VG1,NG , QC1,1, .., QC1,NC , PDG1,1, . . . , PDG1,NDG

PG2,2, . . . , PG2,NG , T2,1, . . . , T2,NT , VG2,1, .., VG2,NG , QC2,1, .., QC2,NC , PDG2,1, . . . , PDG2,NDG
...
PGm,2, . . . , PGm,NG , Tm,1, . . . , Tm,NT , VGm,1, .., VGm,NG , QCm,1, .., QCm,NC , PDGm,1, . . . , PDGm,NDG

 (26)

Step 6 Run power flow program for each candidate solution and calculate the value of goal
function that corresponds to each solution.

Step 7 Identify the best and worst solutions among the candidate solutions.
Step 8 Based on the best and worst solutions, modify all candidate solutions. The proposed

modification is expressed as follows:

Throughout the ith iteration (generation) and for each kth candidate solution, the value of the jth
design variable (Xj,k,i) can be modified as follows [22]:

X′j,k.i = Xj,k,i + r1,j,i

[(
Xj,best,i

)
−
(∣∣∣Xj,k,i

∣∣∣)]− r2,j,i

[(
Xj,worst,i

)
−
(∣∣∣Xj,k,i

∣∣∣)] (27)

where X′j,k,i is the modified value of the j-th design variable, r1,j,i and r2,j,i are randomly generated
numbers within the range of (0–1) for the j-th control variable. Xj,best,i is the value of the j-th design
variable for the top nominee solution. Xj,worst,i is the value of the j-th design variable for the inferior
nominee solution. The second term of the above equation stand for the propensity of the modified
solution to proceed closer to the optimum solution. The third expression stands for the propensity of
the solution to eschew the worst solution.

Step 9 For all updated solutions, if any control variable upper/lower limit is violated, replace
the estimated value with the corresponding limit.
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Step 10 Execute the power dispatch considering the modified vector of design variables.
Calculate the new values of the goal function and distributed generation size for each
candidate solution. Add the assigned penalty(s) to the value of the goal function in case
a dependent variable(s) violates the upper/lower limit, using Equation (20).

Step 11 For each candidate solution, compare the objective function Fi(x,u) values for the
previous and updated solution. Accept the updated solution if it is superior to the
previous solution. Otherwise, keep the previous solution.

Step 12 Stop and report the optimal solution if the termination criterion is achieved. Otherwise,
return to step 7.

For more explanation, the flowchart of the proposed application of Jaya algorithm to solve OPF
problem is shown in Figure 2.

5. Results and Discussion

To examine the efficacy of the Jaya algorithm for single OPF problems considering DG,
the algorithm is implemented in the IEEE 30-bus network and the IEEE 118-bus network. For the
IEEE 30-bus network, the population size (m) and maximal number of generation (Gn) are set to
40 and 100, respectively. The case considered for the IEEE 118-bus network is carried out with
a population size (m = 100) and a maximum of 300 iterations. The Jaya algorithm is performed in the
computational environment of MATLAB R2015b [26] and implemented on a PC with a 2.7 GHz Intel®

Core™ (Intel Corporation, 2200 Mission College Blvd.: Santa Clara, CA, USA) i7 CPU and 16 GB RAM.

5.1. IEEE 30-Bus Network

The essential data of this network is shown in [27]. The network has six generator units at buses
1, 2, 5, 8, 11, and 13. Load buses 10, 12, 15, 17, 20, 21, 23, 24, and 29 are equipped with switchable
shunt capacitors. Four tap changing transformers are installed at lines 6–9, 6–10, 4–12, and 27–28.
The voltage level bounds of all load buses are set to (0.95, 1.05) p.u. A prevalent DG unit which can
produce active and reactive power is also utilized throughout the implementation of Jaya algorithm,
with a 10 MW generation capability and 0.8 power factor. According to the results obtained from
Equations (22) and (23), we found that bus number 30 is the nominee location for DGs accommodation
with the top sensitivities of active power loss and generation cost to each of active and reactive power
injection, that are (−0.1408), (−0.0516), (−0.0926), and (−0.0383), respectively. We noticed that bus 3
is the worst location, because it had the least sensitivities of active power loss and generation cost to
both injected active and reactive powers, which are (−0.0362), (0.007), (−0.0208), and (−0.001).
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Figure 2. Flowchart of the application of Jaya algorithm for the OPF problem.

Accordingly, the aforementioned locations are used for DG accommodation throughout the
implementation of the Jaya method for single optimization cases. The representative single-line
digram of this network that contains all the required measures in the Jaya algorithm is illustrated in
Figure 3.
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5.1.1. Case 1: Fuel Cost Minimization

In this section, fuel cost minimization is considered the goal function during the implementation of
Jaya algorithm with and without the influence of DG. Figure 4 illustrates the convergence graph of fuel
cost minimization using the Jaya algorithm with and without incorporating the distributed generation
unit at nodes 30 and 3. Without considering DG’s effect, the method requires 49 iterations to obtain
the optimum solution, which reveals the excellent convergence rate of the Jaya algorithm. The best
adjustments of the design variables and optimal values of cost minimization are tabulated in Table 1.
The results present a significant reduction in fuel cost from 902.0207 $/h to 800.4794 $/h, when the Jaya
algorithm is executed without considering DG. In addition, the average computational time for single
iteration for this case is 0.724 s. These results point out the effectiveness of the Jaya algorithm in terms
of solution optimality and fast convergence. Fuel cost is compared with that obtained using various
other heuristic optimization algorithms to validate the Jaya algorithm further. Table 2 demonstrates
the supremacy of the Jaya algorithm over previous algorithms. Notably, the majority of obtained
solutions using heuristic optimization algorithms (Table 2) are infeasible, which is principally due to
voltage magnitude violations at one or more system load buses, as well as reactive power generation
bound violations at one or more generation units. Notably, [23] also reported solution infeasibility for
many previous methods, as compared in Table 2. Implementing Jaya method for fuel cost reduction
when accommodating the DG at node 30 produces an even more significant reduction in fuel cost,
reaching 768.0398 $/h, an attractive Lmax value (0.0969), and a great expansion of shunt compensators
reactive power saving of up to 29.8391 MVAR. Most importantly, a considerable reduction in active
power losses (8.4983 MW) is achieved. Additionally, as a worst site for DG accommodation, node 3
leads to a critical rise of 12.804% in the L-index that results in a slight decrease of 0.812% in losses as
compared with the results gained for cost optimization without utilizing DG. These findings exhibit
the superiority of the Jaya algorithm over several heuristics techniques for solving this type of problem,
and reinforce the efficacy of the proposed DG placement technique.
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Table 1. Optimum setting of control variables for different cases using the Jaya algorithm without and with utilizing DG (modified IEEE 30-bus network).

Control Variable
Limits

Initial Status
Case 1 Case 2 Case 3

Min Max No DG DG at bus 30 DG at bus 3 No DG DG at bus 30 DG at bus 3 No DG DG at bus 30 DG at bus 3

PG1 (MW) 50 200 99.248 177.744 169.723 169.467 51.5093 50.2065 50.1597 154.5292 109.7655 121.3311
PG2 (MW) 20 80 80 48.1929 47.6388 47.9308 80 79.6863 78.3057 34.42623 64.1610 37.9973
PG5 (MW) 15 50 50 21.4679 20.8386 21.1194 49.9997 50 48.3094 37.20663 15 43.8276
PG8 (MW) 10 35 20 21.1103 20.6944 20.8342 35 34.4912 34.0052 17.20772 35 33.4052
PG11 (MW) 10 30 20 11.7820 11.8375 11.8917 30 29.9970 28.9166 12.49902 15.9857 25.8183
PG13 (MW) 12 40 20 12.1669 12.0173 12.0307 40 31.7394 38.7597 35.41512 39.9501 16.6108
VG1 (p.u) 0.95 1.1 1.05 1.08620 1.07264 1.07033 1.06306 1.06256 1.05922 1.05349 1.03869 1.0509
VG2 (p.u) 0.95 1.1 1.04 1.06653 1.05512 1.05308 1.05852 1.05945 1.05699 1.03860 1.02972 1.03385
VG5 (p.u) 0.95 1.1 1.01 1.03350 1.01985 1.02076 1.03923 1.04157 1.03384 0.99352 1.013923 1.0494
VG8 (p.u) 0.95 1.1 1.01 1.03722 1.03177 1.02941 1.04500 1.04634 1.04006 1.04902 1.05545 1.0266
VG11 (p.u) 0.95 1.1 1.05 1.09983 1.07907 1.07827 1.09824 1.10000 1.07218 1.09969 1.09897 1.0694
VG13 (p.u) 0.95 1.1 1.05 1.05041 1.04054 1.04283 1.05895 1.05775 1.05832 1.09962 1.1 1.0269

T6,9 0.9 1.1 1.078 1.1000 1.05793 1.06116 1.07134 1.06605 1.0592 1.08112 1.08192 1.0549
T6,10 0.9 1.1 1.069 0.90000 0.9659 0.9782 0.93563 0.90140 0.9677 0.90000 0.9 0.9828
T4,12 0.9 1.1 1.032 0.97321 1.0021 1.0217 0.99661 1.00208 1.0077 1.10000 1.1 1.0068
T28,27 0.9 1.1 1.068 0.97869 1.0145 1.0012 0.97796 1.01342 1.0173 0.98312 1.01781 0.9902

QC10 (Mvar) 0 5 0 5 2.1837 2.3639 4.95504 0 4.9107 4.99316 5 2.7804
QC12 (Mvar) 0 5 0 0.62598 2.483 2.8944 0.05414 0 3.3384 4.97536 5 2.0184
QC15 (Mvar) 0 5 0 3.55399 1.4851 1.7063 4.88462 4.96356 3.8552 4.99670 5 2.2283
QC17 (Mvar) 0 5 0 4.17065 1.6798 1.51184 4.81859 0.17990 0.9943 5 5 3.7644
QC20 (Mvar) 0 5 0 5 2.0074 2.3638 3.55975 2.85867 1.2218 4.73378 4.97635 2.5031
QC21 (Mvar) 0 5 0 4.98427 1.5623 1.7446 5 5 2.2994 4.96018 5 3.0065
QC23 (Mvar) 0 5 0 3.70495 0.9787 1.2183 3.14258 3.90035 0.5884 5 5 2.7629
QC24 (Mvar) 0 5 0 5 1.4621 1.2115 5 4.98891 1.6599 5 5 2.3394
QC29 (Mvar) 0 5 0 2.95702 1.3188 1.1184 2.62210 0 1.1228 5 0 2.9952
Loss (MW) - - 5.8482 9.06481 8.4983 8.9912 3.1035 2.67504 3.3390 7.884 6.46238 5.5903
Cost ($/h) - - 902.0207 800.479 768.039 769.963 967.682 921.598 929.919 840.7181 816.1612 822.2333

Total cost with DG - - - - 782.417 784.275 - 937.746 942.489 - 832.4112 838.4833
Lmax - - 0.1732 0.1273 0.0969 0.1436 0.1272 0.0892 0.1423 0.1243 0.0851 0.1371

QCRM (Mvar) - - 45 10.003 29.8391 28.8669 10.963 23.1086 25.0091 0.34082 5.02365 20.6014
PDG (MW) 0 10 - - 9.1478 9.1169 - 9.95433 8.2827 - 10 10

QDG (Mvar) P.F is 0.85 - - 5.6692 5.6501 - 6.169 5.1331 - 6.1974 6.1974

The values in bold type indicate optimum values.
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Table 2. Comparison of the solutions obtained for cost reduction (modified IEEE 30-bus network).

Algorithm Fuel Cost ($/h) Real Power Losses (MW) L-Index

Teaching-Learning-Based Optimization (TLBO) [28] 799.0715 a 8.626 0.1159
DE [14] 799.2891 a 8.615 0.1226

Lévy Teaching-Learning-Based Optimization
(LTLBO) [29] 799.4369 a 8.7558 NA

HS [15] 798.8000 a 8.6541 0.118
GSA [17] 798.675143 a 8.386049 0.130759

Enhanced Genetic Algorithm (EGA) [12] 802.06 NA NA
GPM [26] 804.853 10.486 NA
IGA [11] 800.805 NA NA

Enhanced Genetic Algorithm with Decoupled
Quadratic Load Flow (EGA-DQLF) [13] 799.56 a 8.697 0.111

Firefly- Modifed Genetic Algorithm (FFA-mGA) [30] 801.1128 a 9.1698 NA
Àdapted Genetic Algorithm with Adjusting

Population Size (AGAPOP) [31]
799.8441 a 8.9166 NA

BBO [19] 799.1116 a 8.63 NA
ABC [4] 800.66 9.0328 0.1381

Hybrid Particle Swarm Optimization and
Gravitational Search Algorithm (PSOGSA) [23] 800.49859 9.0339 0.12674

Jaya 800.4794 9.06481 0.1273
Jaya with DG at bus 30 768.0398 8.5819 0.0972

The values in bold type indicate optimum values; a Infeasible solution; NA, not available.Energies 2016, 9, 678 11 of 19 
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5.1.2. Case 2: Real Power Losses Reduction

The goal considered in this case was active power losses minimization. The Jaya algorithm was
utilized to attain the optimum solution, the results of which are given in Table 1. The Jaya algorithm is
clearly efficient for determining the optimum settings of the control variable, which minimizes system
losses. Consequently, real power losses is decreased significantly from 5.8482 MW to 3.1035 MW when
Jaya algorithm is performed without considering DG. Figure 5 shows the steep convergence of real
power losses using the Jaya algorithm while considering DG placement at buses 30 and 3.
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The algorithm fully reaches to the optimum solution with 65 iterations, demonstrating the rapid
convergence of the Jaya algorithm. To test the effectiveness of the algorithm, estimated real power
loss value is compared with that obtained using previously reported population-based optimization
algorithms. Table 3 illustrates the superiority of the Jaya algorithm over these earlier algorithms.
The solution obtained using HS [15] algorithm (Table 3) is infeasible because of the voltage magnitude
violations at all load buses except bus 7 (Adaryani et al. have also reported this issue) [4].

Table 3. Comparison of the results obtained for real power losses (modified IEEE 30-bus network).

Method Real Power Loss (MW) Fuel Cost ($/h) L-Index

HS [15] 2.9678 a 964.5121 0.1154
Enhanced Genetic Algorithm

with Decoupled Quadratic Load
Flow (EGA-DQLF) [13]

3.2008 967.86 0.12178

ABC [4] 3.1078 967.681 0.1386
Jaya 3.1035 967.6827 0.1272

Jaya with DG at bus 30 2.675040 921.5988 0.0892

The values in bold type indicate optimum values; a Infeasible solution.

Implementing the Jaya method for loss minimization when placing the DG at the best site
leads to further minimization (2.675040 MW), a considerable saving in generation cost (46.0839 $/h)
accompanied by an excellent voltage stability index value (0.0892). Furthermore, the shunt compensator
reserve margin increases extensively by 110.787%. In contrast, placing a DG at node 3 (that is, the worst
node for DG accommodation) while executing the OPF solution minimizes losses to 3.339 MW.
This result is inferior when compared with loss minimization that does not utilize DG, which is
3.1035 MW. A critical increment of 11.871% Lmax is also obtained. The findings confirm that optimal
placement of DG leads to a superior solution to the OPF problem. To sum up, these findings validate
the supremacy of the Jaya algorithm over other techniques reported in the literature, both in terms of
solution optimality and feasibility.

5.1.3. Case 3: Voltage Stability Improvement

In this section, enhancing voltage stability is selected as the goal function to be optimized using
the Jaya algorithm while considering the effects of DG placement. The trend of enhancing system
voltage stability is sketched in Figure 6. The results are given in Table 1. The findings point out that the
voltage stability index is reinforced by 28.23%. Table 4 compares solutions achieved using Jaya method
and other population-based optimization techniques, with the former yielding clearly superior results.
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Remarkably, placing a DG unit at bus 30 while executing OPF significantly reduces Lmax index to
0.0851, whereas integrating a DG unit at the worst location (i.e., bus 3) increases Lmax index to 0.1371.
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Table 4. Comparison of the results obtained for voltage stability enhancement (modified IEEE
30-bus network).

Algorithm Lmax Fuel Cost ($/h) Real Power Losses (MW)

HS [15] 0.1006 a 895.6223 4.3244
BBO [19] 0.09803 a 917.3597 4.95

SPEA [32] 0.1247 a 898.19 NA
Jaya 0.1243 840.7181 7.884

Jaya with DG at bus 30 0.0926 820.8261 5.0110

The values in bold type indicate optimum values; a Infeasible solution; NA, not available.

5.1.4. Statistical Analysis

A statistical study is performed to examine the robustness and efficacy of the Jaya algorithm
in solving OPF problems that considers DG effect. For each case, 50 independent trials of the Jaya
algorithm with different initial populations (solutions) are carried out. As previously mentioned, for
the modified IEEE 30-bus test network, population size (m) and utmost number of generation (Gn)
are set to 40 and 100, respectively. In this paper, the statistical analysis indices employed are best
value, worst value, average (mean) value, and standard variation (SD). Statistical analysis results are
presented in Table 5. The table presents that the best, worst, and average values for all considered
cases are very close to each other; hence the standard deviation values were small. These results affirm
the robustness of the Jaya algorithm and its capability to explore the optimal solution in every run.

Table 5. Statistical results obtained over 50 independent trials of Jaya method without and with
employing DG.

Case
No DG DG (Bus 30)

Best Worst Average Standard
Deviation Best Worst Average Standard

Deviation

Case 1 800.4794 800.5306 800.4928 0.0072 768.0398 768.0419 768.0408 0.0084
Case 2 3.1035 3.1046 3.1039 0.0038 2.675040 2.68481 2.67925 0.0042
Case 3 0.1243 0.12441 0.12432 0.00069 0.0851 0.0856 0.0853 0.00088
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5.2. IEEE 118-Bus Network

The standard IEEE 118-bus network is considered to verify the scalability and efficacy of the
Jaya algorithm for solving large-scale OPF problems. The complete data of this system are referenced
in [33]. The network has 186 branches, 54 generating units, and 64 load buses. Twelve buses, 34, 44,
45, 46, 48, 74, 79, 82, 83, 105, 107, and 110 are equipped with switchable shunt capacitors. Meanwhile,
nine tap changing transformers are installed at lines 8–5, 26–25, 30–17, 38–37, 63–59, 64–61, 65–66, 68–69,
and 81–80. The voltage magnitude limits of all buses are set within the range of [0.95 p.u., 1.1 p.u.]. The
minimum and maximum limits for each regulating transformer tap are within the domain of (0.9, 1.1).
The imaginary power inserted by each shunt capacitor is set within the range of [0 MVAR, 30 MVAR].

Case 4: Fuel Cost Reduction

In this section, the Jaya algorithm is used to solve the OPF problem of IEEE 118-bus network with
cost reduction as the goal function without DG. The convergence graph of Jaya algorithm for cost
reduction is sketched in Figure 7.Energies 2016, 9, 678 16 of 19 
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Figure 7. Convergence of Jaya method for case 4.

The figure exhibits the excellent convergence property of Jaya algorithm when solving a large-scale
optimization problem. Remarkably, the average computational time of one iteration for this case is
1.83 s. The optimal adjustments of control variables and optimal values of cost minimization are
tabulated in Table 6.

Table 6. Optimum setting of control variables using Jaya algorithm for cost minimization (standard
IEEE 118-bus network).

Control
Variable Case 4 Control

Variable Case 4 Control
Variable Case 4 Control

Variable Case 4

PG1 (MW) 25.12915 PG77 (MW) 0 VG36 (p.u.) 1.05974 VG112 (p.u.) 1.06284
PG4 (MW) 0 PG80 (MW) 433.1489 VG40 (p.u.) 1.05229 VG113 (p.u.) 1.05059
PG6 (MW) 0 PG85 (MW) 0 VG42 (p.u.) 1.05495 VG116 (p.u.) 1.08496
PG8 (MW) 0 PG87 (MW) 3.63259 VG46 (p.u.) 1.06267 T8,5 1.0173
PG10 (MW) 402.65452 PG89 (MW) 505.2258 VG49 (p.u.) 1.07502 T26,25 1.07480
PG12 (MW) 85.61712 PG90 (MW) 0 VG54 (p.u.) 1.05626 T30,17 1.05160
PG15 (MW) 18.98469 PG91 (MW) 0 VG55 (p.u.) 1.05611 T38,37 0.98400
PG18 (MW) 11.47358 PG92 (MW) 0 VG56 (p.u.) 1.05592 T63,59 1.03480
PG19 (MW) 20.16029 PG99 (MW) 0 VG59 (p.u.) 1.07109 T64,61 0.9752
PG24 (MW) 0 PG100 (MW) 231.9774 VG61 (p.u.) 1.07961 T65,66 0.9721
PG25 (MW) 195.35572 PG103 (MW) 38.30151 VG62 (p.u.) 1.07462 T68,69 0.9629
PG26 (MW) 281.99696 PG104 (MW) 0 VG65 (p.u.) 1.08247 T81,80 1.0047
PG27 (MW) 11.53285 PG105 (MW) 4.55102 VG66 (p.u.) 1.087499 QC34 (Mvar) 17.2517
PG31 (MW) 7.2456650 PG107 (MW) 28.03098 VG69 (p.u.) 1.09579 QC44 (Mvar) 5.0382
PG32 (MW) 15.691750 PG110 (MW) 6.86202 VG70 (p.u.) 1.07252 QC45 (Mvar) 22.7408
PG34 (MW) 0.97016 PG111 (MW) 35.28710 VG72 (p.u.) 1.06673 QC46 (Mvar) 2.5184
PG36 (MW) 7.10474 PG112 (MW) 35.55218 VG73 (p.u.) 1.07050 QC48 (Mvar) 6.2933
PG40 (MW) 47.03167 PG113 (MW) 0 VG74 (p.u.) 1.05715 QC74 (Mvar) 11.7396
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Table 6. Cont.

Control
Variable Case 4 Control

Variable Case 4 Control
Variable Case 4 Control

Variable Case 4

PG42 (MW) 39.88786 PG116 (MW) 0 VG76 (p.u.) 1.04725 QC79 (Mvar) 26.2949
PG46 (MW) 19.03365 VG1 (p.u.) 1.03506 VG77 (p.u.) 1.08098 QC82 (Mvar) 27.4917
PG49 (MW) 193.84281 VG4 (p.u.) 1.06279 VG80 (p.u.) 1.09254 QC83 (Mvar) 7.29930
PG54 (MW) 49.47427 VG6 (p.u.) 1.05461 VG85 (p.u.) 1.08276 QC105 (Mvar) 19.6392
PG55 (MW) 30.83240 VG8 (p.u.) 1.08258 VG87 (p.u.) 1.08774 QC107 (Mvar) 4.8172
PG56 (MW) 31.18303 VG10 (p.u.) 1.08589 VG89 (p.u.) 1.08959 QC110 (Mvar) 23.9717
PG59 (MW) 149.75472 VG12 (p.u.) 1.05108 VG90 (p.u.) 1.07176 Loss (MW) 74.519
PG61 (MW) 148.79525 VG15 (p.u.) 1.04536 VG91 (p.u.) 1.07561 Cost ($/h) 129,490.54
PG62 (MW) 0 VG18 (p.u.) 1.04583 VG92 (p.u.) 1.08039 QCRM (Mvar) 184.904
PG65 (MW) 354.25856 VG19 (p.u.) 1.04575 VG99 (p.u.) 1.08412 - -
PG66 (MW) 351.00337 VG24 (p.u.) 1.06729 VG100 (p.u.) 1.08739 - -
PG69 (MW) 457.25440 VG25 (p.u.) 1.07470 VG103 (p.u.) 1.08028 - -
PG70 (MW) 0 VG26 (p.u.) 1.09339 VG104 (p.u.) 1.07172 - -
PG72 (MW) 0 VG27 (p.u.) 1.05391 VG105 (p.u.) 1.06932 - -
PG73 (MW) 0 VG31 (p.u.) 1.04382 VG107 (p.u.) 1.06308 - -
PG74 (MW) 16.10096 VG32 (p.u.) 1.05110 VG110 (p.u.) 1.07020 - -
PG76 (MW) 21.57844 VG34 (p.u.) 1.06450 VG111 (p.u.) 1.077691 - -

Bold type indicates optimum value.

For further validation, the results obtained with Jaya algorithm are compared with those of
TLBO [28], GSA [34], BBO [34], PSO [35], DE [36], and GWO [36], as shown in Table 7. Jaya algorithm
obviously obtained a more superior solution. The findings demonstrate the superiority of Jaya
approach in achieving the optimal solution with fast convergence. In total, these results affirm the
scalability of the Jaya algorithm and exhibit its efficacy for solving large-scale OPF problems.

Table 7. Comparison of the solutions obtained for cost reduction (standard IEEE 118-bus network).

Algorithm Fuel Cost ($/h) Real Power Losses (MW)

Teaching-Learning-Based Optimization (TLBO) [28] 129,682.844 NA
Gravitational Search Algorithm (GSA) [34] 129,565 76.19

Biogeography-Based Optimisation (BBO) [34] 129,686 78.14
Particle Swarm Optimization(PSO) [35] 130,288.21 NA

Differential Evolution (DE) [36] 129,582 79.41
Grey Wolf Optimizer (GWO) [36] 129,720 79.58

The values in bold type indicate optimum values; NA, not available.

6. Conclusions

In this article, a new optimization algorithm, namely the Jaya algorithm, is employed and
successfully applied to deal with the OPF problem in electric power networks. Unlike other
population-based techniques, this technique does not need controlling factors to be tuned.
The algorithm is entered into the OPF problem formulation without and with considering distributed
generation. Furthermore, a new formulation of the OPF problem that considers the effect of DG
utilization is introduced. A sensitivity based-method is also modified to recognize the optimal
placement of DG. Generation cost reduction, active power losses reduction, and voltage stability
improvement are goal functions considered for the OPF problem. Standard IEEE 30-bus and IEEE
118-bus networks were utilized to test and validate the applicability of Jaya method in solving OPF
problems. Results showed that an optimal and feasible solution for each considered case could be
determined by the Jaya algorithm. In fact, the new proposed concept of the Jaya algorithm led to rapid
discovery of an optimal solution (that is, strengthened the exploration property). Moreover, results
indicated the efficacy of Jaya algorithm in terms of the favorable convergence characteristic and short
computation time. Statistical analysis confirmed that Jaya algorithm is a robust optimization technique.
For further validation, the performance of Jaya algorithm was compared with existing methods stated
in literature. The supremacy of Jaya algorithm was revealed in term of solution optimality and solution
feasibility. In fact, the victorious concept of Jaya method makes it superior than other population-based
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optimization methods. Moreover, the optimal placement of DG units in terms of generation cost
and power loss sensitivities, together with the Jaya algorithm approach, led to better solution for all
single objective optimization cases. The erroneous placement of DG resulted in unattractive solutions.
In conclusion, the applicability, potential, and efficacy of the Jaya algorithm in solving OPF problems
for small and large-scale power systems were confirmed. Jaya algorithm is a powerful tool for solving
such problems and is a good candidate for solving OPF problems of practical power systems. In the
future, the performance of the Jaya algorithm can be compared with other global solvers exist which
can guarantee global optimality such as Lindoglobal, Antigone and Baron.
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