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Abstract: The free-piston gasoline engine linear generator (FPGLG) is a new kind of power plant
consisting of free-piston gasoline engines and a linear generator. Due to the elimination of the
crankshaft mechanism, the piston motion process and the combustion heat release process affect each
other significantly. In this paper, the combustion characteristics during the stable generating process
of a FPGLG were presented using a numerical iteration method, which coupled a zero-dimensional
piston dynamic model and a three-dimensional scavenging model with the combustion process
simulation. The results indicated that, compared to the conventional engine (CE), the heat release
process of the FPGLG lasted longer with a lower peak heat release rate. The indicated thermal
efficiency of the engine was lower because less heat was released around the piston top dead centre
(TDC). Very minimal difference was observed on the ignition delay duration between the FPGLG
and the CE, while the post-combustion period of the FPGLG was significantly longer than that of the
CE. Meanwhile, the FPGLG was found to operate more moderately due to lower peak in-cylinder
gas pressure and a lower pressure rising rate. The potential advantage of the FPGLG in lower NOx

emission was also proven with the simulation results presented in this paper.

Keywords: free-piston gasoline engine linear generator; stable generating process; combustion
characteristics; heat release process

1. Introduction

Because of the consumers’ demand for low fuel consumption and the stringent governmental
emission legislation, researchers all over the world have been devoted to improving the technologies
in the traditional internal combustion engine, as well as investigating new kinds of power machinery
for energy conversion [1–5]. The free-piston engine linear generator (FPLG), as one of the new
energy conversion devices, has been widely studied due to its potential advantages of high efficiency,
low emissions and multi-fuel capability over the conventional engines [6]. The FPLG is a combination of
free-piston engines and a linear generator. According to the amount of the piston and the arrangement
form, it can be divided into three categories, that is the opposed piston free-piston engine, the
single-cylinder free-piston engine and the dual piston free-piston engine [7]. In this paper, the dual
piston free-piston engine type was selected because of its higher power-to-weight ratio and the
elimination of rebound devices. The schematic diagram of the FPLG prototype is shown in Figure 1.
The operating principle of the prototype can be described as follows: combustion occurs alternatively
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in the two chambers and drives the piston and the connecting rod reciprocating through the linear
electric machine (LEM). In this way, the electric current is generated in the LEM’s coils, and part of the
chemical energy of the fuel is converted into electricity.
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The concept of the free-piston engine was first proposed by Pescara in 1928 [5]. However,
the free-piston engine applications including the FPLG underwent a slow development in the early
stages and reached stagnation in the 1960s due to the limitations of various factors [8]. In recent years,
as an alternative power device for hybrid electric vehicles, the FPLG has attracted increasing interests
from worldwide researchers [9]. With the development of the computer control technology, the internal
combustion engine technology and material science, significant progress has been made in aspects of
the FPLG simulation, experimental techniques, as well as the FPLG control system.

West Virginia University is one of the earliest institutes performing the investigation of modern
FPLG system. In [10], the design and construction of a two-stroke dual piston FPLG prototype was
provided using spark ignition. Tests were performed to evaluate the performance of the prototype,
and the tested output power was 316 W while operating at 23.1 Hz. However, the combustion
occurring in the prototype appeared to be extremely unstable, and the machine could not operate
continuously. A numerical model was developed [11] that divided the working cycle of the FPLG into
three stages according to the piston motion, that is the scavenging process, the compression process
and the combustion process. Each process was described by mathematical models in accordance with
the laws of thermodynamics. It was synthetically analysed how the total heat input, the combustion
duration, the reciprocating mass and the load influenced the operation characteristics of the FPLG,
such as the position of the TDC and the frequency and the piston velocity. In 2002, a numerical
model of a compression-ignited FPLG was developed [12]. Its bore was 75 mm, and the stroke was
71 mm. The output power and the indicated efficiency for the base case could reach 7.1 kW and 40.86%,
respectively. Then, they also examined the effects of translator mass, the premixed to diffusive burn
ratio, injection timing and load values on the performance.

Mikalsen and Roskilly at Newcastle University began to investigate FPLG from 2007. The piston
dynamics of an FPLG were investigated [13], which indicated that its piston motion was asymmetrical
around TDC, and the engine spent more time in the compression than in the expansion phase of
the cycle. Then, they carried out simulations using the CFD (computational fluid dynamics) toolkit
OpenFOAM on the working process of the FPLG and compared its performance to a conventional
engine. The results showed that the performance of the FPLG had a slight advantage over the
conventional engine for faster-burning fuels [14]. In 2009, a computational study was undertaken to
investigate the in-cylinder gas motion, combustion process and nitrogen oxide formation in a diesel
FPLG [15]. It was found that the in-cylinder gas temperature in the FPLG was lower than that in the
CE, which contributed to the decrease of the NOx emission.

The European Commission promoted a research project about a new energy power plant named
FPEC (free piston energy converter) in the year 2002 [8]. The researchers presented the thermodynamic
modelling of the FPEC and emphatically analysed the heat release process and its scavenging
characteristics by a multi-dimensional simulation method [16,17]. The results indicated that the
fuel with a lesser octane number required a higher compression ratio, and the higher compression
ratio would increase the operating frequency, power output and efficiency of the system.
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Researchers from Beijing Institute of Technology have done studies on the piston motion,
the combustion heat release process and the electricity-generating characteristics of the FPLG.
They utilized computational modelling and single-step parametric variations to analyse the scavenging
system for an FPLG [18]. The results showed that a higher effective stroke length to bore ratio
and a long valve overlapping distance with a low supercharge could achieve a good scavenging
performance. Professor Feng et al. investigated the combustion process of a diesel FPLG by adopting
coupled models of zero-dimensional dynamics and multidimensional computational fluid dynamics [7].
The simulation results revealed the basic combustion characteristics of the FPLG fuelled by diesel.
In 2015, Song presented a novel design of a single-cylinder FPLG incorporating a linear motor as a
rebound device [19]. Both simulations and experiments were undertaken to investigate the stable
generating characteristics, and the results indicated the output power of 25.9 W and the system
efficiency of 13.7%. In addition, they have established prototypes that could basically realize continuous
fire during the starting process. However, the misfire phenomenon was obvious due to the bad
scavenging efficiency.

The research group led by Chang, Siqin at the Nanjing Institute of Technology conducted studies
mainly on the control and experiments of a single-cylinder spark-ignited FPLG, which worked on
four-stroke cycles. In the aspect of the engine control, the motion state of the free piston was controlled
by the electromagnetic force of the linear generator, thus making the FPLG work continuously. As for
the prototype, the bore was 62 mm, and the stroke was 70 mm. They tested the prototype during the
stable operation process, and the obtained power output and generating efficiency were 2.2 kW and
around 34%, respectively [20].

Toyota Central R&D Labs Inc. has published a number of patents and articles about FPLG.
The proposed structure featured a hollow circular step-shaped piston and an oil cooling passage for
enough cooling ability of the piston. The researchers assessed the spark ignition (SI) combustion
and premixed charged compression ignition (PCCI) combustion by performing one-dimensional
simulations, and the two cases both obtained an output power of 10 kW [21]. In addition, the control
logic of the linear generator was studied, which selected both the position and velocity of the piston as
feedback parameters. The proposed feedback method realized stable and robust control behaviour
with respect to abnormal combustion conditions, such as pre-ignition [22].

In general, the researchers have conducted both simulations and experiments on the operation
principle of the FPLG, as well as the performance of the prototype. As for the combustion process
analysis, most reports used zero-dimensional, single-zone models to simulate the working process
of the FPLG, which showed a limited accuracy to predict the parameters in the combustion process.
Afterwards, with the development of the CFD software, the coupled dynamic-multidimensional model
was applied, which could account for the gas flow in the cylinder [23] and had a higher accuracy
to describe the combustion details of the FPLG. However, the scavenging performance was usually
ignored in the model, which was supposed to have significant effects on the combustion process for
the FPLG. Currently, the method of coupling the dynamic and scavenging models into the combustion
process simulation was put forward [24]; however, few research has been reported on carrying out
combustion process analysis by this method on the FPLG fuelled by gasoline. Moreover, few studies
have been done focusing on the detailed combustion heat release process of a FPGLG. Therefore,
this paper performed the three-dimensional combustion simulation analysis of a FPGLG during
the stable generating process by inputting the piston displacement data into the software AVL/Fire.
Besides, the three-dimensional scavenging model was coupled into the calculation process in order to
obtain the more accurate boundary conditions for the simulation analysis. The results revealed well the
real-time combustion characteristics and the heat release characteristics of the FPGLG. Comparisons
were made with a conventional internal combustion engine of the same structural parameters.
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2. Simulation Methodology

The combustion process calculation of the FPGLG during the stable generating process applied a
numerical iterative method, coupling the piston motion features and the CFD scavenging model [24].
The iterative procedure is illustrated in Figure 2.Energies 2016, 9, 655  4 of 19 
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In Figure 2, x is the piston displacement; Rh is the combustion heat release rate; P and T represent
the in-cylinder gas pressure and temperature calculated by the CFD combustion model; P0 and T0

represent the in-cylinder gas pressure and temperature calculated by the CFD scavenging model.
The detailed iterative process can be described as follows:

1. The piston dynamic model of the FPGLG is established based on the second law of
thermodynamics and the Wiebe heat release function; the inputs of the model are the gas
parameters at the starting position of the compression stroke, and its output is the piston
motion profile.

2. According to the piston motion profile, the mesh movement in the CFD combustion model and
the CFD scavenging model can be developed.

3. The in-cylinder gas pressure and temperature at the end of the scavenging process from the CFD
scavenging model, along with the heat release rate from the CFD combustion model, will be in
turn applied to the zero-dimensional piston dynamic model in order to predict the piston motion
rule in the next iterative process.

4. The mesh movement and the initial boundary conditions of the CFD combustion model are
updated based on the new piston motion data and the calculated in-cylinder gas parameters from
the CFD scavenging model.

5. Repeat Steps (3) and (4) until the deviation between the in-cylinder gas pressure results from
the 3-dimensional combustion model and the zero-dimensional piston dynamic model was less
than 5%.

After performing the numerical iterative process, the accurate CFD combustion model of the
FPGLG can be acquired with appropriate boundary conditions.

2.1. Piston Dynamic Model

The movement of the piston assembly is decided by the forces acting on it while the FPGLG is in
the stable generating process, as illustrated in Figure 3.
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Psl and Psr stand for the gas pressure from the left and right scavenging cases, respectively,
which are assumed to be equal as the scavenging pressure in the two scavenging cases keeps the same.
Therefore, the dynamic equation of the piston assembly can be derived as below [7,25] according to
Newton’s Second Law:

(Pl − Pr)A− Fe − Ff = m
d2x
dt2 (1)

where Pl and Pr respectively represent the in-cylinder gas force on the top surfaces of the left and right
pistons; A is the piston area; Fe is the electromagnetic force caused by the load motor; Ff is the friction
force; m is the mass of the piston assembly; x represents the piston displacement; and t is time.

During the stable generating process, the electromagnetic force Fe caused by the load motor has a
linear relationship with the piston’s velocity, as illustrated in Equation (2).

Fe = Ce ·
dx
dt

(2)

where Ce is the electromagnetic damper coefficient of the load motor.
Additionally, the friction force Ff in the system can be seen as a constant [26].
In order to predict the in-cylinder gas pressure variation in the combustion chamber of the FPGLG,

a thermodynamic equation has been derived, shown as bellow [13]:

dP
dt

=
1
V
((γ− 1)

dQ
dt
− γP

dV
dt

) (3)

dQ
dt

=
dQc

dt
− dQh

dt
(4)

where P is the in-cylinder gas pressure; γ is the specific heat ratio; V is the cylinder volume;
Qc represents the heat released by the burnt fuel; and Qc represents the heat transfer loss.

The zero-dimensional mathematical model to calculate the working process of FPGLG can be
established using MATLAB/Simulink by applying the piston dynamic model. The geometric and
initial simulation parameters of the FPGLG are shown in Table 1.

Table 1. The geometric and initial simulation parameters of the FPGLG.

Parameters Value

Bore (mm) 52.0
Effective stroke (mm) 28.0

Total stroke (mm) 58.0
Exhaust port height (mm) 15.0

Scavenging port height (mm) 13.5
Compression ratio 5.2

Piston and connecting rod mass (kg) 5.0
Thrust force constant (N/A) 74.4

Coil resistance (Ω) 14.0
External load resistance (Ω) 28.0

The piston dynamic characteristics of the FPGLG are compared to a conventional two-stroke
engine virtually established by method of equivalent speed transform [27]. The configuration of the
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CE is shown as Figure 4; where C is the length of the rod, R is the crank radius and α is the angle
between the crank and the axis of the cylinder.Energies 2016, 9, 655  6 of 19 
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To make it comparable, the two engines must run at the same operation frequency with equal bore
and stroke. Additionally, as the software AVL/Fire can only read the piston position data measured in
crank angles, the equivalent crank angle (ECA) is adopted to normalize the piston motion in FPGLG
transferred from time by Equation (5) [18]. In the study, the piston position at the TDC was defined as
0 ◦ECA.

ECA = (t− t0) · f · 360 (5)

where t0 is the start time, t is any time in the running period and f is frequency.
Figure 5 shows the piston dynamic characteristics of the FPGLG and the CE. The displacement

curve of the FPGLG is calculated from the zero-dimensional piston dynamic model, and the piston
position of the CE at the same crank angle is calculated by Equation (6) when setting the piston
displacement as zero at the TDC:

x = R[(1− cosα) +
λ

4
(1− cos2α)] (6)

where λ = C/R, and it is set to be 0.25 in this case.
As can be seen in Figure 5, for the lack of the mechanical restraint of the crank and connecting

rod, the piston motion characteristics of FPGLG are distinguished from those of CE. The peak velocity
of the FPGLG was smaller, and the acceleration at both the TDC and BDC (bottom dead centre) was
much higher. That means, compared to CE, the FPGLG moved more slowly in the compression stroke
and moved relatively faster in the expansion stroke. As a result, the piston of the FPGLG had a shorter
retention time around the turning points, which would help reduce the NOx emission caused by
high temperature.
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Analysing the behaviour of the FPGLG under different operating conditions will help us learn
more about its dynamic characteristics. Figure 6 shows the piston displacement curves at different
external load resistance. The bigger load resistance means smaller current in the LEM, thus leading to
the decrease in the electromagnetic resistance. As a result, we can see in Figure 6a that the stroke and
the running speed became greater with the increasing external load resistance. Figure 6b demonstrates
the normalized piston displacement of the FPGLG, and the displacement curves at different external
load resistance presented the same tendency corresponding to the ECA, except for the slight difference
in the amplitude. Therefore, with the varying operation conditions, the normalized piston dynamic
curves of the FPGLG and the CE will have the same relationship as Figure 5 shows. Additionally,
the combustion characteristics influenced by the piston dynamics will also present the same rule.
As a result, we only covered one operating point of FPGLG in this paper to investigate the difference
in the combustion process of the two engines.
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(b) the piston displacement at different external load resistance corresponding to the ECA.

2.2. CFD Combustion Model

The three-dimensional CFD combustion model was established according to the prototype with
a hemispherical combustion chamber placed at the bottom of the cylinder head and a dome-type piston.
Considering that the effective compression stroke starts after the exhaust port closes, the simulation
scope for the combustion process calculation ranged from the exhaust port closing (EPC) to the exhaust
port opening (EPO) [18]. Figure 7 shows the computational mesh model developed with the software
AVL/Fire. At the beginning of the calculation, the whole domain contained 43,392 cells, including
43,104 hexahedron cells and 288 prism cells.
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For the combustion process simulation, there are many mathematical models provided in
Fire [28], among which the extended coherent flame model (ECFM) was applied since the FPGLG
is a spark-ignited engine with premixed charge. The ECFM has been mainly developed in order to
describe combustion in direct ignition spark-ignited engines, and it is also recommended for all types
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of gasoline and gas engine applications. The model assumes that the reaction takes place within
relatively thin layers that separate the fresh unburned gas from the fully-burnt gas [29]. Furthermore,
a two-step chemistry mechanism is used taking CO and H2 formation in near stoichiometric and fuel
rich conditions into account. Additionally, a decoupled treatment of chemistry and turbulence is also
considered in this model.

In the CFD combustion model of the FPGLG, the k-zeta-f sub-model was adopted to describe the
turbulent flow in the cylinder, and the extended Zeldovich model was used to calculate the emission
of NO. Besides, the momentum equation employed the MINIMOD relaxed scheme for discretization,
which was better for stability and convergence than the central differential scheme [30]. The initial
simulation parameters of the CFD combustion model are listed in Table 2.

Table 2. The initial simulation parameters of the CFD combustion model.

Parameters Value

In-cylinder gas pressure (bar) 1.5
In-cylinder gas temperature (K) 370.0

Turbulence kinetic energy 17.9
Equivalence ratio 1.2

Ignition timing (◦ECA) −43.5

2.3. CFD Scavenging Model

The scavenging process of a two-stroke engine is driven by the reciprocating movement of the
piston, which controls the opening and closing of the gas ports. Based on the geometric features,
the scavenging model was divided into four regions, namely the cylinder, the scavenging port,
the exhaust port and the scavenging case. Each region should be meshed separately, and the final
computational mesh model was constructed by combining the four regions together. For the cylinder,
its initial meshes were the same as in the combustion model described in Section 2.2. Additionally,
the other three regions were all meshed by the hexahedral element type for higher accuracy. In total,
there were 86,878 solid cells in the CFD scavenging model, as shown in Figure 8.
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The boundary conditions for the scavenging process simulation of the FPGLG are listed in Table 3.
As can be seen, the wall temperatures of the calculation domain were set to be constant values, and
the inlet and outlet were kept under constant pressure conditions. In addition, the initial in-cylinder
gas parameters were obtained from the CFD combustion simulation, which would be updated in the
numerical iterative process.
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Table 3. The initial boundary conditions of the CFD scavenging model.

Parameters Value

Intake air pressure (bar) 1.2
Exhaust air pressure (bar) 1.0

Wall temperature of the head (K) 520.0
Wall temperature of the piston (K) 520.0
Wall temperature of the liner (K) 500.0

Wall temperature of the scavenging port (K) 320.0
Wall temperature of the exhaust port (K) 450.0

3. Model Validation

3.1. Description of the Test Bench

The test was conducted on the FPGLG prototype shown in Figure 9. The scavenging pressure
of the prototype was 1.2 bar, and the external load resistance was 28 Ω. The control system of the
prototype consisted of a set of NI (National Instruments) equipment, which included a 2.3-GHz
controller and a synchronous data acquisition card with 16 channels. Besides, the open-loop control
strategy was used to control the fuel consumption, injection timing and throttle opening of the
prototype and programmed by the software LabVIEW (NI, Austin, TX, USA). More details about the
prototype development, modelling and experimental results can be found elsewhere [31–34].
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4. Fuel injection system; 5. Scavenging case; 6. Ignition system.

The collected parameters during the test included in-cylinder gas pressure, piston position and
the pressure in the scavenging case. The main parameters of the sensors used during the test are listed
in Table 4.

Table 4. Main technical parameters of the sensors.

Sensors Type Measurement Range

Cylinder pressure sensor Kistler6052C 0–25 MPa
Charge amplifier Kistler5064B11 -

Displacement sensor Within the LEM 0–150 mm
Scavenging case pressure sensor Meas M5165-00005-005BG 0–0.5 MPa

3.2. Comparison of the Simulation and Test Results

By carrying out experiments on an FPGLG prototype, variations of piston position and in-cylinder
gas pressure were observed. As can be seen in Figure 10, the piston motion profile of the FPGLG was
not symmetric. The piston spent more time during the compression stroke than the expansion stroke as
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reported in several references [7,14]. The collected in-cylinder gas pressure presented fluctuations due
to the cyclic variation during the combustion process. Therefore, the comparison was done between
the simulated in-cylinder gas pressure and the average tested data.
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The data in Figure 11 compare the test results and the simulation results, both of which show
the profile of the in-cylinder gas pressure with the ECA. It has been observed that the simulation
results and the test results presented a similar tendency, while the tested peak pressure was achieved
earlier and was slightly lower than the simulation result. As the changes of the two curves were
consistent and the peak error between them was less than 5%, the simulated results could reflect the
real-time characteristics of the in-cylinder gas pressure, and the accuracy of the CFD combustion model
was acceptable.
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4. Simulation Results and Discussion

The combustion process of the FPGLG was compared to the CE. The simulation of the two engines
lasted from the EPC to the EPO. As can be seen from Table 5, the FPGLG experienced an ECA course
of−100–82 ◦ECA, and the CE experienced an ECA course of−84–84 ◦ECA. For engines with premixed
charge, the ignition timing has a significant influence on the combustion process. Therefore, both of
the engines adopted the same ignition advance position to guarantee the compression ratio at the same
ignition time. As shown in Table 5, the ignition advance position of the two engines was 8 mm before
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the TDC, at which both of them showed good performance in the simulations. Moreover, in order to
make the simulation results more comparable, the initial set conditions of the two engines were all
identical, such as the intake air pressure and temperature, the equivalence ratio and the turbulence
kinetic energy in the cylinder.

Table 5. Simulation parameters in the CFD combustion model of the FPGLG and CE.

Parameters FPGLG CE

EPC (◦ECA) −100.0 −84.0
EPO (◦ECA) 82.0 84.0

Ignition timing (◦ECA) −43.5 −40.3
Ignition advance position (mm) 8.0 8.0

4.1. Comparison of the In-Cylinder Gas Flow Characteristics

The in-cylinder gas flow characteristics have an important influence on the combustion process.
Figure 12 shows the gas flow field of the FPGLG and the CE. It can be seen that, at the later stage
of the compression stroke, the gas flew to the edge space from the middle of the chamber with the
piston moving close to the cylinder head, thus forming the squish motion. After climbing over the
TDC, the piston moved downwards, and the gas flew back to the middle from the annular edge of the
chamber, leading to the reversed squish motion. Both the squish and the reversed squish contributed
to enhancing the gas turbulence intensity in the cylinder and, in this way, helped promote the burning
rate of the mixture.
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There are differences in the gas flow characteristics of the FPGLG and the CE due to their different
piston dynamics. It is revealed in Figure 12 that the peak gas flow velocity in the FPGLG was 7.1 m/s,
which was lower than that in the CE. The strongest gas flow intensity occurred earlier in the CE,
because the piston velocity of the CE was bigger than that of the FPGLG in the late compression stroke.
However, in the expansion process, the gas flow intensity of the FPGLG was a little stronger than that
of the CE for its faster expansion speed.
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4.2. Comparison of the Engine Performance

4.2.1. In-Cylinder Gas Pressure

Figure 13a illustrates the in-cylinder gas pressure changes during the combustion process of the
FPGLG and the CE. It can be seen that when the air fuel mixture in the two engines was ignited at
the same advance position, the peak in-cylinder gas pressure achieved in-cylinder of the FPGLG was
about 5 bar lower than that of the CE. Although the ignition timing of CE was later than that of the
FPGLG, the in-cylinder gas pressure of the two engines reached their peak values almost at the same
ECA. The changes of the in-cylinder gas pressure rising rate are shown in Figure 13b. It is found that
the positive pressure rising rate of the FPGLG was lower than that of the CE, and it also reached the
peak value later. After going over the positive peak value, the pressure rising rate of the two engines
declined sharply with a similar trend and showed minimal difference in the negative peak values.
Despite that, the peak negative pressure rising rate of the FPGLG was still lower than that of the CE.
In general, compared to the CE, the FPGLG operated in a more moderate way and showed a lower
possibility of deflagration or engine knocking, due to the lower in-cylinder gas pressure and pressure
rising rate.
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paper. However, the results only presented a small difference as the indicated thermal efficiency of 

the FPGLG was 30.66% and that of the CE was 31.84%. 
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Figure 13. (a) Comparison of the in-cylinder gas pressure; (b) comparison of the in-cylinder gas
pressure rising rate.

4.2.2. Indicated Thermal Efficiency

Figure 14 displays the pressure-volume diagrams of the FPGLG and the CE. It is obvious that
the heat release process of the CE was closer to an isochoric process than that of the FPGLG. Besides,
more indicated work was done by the CE because of its higher in-cylinder gas pressure in the power
stroke. Although the faster expansion process led to less heat transfer loss in the FPGLG, its simulated
indicated thermal efficiency was still lower than that of the CE at the operation point covered in this
paper. However, the results only presented a small difference as the indicated thermal efficiency of the
FPGLG was 30.66% and that of the CE was 31.84%.

Energies 2016, 9, 655  12 of 19 

 

the same advance position, the peak in-cylinder gas pressure achieved in-cylinder of the FPGLG was 

about 5 bar lower than that of the CE. Although the ignition timing of CE was later than that of the 

FPGLG, the in-cylinder gas pressure of the two engines reached their peak values almost at the same 

ECA. The changes of the in-cylinder gas pressure rising rate are shown in Figure 13b. It is found that 

the positive pressure rising rate of the FPGLG was lower than that of the CE, and it also reached the 

peak value later. After going over the positive peak value, the pressure rising rate of the two engines 

declined sharply with a similar trend and showed minimal difference in the negative peak values. 

Despite that, the peak negative pressure rising rate of the FPGLG was still lower than that of the CE. 

In general, compared to the CE, the FPGLG operated in a more moderate way and showed a lower 

possibility of deflagration or engine knocking, due to the lower in-cylinder gas pressure and pressure 

rising rate. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

10

20

30

40

50

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

10

20

30

40

50

 

 

In
-c

y
li

n
d

er
 g

as
 p

re
ss

u
re

 (
b

ar
)

 FPGLG

 

 

Equivalent crank angle (
o
ECA)

 CE

 
-100 -80 -60 -40 -20 0 20 40 60 80 100

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-100 -80 -60 -40 -20 0 20 40 60 80 100
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Equivalent crank angle (
o
ECA)

 CE

 

 

P
re

ss
u

re
 r

is
in

g
 r

at
e 

(b
ar

/o
C

A
)  FPGLG

 
(a) (b) 

Figure 13. (a) Comparison of the in-cylinder gas pressure; (b) comparison of the in-cylinder gas 

pressure rising rate. 

4.2.2. Indicated Thermal Efficiency 

Figure 14 displays the pressure-volume diagrams of the FPGLG and the CE. It is obvious that 

the heat release process of the CE was closer to an isochoric process than that of the FPGLG. Besides, 

more indicated work was done by the CE because of its higher in-cylinder gas pressure in the power 

stroke. Although the faster expansion process led to less heat transfer loss in the FPGLG, its simulated 

indicated thermal efficiency was still lower than that of the CE at the operation point covered in this 

paper. However, the results only presented a small difference as the indicated thermal efficiency of 

the FPGLG was 30.66% and that of the CE was 31.84%. 

1 2 3 4 5 6 7 8
0

10

20

30

40

50

1 2 3 4 5 6 7 8

EPO

EPC

In
-c

y
li

n
d

er
 g

as
 p

re
ss

u
re

 (
b

ar
)

Volume(10
-5
m

3
)

 CE

 FPGLG

 

Figure 14. Pressure-volume diagram. 
Figure 14. Pressure-volume diagram.



Energies 2016, 9, 655 13 of 19

4.2.3. NO Emission

The extended Zeldovich model was used in the study to estimate the NO formation. The reaction
mechanism of this model is expressed below [14]:

N2 + O←→ NO + N (7)

N + O2 ←→ NO + O (8)

N + OH←→ NO + H (9)

This reaction mechanism considers the effect of oxygen, nitrogen and hydrogen radicals
on NO formation, and all of the three chemical reactions have been proven to exhibit strong
temperature dependency.

Figure 15 illustrates the in-cylinder gas temperature field and the NO formation field at varied
equivalent crank angles. It is obviously seen in Figure 15a that the high temperature occurred with
the chemical reactions and spread to the whole chamber with the flame propagation. The highest
local temperature in the FPGLG was 2837.3 K, while the highest local temperature in the CE reached
2994.9 K. Besides, at the same angle, the distribution space of the high temperature in the CE was
larger than in the FPGLG. From Figure 15b, we can see that the NO was produced mainly within
the 20 ◦ECA after TDC. Additionally, the NO mass friction became less at the end of the combustion
process because of the decreasing temperature. However, on the whole, the NO formation level was
lower in the FPGLG than in the CE.
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Figure 15. (a) Comparison of the temperature field; (b) comparison of the NO formation field.

The changes of the mean in-cylinder gas temperature are shown in Figure 16a. As can be
seen, when the FPGLG and the CE ignited at the same advance position, the mean in-cylinder gas
temperature of the FPGLG was slightly lower than that of the CE, and the difference on the peak value
was 182.3 K. The results were mainly influenced by the shorter retention time of the FPGLG’s piston
around the TDC. Figure 16b illustrates the changes of the NO mass fraction in the whole cylinder
during the combustion process. This indicates that the NO produced in the FPGLG was much less
and the peak value of the NO mass fraction in the FPGLG was just half of that in the CE. After the
combustion process, the remaining NO mass fraction in the FPGLG was 0.000152, while that in the CE
was 0.000186. Therefore, the FPGLG has an obvious advantage in terms of NO emission over the CE
because of its lower in-cylinder gas temperature during the combustion process.
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4.3. Comparison of the Heat Release Characteristics

Figure 17 separately shows the heat release rate and the accumulated heat release results during
the combustion process of the two engines. It can be found that the heat release process of the FPGLG
lasted for a longer time than that of the CE. The peak heat release rate of the FPGLG was lower, and it
also arrived later compared to that of the CE. For the CE, most of the fuel was burnt up within the
20 ◦ECA after the TDC with a shorter post-combustion period; while in the FPGLG, less heat was
released around the TDC, and its post-combustion developed in a slower rate.
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Figure 17. (a) Comparison of the heat release rate; (b) comparison of the accumulated heat release.

The combustion process of the FPGLG and the CE is compared in Figure 18, in which the side
colour bar indicates the mass fraction of the residual gasoline in the combustion chamber. As can be
seen, the combustion in the FPGLG started earlier because of its earlier ignition timing. However,
the slower compression speed before the TDC led to the FPGLG having weaker in-cylinder gas flow
intensity than the CE, and as consequence of this, the flame propagation velocity in the FPGLG was
slower. Especially after the TDC, the combustion chamber’ volume of the FPGLG enlarged quickly
due to its bigger expansion speed than that of the CE, causing it to take a longer distance and time for
the flame to spread to the unburned mixture. Therefore, compared to the CE, the FPGLG possessed
a longer heat release process when the two engines employed the same ignition advance position.
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4.4. Comparison of the Combustion Duration Characteristics

The total combustion duration is defined from the ECA when the accumulated heat release exceeds
zero to the ECA when the accumulated heat release gets up to 97% of the whole heat release. As shown
in Figure 19, the combustion process of the FPGLG can be divided into three stages, namely the
ignition delay period, the rapid combustion period and the post-combustion period. The ignition delay
period (a–b) starts with the flashover of the spark plug and ends up with the separation of the ignition
curve with the compression curve. The rapid combustion period (b–c) is from the end of the ignition
delay period to the peak in-cylinder gas pressure point. Additionally, the post-combustion period (c–d)
goes through the end of the rapid combustion period to the end of the total combustion duration.
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Table 6 indicates the combustion duration comparison of the FPGLG and the CE. When the
two engines adopted the same ignition advance position, it is found that the combustion duration of
the CE was 63.0 ◦ECA, and the combustion duration of the FPGLG was 76.7 ◦ECA.

Table 6. Combustion duration comparison of the FPGLG and CE.

Parameters FPGLG CE

Ignition timing (◦ECA) −43.5 −40.3
Combustion starting angle (◦ECA) −20.2 −19.0

Peak pressure angle (◦ECA) 14.0 13.0
Combustion ending angle (◦ECA) 33.2 22.7

The different stages’ comparison during the combustion process of the FPGLG and CE is
demonstrated in Figure 20. From the point of the combustion stage duration, the ignition delay
period of the FPGLG and the CE had little difference. The reason was that they both worked in the way
of premixed combustion, so the mixing condition of the oil and the fresh air was hardly influenced by
the piston motion. In addition, at the ignition timing, the in-cylinder gas pressure and temperature
of the two engines had presented little difference. During the rapid combustion period, the flame
developed rapidly, and more heat was released, leading to the in-cylinder gas pressure of the FPGLG
and CE rising fast and getting to the peak at around 15 ◦ECA after the TDC. Although the peak
in-cylinder gas pressure values of the two engines had a great difference, their appearance time was
nearly the same. The main distinction of the combustion duration between the FPGLG and CE was in
the post-combustion period. In this combustion stage, the piston of the FPGLG moved to the BDC
rapidly and slowed down the flame propagation speed. As a result, it would take a longer time for the
remaining fuel to be burnt up in the FPGLG. Therefore, it can be seen in Figure 20 that the continuous
ECA that the FPGLG occupied in the post-combustion period was two-times what the CE did.

From the point of the percentage that each of the combustion stage occupied in the whole duration,
the rapid combustion period of the CE took up approximately half of the whole combustion duration,
while that of the FPGLG took up a lower percentage as 44.6%. The proportion of the post-combustion
period held by the FPGLG was 25.0%, which was much more than that of the CE did. This also
indicated that the FPGLG had a serious afterburning problem. As for the ignition delay period,
the two engines occupied a similar percentage in the whole combustion duration.
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5. Conclusions

In this work, the numerical iterative method was used to calculate the combustion process under
the stable generating condition in the FPGLG, coupling the piston dynamic model and the CFD
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scavenging model. The combustion characteristics of the FPGLG were investigated emphatically,
and the main findings are drawn as below:

1. Compared to the CE, the peak velocity of the FPGLG was lower, and it featured larger
accelerations around both the TDC and the BDC; the FPGLG had a slower compression stroke
and a relatively quicker expansion stroke than CE, as a result of which, its piston stayed for
a shorter time around the turning points.

2. Compared to the CE, the peak gas flow velocity in the FPGLG was lower, and the strongest gas
flow intensity occurred later. The gas flow intensity of the FPGLG in the expansion stroke was
a little stronger than that of the CE for its faster expansion speed.

3. Compared to the CE, the in-cylinder gas pressure and the pressure rising rate of the FPGLG
were lower, which made it work in a more gentle way and presented a smaller tendency of
deflagration; the combustion in the FPGLG was less close to an isochoric process, and its slightly
lower indicated thermal efficiency was observed at the operation point covered in this paper;
when the two engines adopted the same ignition advance position, the mean in-cylinder gas
temperature of the FPGLG was lower, which contributed to declining of the formation of the
pollutant NO.

4. Compared to the CE, the combustion heat release process of the FPGLG lasted for a longer time;
less heat was released around the TDC in the FPGLG due to the piston motion rule of slower
compression and quicker expansion; the peak heat release rate of the FPGLG was found to be
lower than that of the CE.

5. The ignition delay duration of the FPGLG and the CE presented little difference because of the
two engines working in the same way of premixed combustion; the rapid combustion period
of the FPGLG took up a smaller percentage in its whole combustion process than that of the CE
did; but the main distinction of the two engines laid in the post-combustion period, which for the
FPGLG and the CE, respectively, occupied the proportions of 25.0% and 15.4%; by comparison,
the serious afterburning problem in the FPGLG was found and remained to be solved.
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