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Abstract: Demand response (DR) is a key technique in smart grid (SG) technologies for reducing
energy costs and maintaining the stability of electrical grids. Since manufacturing is one of the major
consumers of electrical energy, implementing DR in factory energy management systems (FEMSs)
provides an effective way to manage energy in manufacturing processes. Although previous studies
have investigated DR applications in process manufacturing, they were not conducted for discrete
manufacturing. In this study, the state-task network (STN) model is implemented to represent
a discrete manufacturing system. On this basis, a DR scheme with a specific DR algorithm is applied
to a typical discrete manufacturing—automobile manufacturing—and operational scenarios are
established for the stamping process of the automobile production line. The DR scheme determines
the optimal operating points for the stamping process using mixed integer linear programming
(MILP). The results show that parts of the electricity demand can be shifted from peak to off-peak
periods, reducing a significant overall energy costs without degrading production processes.

Keywords: demand response (DR); factory energy management system (FEMS); state-task network (STN)
model; mixed integer linear programming (MILP); discrete manufacturing; automobile manufacturing

1. Introduction

In recent decades, manufacturing has played a major role in society and economies, e.g., it employs
11% of the workforce and constitutes 12% of the economy in United States [1]. Although different
manufacturing processes have different energy consumption requirements, industrial electricity
consumption is characterized by two distinguishing characteristics. First, industrial plants are one
of the major consumers of electrical energy. A survey by the International Energy Agency indicated
that the industrial sector accounted for 42.3% of the world’s electricity consumption in 2013 [2].
Second, industrial facilities often connect to the power grid at high voltage levels, e.g., by directly
connecting to the transmission network [3]. In conclusion, reducing energy consumption costs and
maintaining power grid stability are critical issues in factory energy management systems (FEMSs),
and therefore introducing intelligent management of electricity demand, also known as demand side
management (DSM), has been regarded as an effective way to deal with the aforementioned issues [4].
Based on energy consumption data measured and obtained from factory facilities, FEMSs undertake
strategies to control the operations of equipment to minimize energy consumption without affecting
the industrial production [5].

As a modern electric power grid infrastructure system, smart grids (SGs) integrate advanced
information and communication technologies (ICTs) within the grids, and deliver electricity between
suppliers and consumers through two-way digital technologies [6]. Meanwhile, through employing
appropriate DSM programs, energy consumers can actively participate in the electricity market via
demand response (DR) which is considered as one of effective mechanisms within DSM [7], so as to
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schedule electricity consumption in response to electricity prices from electrical utility and the current
state of system reliability [8].

DR is both a significant component of the emerging SG paradigm and an important element of
energy market design for stabilizing the potential supply power through which occurrences of energy
market meltdown can be effectively prevented [9]. By scheduling energy consumption of industrial
facilities, adjusting the supplement for demand, and postponing the need to invest in greater capacity,
a DR strategy can make a great influence on balancing the electricity demand between supplier and
consumer sides [10].

DR includes all potential modifications to the electricity consumption patterns of end-use
customers that schedule the timing of energy usage, change the instantaneous demand during crucial
periods, and change energy consumption patterns to respond to electricity prices [11]. Integration of
DR into SGs can provide consumers with optimal energy allocation, minimize energy consumption
costs, and curtail peak-hour usage, all of which help to avoid power quality degradation or blackout.
Furthermore, it takes advantage of in-facility distributed energy resources (DERs), such as energy
storage systems (ESSs), to play a further role in costs reduction and electrical reliability improvement.

By integrating with DR in SG, FEMSs improve flexibility in factory management by realizing
more functions, such as communicating with power utilities through two-way digital communication
technology. Moreover, by scheduling industrial equipment to work in an optimal state, FEMSs
integrated with DR can shift parts of the electricity demand from peak to off-peak periods,
through which the energy consumption costs of consumers can be effectively reduced.

In this study, a DR scheme was applied to a typical discrete manufacturing—automobile
manufacturing—in which the stamping process was chosen as a scenario to be optimized. In order to
demonstrate the impact of a DR scheme on an FEMS, we made the comparison for different test cases
in which either the DR algorithm or the ESS was applied. The rest of the paper is organized as follows:
the second section describes the related studies on FEMS. Section 3 introduces a brief background to
this study, including a state-task network (STN) model and a DR scheme. The fourth section describes
a modeling study of automobile manufacturing, in particular a DR model of the stamping process.
The fifth section summarizes the DR scheme and the specific algorithm proposed in previous studies.
The sixth section establishes an operational scenario and compares three test cases. The final section
concludes this study and proposes future work in this area.

2. Related Studies

In the industrial sector, FEMSs play an important role in factory management by managing
industrial equipment to work at high energy efficiency and adopting strategies to ensure that the
energy demands of factory facilities are met. Giacone and Mancò [12] described a methodology for
building a framework that defines and measures energy efficiency more precisely, while Wang et al. [13]
proposed a service-oriented architecture for FEMSs, on which smart factories could feasibly be
established. Ikeyama et al. [14] proposed an approach for optimizing energy use based on the
example of food plants, in which typical FEMS configurations were introduced. However, none of
these studies provided a solution to integrate SG factors or DR schemes into the management of
industrial manufacturing.

Focusing on the discrete manufacturing area—an important subdomain of the industrial
sector—Georgiadis et al. [15] implemented optimization scheduling for a concrete case study, in which
inventory planning was optimized to ensure that customer demands for production were met.
Chong et al. [16] proposed a simulation-based scheduling for dynamic discrete manufacturing,
which dynamically adapted to changing manufacturing conditions to prevent disturbances in the
production process. However, neither of them took energy consumption in the manufacturing
process into account. In terms of energy efficiency, Cannata et al. [17] proposed a scheduling
model to investigate the operation of a production system, however this method only allowed
for a simple case as it was formulated with strict assumptions and only took into account the
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energy efficiency of a single piece of equipment without considering internal connections in the
production line. Similarly, Sohail et al. [18] concentrated on reduction of energy consumption for the
ICT infrastructure which is only one component of a discrete manufacturing facility, and hence did
not provide a comprehensive solution for factory management. In summary, most studies on discrete
manufacturing were concentrated on scheduling sequences of processes to guarantee a production
process or on improving the properties of an individual machine to increase energy efficiency, but none
have made full use of SG factors in the design of a DR scheme.

In past decades, several related studies have reported on the benefits and feasibility of DR. Samad
and Kiliccote [3] introduced some SG technologies for use in the industrial sector and provided
an overview of automated DR. Mohagheghi and Raji [19] put forward a DR scheme for energy
management in industry. In order to perform a thorough study of DR for sustainable energy systems,
Shariatzadeh et al. [7] presented a review of DR resources which could be carried out under the SG
framework, as well as made a classification of various existing DR schemes. These researches, however,
only introduced the concept of a DR scheme without proposing a specific DR algorithm.

Introducing real-time pricing as primary input, Karwan and Keblis [20] presented optimal
operation planning for an air separation plant, but this solution requires a large computational burden
for evaluating the feasible operating space by solving a nonlinear problem. Mitra et al. [21] proposed
a DSM scheme for scheduling production planning of a continuous process with time-dependent
electricity prices as the input. Similarly, this solution was also computationally intractable, because it
obtained a surrogate model to evaluate the feasible region for operational constraints for the plant.
To minimize total energy consumption costs, Shrouf et al. [22] proposed a mathematical model to
optimize the production scheduling of a single machine. However, this model was only applied to
an individual machine and did not consider the connection between machines, which is not a practical
scenario for industrial facilities. Choosing the paper-making process as an example of continuous
manufacturing, Pulkkinen [23] proposed a scheduling scheme and corresponding formulation with
dynamic electricity prices as the input. However, although a mathematical expression for the scheme
was provided, no consideration was made of logic control or information transmission between
facilities. Castro et al. [24] proposed a continuous-time scheduling formulation for continuous
manufacturing with time-of-use (TOU) electricity prices as the input. However, this method only
considered a rather simple case of TOU electricity prices, and required a significant computational
burden to solve the problem in a continuous-time formulation. In later research, Castro et al. [25]
focused on optimizing the model to reduce the computational burden. However, the optimization
solution only adequately takes effect under the TOU prices, as it aggregates periods with the same
price level. In summary, these previous studies either required significant computational resources,
restricting their practical applications, or did not provide an appropriate DR algorithm that included
real-time prices.

In this study, in combination with FEMS, we implemented the STN representation to discrete
manufacturing, and formulated a detailed description of the integral structure of a factory management
system and the internal structure of each task, providing a solution for practical production. On this
basis, and with day-ahead hourly electricity prices as the input, a DR scheme using the computationally
affordable mixed integer linear programming (MILP) optimization algorithm was applied to a typical
discrete manufacturing system. To evaluate the performance of the DR scheme, a DR model was
established with the automobile manufacturing as an example, and the operational scenario of the
stamping process within automobile manufacturing was investigated.

3. Background

Based on process manufacturing, Kondili et al. [26] proposed a general STN model which consisted
of state nodes and task nodes. Georgiadis et al. [15] extended this model to discrete manufacturing,
which differs from process manufacturing. In order to implement energy management on the consumer
side, Ding et al. [27] expanded this general STN model to propose a DR scheme for industrial facilities
in SG, while in further research, Ding et al. [28] proposed a specific DR algorithm and evaluated its
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performance with a typical continuous industrial process as a scenario. As shown in Figure 1a, the DR
scheme has state nodes including feed, intermediate product and final product, and task nodes which
can be subdivided into non-schedulable tasks (NSTs), for which the electricity demand cannot be
scheduled and must be satisfied immediately (for technical or economic reasons); and schedulable
tasks (STs), for which the electricity demand can be scheduled among pre-specified multiple operating
points. Figure 1b shows the simple internal structure of each task with the corresponding industrial
equipment. In this DR scheme, the industrial equipment is classified into three types: non-shiftable
equipment (NSE), which should have a sufficient supply of electricity whenever it is required; shiftable
equipment (SE), which can be switched on or off to balance the electricity supply; and controllable
equipment (CE), which has multiple operating states with different electricity demands. Based on the
properties of each type of equipment, NSTs will be only composed of NSEs, and STs can consist of one
or more NES, SE, or CE pieces.
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task with corresponding industrial equipment.

The specific algorithm for the DR scheme is formulated using MILP, which consists of one
objective function defined to minimize the energy cost of manufacturing processes, and a series of
linear constraints that ensure achievement of the objective without degrading the production line.
Constraints are specified for the process modeling (including operating constraints and material
balance) and ESS modeling. Once the MILP problem is solved, the outputs of the DR algorithm include
the optimal operating point for all STs in each time interval, the charging/discharging rate of ESS in
each time interval, the amount of electricity purchased from the grid, and the total energy costs of
manufacturing process.

4. Modeling of Automobile Manufacturing

Based on the description of an automobile production line given in [29], an STN model for DR
in automobile manufacturing was developed as shown in Figure 2. With the utility meter and utility
gateway as boundaries, the DR model is composed of a utility supply side and an industrial demand
side. The utility meter measures total electricity supplied to the industrial demand side, and the
utility gateway exchanges information between a wide area network (WAN) and an industrial area
network (IAN).

The utility supply side includes power stations to provide electrical energy for industrial
manufacturing through the electrical grid, and a utility data center to communicate with the industrial
demand side via the WAN. The industrial demand side is also composed of two subsystems,
the automobile manufacturing process system (AMPS) which includes the whole automobile
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production process represented by the STN model, and the FEMS which includes an energy
management system (EMS), ESS, the power source switch, the power supply network, and the IAN.Energies 2016, 9, 650 5 of 18 
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Figure 2. State-task network (STN) model for DR in automobile manufacturing.

The AMPS consists of 17 state nodes that include six kinds of feeds represented as broken circles,
10 kinds of intermediate products represented as solid circles, and one final product represented as
an inside-broken and outside-solid circle. Additionally, 12 task nodes include three NSTs represented
as double-bordered rectangles and nine STs represented as single-bordered rectangles.

In the FEMS, the EMS manages and monitors the electricity demand of the whole automobile
manufacturing process. It communicates with the utility supplier via the WAN to obtain day-ahead
hourly electricity prices and transmit energy consumption information. Additionally, it schedules STs
to work on the optimal operating points to manage the electricity demand of the whole industrial
manufacturing, through which parts of the electricity demand can be shifted from peak to off-peak
demand periods. By controlling the power source switch, the EMS schedules the ESS to charge
electricity from the electrical grid during off-peak periods, or discharge to supply energy for the
automobile manufacturing process during peak periods.

In the whole automobile manufacturing, the stamping process emphasized by a red rectangle in
Figure 2, was selected as an example for precise analysis, since it not only determines the quantities of
final production but also relates critically to the steady production of subsequent processes through
providing sufficient materials for them. Based on the significant feature of discrete manufacturing
whereby each process deployed in the discrete manufacturing can be started or stopped individually
with a variety of production rates [30], separate processes shown in Figure 2 can be combined in
a parallel or serial way to expand the scale of the production. Hereon, this study focuses on the
stamping process to represent DR management in automobile manufacturing; however, this approach
and results can be expanded to the whole process of automobile manufacturing. Applying a DR energy
management scheme to the stamping process reduces the energy costs of industrial manufacturing
without degrading production processes.

4.1. The Demand Response Representation for the Stamping Process

Figure 3 shows the DR representation for the stamping process, which incorporates production
processes from steel (raw material) to spare parts (intermediate products of the whole production



Energies 2016, 9, 650 6 of 18

line). The stamping process can be regarded as two subsystems: the automatic cutting system (ACS)
corresponding to plate cutting task in Figure 2, and the parts production system (PPS) corresponding
to machining A task or machining B task in Figure 2.Energies 2016, 9, 650 6 of 18 
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Figure 3. STN model for DR in the stamping process. Non-schedulable tasks (NSTs) include PPS#1
and 2. Schedulable tasks (STs) include ACS and PPS#3, 4 and 5. Each task is composed of three pieces
of industrial equipment with corresponding types.

The ACS is an ST and consists of three pieces of industrial equipment, which are classified as
NSE, SE and CE, respectively. PPS#1 and 2 (both of which correspond to the machining A task) are
NSTs and consist of three pieces of industrial equipment regarded as NSEs. PPS#3, 4, and 5 (each of
which corresponds to the machining B task) are STs and consist of three pieces of industrial equipment
regarded as CEs.

4.2. The Internal Structure of Each Task in the Stamping Process

Figure 4 shows the internal structure of the ACS task, which consists of a local task monitoring and
control system (TMCS), a local task energy management agent (TEMA), and three pieces of industrial
equipment—the different types of cutting machine.
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The TMCS monitors and controls the operational state of each piece of equipment in that
task. The TEMA monitors electricity consumption and controls the electric load of that task, while
exchanging information with the EMS through IAN.
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The information exchanged from TEMA to EMS includes the type of each task (NST or ST),
the operating points of the task and the current storages of related states. While the operating point
itself contains the information of the consumption rate of states (feed or/and intermediate product),
the production rate of states (intermediate product or/and final product), and the corresponding
electricity demand of the task.

In the ACS task, these cutting machines cut the steel into steel plate with several appropriate
sizes, which will be used as materials for other tasks. The ACS is assumed to have three kinds
of cutting machines corresponding to NSE, SE and CE, respectively. The first type (which may be
a general-purpose machine tool) regarded as an NSE, has only one operating state since it has a long
start-up time and cannot be stopped arbitrarily once launched. The second type (which may be
a high-speed precision numerical control machine tool with a fixed strokes per minute) regarded
as an SE, has two work states (on or off) since it can be started or stopped immediately. The third
type (which may be a high-speed precision numerical control machine tool with a variable strokes
per minute) regarded as a CE, which has multiple operating states with different consumption rates
of materials, generation rates of products, and corresponding electricity demands, since it can be
changed from one working state to another in a short time. By managing the operating states of SE
and CE, the TEMA defines multiple operating points for the ACS task and reports the current state
of each operating point to the EMS through the IAN. The operating point with a low production
rate consumes electrical energy at a low rate, while the operating point with a high production rate
consumes electrical energy at a high rate. Based on the dynamic day-ahead electricity prices from
the utility supply side, the EMS makes optimal decisions on operating points for each task during
each time interval, and then transmits this information to the TEMA. According to the information
from the TEMA, the TMCS controls each piece of equipment to work on the corresponding operating
state. The TEMA then transmits consumption data collected from each piece of equipment to the EMS
through the IAN. As shown in Figure 5, the internal structure of each PPS task has a local TMCS,
a local TEMA and three pieces of industrial equipment matched with corresponding three steps in the
PPS task.

Energies 2016, 9, 650 7 of 18 

 

production rate of states (intermediate product or/and final product), and the corresponding 

electricity demand of the task. 

In the ACS task, these cutting machines cut the steel into steel plate with several appropriate 

sizes, which will be used as materials for other tasks. The ACS is assumed to have three kinds of 

cutting machines corresponding to NSE, SE and CE, respectively. The first type (which may be a 

general-purpose machine tool) regarded as an NSE, has only one operating state since it has a long 

start-up time and cannot be stopped arbitrarily once launched. The second type (which may be a 

high-speed precision numerical control machine tool with a fixed strokes per minute) regarded as an 

SE, has two work states (on or off) since it can be started or stopped immediately. The third type 

(which may be a high-speed precision numerical control machine tool with a variable strokes per 

minute) regarded as a CE, which has multiple operating states with different consumption rates of 

materials, generation rates of products, and corresponding electricity demands, since it can be 

changed from one working state to another in a short time. By managing the operating states of SE 

and CE, the TEMA defines multiple operating points for the ACS task and reports the current state 

of each operating point to the EMS through the IAN. The operating point with a low production rate 

consumes electrical energy at a low rate, while the operating point with a high production rate 

consumes electrical energy at a high rate. Based on the dynamic day-ahead electricity prices from the 

utility supply side, the EMS makes optimal decisions on operating points for each task during each 

time interval, and then transmits this information to the TEMA. According to the information from 

the TEMA, the TMCS controls each piece of equipment to work on the corresponding operating state. 

The TEMA then transmits consumption data collected from each piece of equipment to the EMS through 

the IAN. As shown in Figure 5, the internal structure of each PPS task has a local TMCS, a local TEMA 

and three pieces of industrial equipment matched with corresponding three steps in the PPS task. 

 
(a) 

 
(b) 

Figure 5. (a) The internal structure of PPS#1 and 2; and (b) the internal structure of PPS#3, 4 and 5. 

The PPS task basically involves three steps (rough turning, finish turning, and milling processes) 

to produce spare parts from steel plate. Each step matches with one kind of punch machine. During 

the rough turning, the steel plate is produced into semi-finished parts with low accuracy. These semi-

finished parts can then be precision machined through the finish turning step. After milling, the 

processed semi-finished parts are used to produce different spare parts with a variety of surfaces, 

which is the final product of the stamping process. 

Rough turning 

punch

Spare parts

IAN

TEMA

Power

TMCS

(CE)

Finish turning 

punch
(CE)

Milling punch

(CE)

EMS

Steel plate with 
appropriate size

Rough turning 

punch

Spare parts

IAN

TEMA

Power

TMCS

(NSE)

Finish turning 

punch
(NSE)

Milling punch

(NSE)

EMS

Steel plate with 
appropriate size

(a)

(b)

Rough turning 

punch

Spare parts

IAN

TEMA

Power

TMCS

(CE)

Finish turning 

punch
(CE)

Milling punch

(CE)

EMS

Steel plate with 
appropriate size

Rough turning 

punch

Spare parts

IAN

TEMA

Power

TMCS

(NSE)

Finish turning 

punch
(NSE)

Milling punch

(NSE)

EMS

Steel plate with 
appropriate size

(a)

(b)

Figure 5. (a) The internal structure of PPS#1 and 2; and (b) the internal structure of PPS#3, 4 and 5.
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The PPS task basically involves three steps (rough turning, finish turning, and milling processes)
to produce spare parts from steel plate. Each step matches with one kind of punch machine.
During the rough turning, the steel plate is produced into semi-finished parts with low accuracy.
These semi-finished parts can then be precision machined through the finish turning step. After milling,
the processed semi-finished parts are used to produce different spare parts with a variety of surfaces,
which is the final product of the stamping process.

Figure 5a shows the internal structure of PPS#1 and 2. They are NSTs, and each of them is
composed of three pieces of equipment, which are all NSEs matched with the three steps of the PPS
task. Figure 5b shows the internal structure of PPS#3, 4 and 5. They are STs, and each of them is
composed of three pieces of equipment, which are all CEs corresponding to the three steps of the
PPS task.

5. Demand Response Scheme for Factory Energy Management Systems

This section consists of two subparts to introduce the DR scheme proposed in [27]. The first
one discusses the pure DR scheme (excluding ESS) for an FEMS in SG. The second includes an ESS,
which can be integrated into the DR scheme. The DR scheme is operated on the basis of the day-ahead
hourly electricity prices, and the time horizon of 24 h is discretized into 24 time intervals with each
interval having the same time duration of 1 h, as shown in Figure 6.
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Figure 6. Discrete-time representation of the DR scheme.

There are some operational scenario requirements for practical application of the DR scheme.
First, tasks must take operations (including start operation, end operation, and changes between two
different operating points) at the boundaries of time intervals shown in Figure 6. Second, the electricity
demands and related states (i.e., the feed, intermediate product, and final product) of the NSTs and STs
during each time interval are assumed to be known a priori at the start of the time horizon.

Based on the inputs (including the day-head hourly electricity prices, the STN model of industrial
manufacturing, and the operating information of each task), the DR algorithm selects the optimal
operating point for each ST within each pre-specified time interval to efficiently manage energy
consumption in the manufacturing process. In other words, DR can schedule STs to work at
different operating points through which parts of the electricity demand can be shifted from peak to
off-peak periods.

5.1. Demand Response Algorithm

This section describes the optimization problem for the MILP in DR algorithm, which includes
the objective function and a series of constraints on processing modeling.

5.1.1. Objective Function

As shown in Equation (1), the objective function is defined as the total energy cost of industrial
manufacturing, which should be minimized:

Cost = ∑
t

pt·Dt (1)

Dt = ∑
k

dk,t ∀k, t ≥ 0 (2)
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where pt is the unit electricity price purchased from the utility during time interval (t, t + 1), and Dt is
the total electricity demand for the industrial manufacturing process from the electrical grid, which is
equal to the summation of the electricity demand for each task within the same time interval, dk,t.
For an NST, dk,t is fixed during whole time horizon, while for a ST, dk,t is constrained by operating
point, which will be described later.

5.1.2. Constraints on the Process Modeling

Constraints on the processing modeling are subdivided into operating constraints for STs and
balance constraints on materials.

Operating Constraints for Schedulable Tasks

Assuming that task k is a ST as shown in Figure 7, it consumes state s1 to produce state s2 by
choosing one of n operating points during each time interval. Each operating point is composed
of two sets of parameters. The first is a pair of parameters including the consumption rate of raw
material crk,n,s1, generation rate of product prk,n,s2 and corresponding electricity demand of that task
dk,n. The second is a binary variable Mk,n,t to indicate if task k operates at operating point n during time
interval (t, t+1) or does not (if the task operates, Mk,n,t = 1, otherwise Mk,n,t = 0). Among all operating
points (from operating point 1 to operating point n), Equation (3) restricts that a ST k must operate at
only one operating point within the same time interval.

∑
n

Mk,n,t = 1 ∀t ≥ 0, ∀k ∈ ST (3)
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Figure 7. Example of an schedulable task (ST).

Figure 7 shows the relation between state s1 and state s2 through one ST to indicate the operation
mechanism of the ST. In terms of any STs which can consume/produce states, Equations (4)–(6) indicate
general relations between states and tasks.

Cs,k,t = ∑
n

Mk,n,t · crk,n,s ∀s, t ≥ 0, ∀k ∈ Tc,s ∩ ST (4)

Ps,k,t = ∑
n

Mk,n,t · prk,n,s ∀s, t ≥ 0, ∀k ∈ Tp,s ∩ ST (5)

dk,t = ∑
n

Mk,n,t · dk,n ∀t ≥ 0, ∀k ∈ ST (6)

where Cs,k,t is the quantity of state s consumed by task k during time interval (t, t + 1). Ps,k,t is the
quantity of state s produced by task k within time interval (t, t + 1). dk,t is the electricity demand of task
k during time interval (t, t + 1). In Equations (4)–(6), binary variables Mk,n,t are restricted by Equation (3)
to ensure that only one operating point of ST can be operational within the same time interval.
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Balance Constraints on Materials

In Equation (7), SAs,t is the storage of each state s at time boundary t (t > 0), which is equal to the
storage at the previous time boundary t − 1 minus the total amount of state s consumed within time
interval (t − 1, t) plus the total amount of state s produced within time interval (t − 1, t):

SAs,t = SAs,t−1 − ∑
k∈Tc,s

Cs,k,t−1 + ∑
k∈Tp,s

Ps,k,t−1 ∀s, ∀t > 0 (7)

Smin
s ≤ SAs,t ≤ Smax

s (8)

where Cs,k,t−1 and Ps,k,t−1 are the total amounts of state s consumed and produced by all task k
(including NSTs and STs) within time interval (t − 1, t), respectively. Meanwhile, the storage is
typically constrained within fixed limits (Ss

min, Ss
max) as shown in Equation (8), which are the lower

storage bound and the upper storage bound of each state s, respectively.

5.2. Demand Response Scheme Integrated with the Energy Storage System

In addition to the processing modeling above, this section integrates an ESS into the previous
DR scheme. In this new scheme, the DR also schedules the operation of the ESS during each time
interval. For example, during off-peak periods, the DR schedules the ESS to charge energy from the
power grid, whereas during peak periods, it schedules the ESS to discharge to supply energy for
industrial manufacturing processes. On this basis, the objective function should be modified to include
the interaction of the ESS, as well the constraints on ESS modeling need to be taken into account.

5.2.1. Modified Objective Function

With the interaction of ESS, the objective function is modified as Equation (9). Dess
t is the total

electricity demand of industrial manufacturing from the electrical grid within the interaction of the
ESS in time interval (t, t + 1), and it is equal to the energy consumption of all tasks Dt plus the charging
energy of the ESS Ec,t, minus the discharging energy of the ESS Ed,t:

Cost = ∑
t

pt · Dess
t (9)

Dess
t = Dt + Ec,t − Ed,t (10)

where pt and Dt are as in Equation (1).

5.2.2. Constraints on Energy Storage System Modeling

Figure 8 shows the STN model of the ESS, which consists of state nodes including electricity
from the power grid, electricity of the ESS, and electricity for tasks; and task nodes including the
charging and discharging tasks, both of which are regarded as STs. In order to map the charging
and discharging efficiency of the ESS in actual plants, γc and γd represent charging and discharging
coefficients, respectively.

Energies 2016, 9, 650 10 of 18 

 

, ,

, , 1 , , 1 , , 1 , 0
c s p s

s t s t s k t s k t

k T k T

SA SA C P s t  

 

      
 

(7) 

min max

,s s t sS SA S 
 (8) 

Where , , 1s k tC   and , , 1s k tP   are the total amounts of state s consumed and produced by all task k 

(including NSTs and STs) within time interval (t − 1, t), respectively. Meanwhile, the storage is 

typically constrained within fixed limits (Ssmin, Ssmax) as shown in Equation (8), which are the lower 

storage bound and the upper storage bound of each state s, respectively. 

5.2. Demand Response Scheme Integrated with the Energy Storage System 

In addition to the processing modeling above, this section integrates an ESS into the previous 

DR scheme. In this new scheme, the DR also schedules the operation of the ESS during each time 

interval. For example, during off-peak periods, the DR schedules the ESS to charge energy from the 

power grid, whereas during peak periods, it schedules the ESS to discharge to supply energy for 

industrial manufacturing processes. On this basis, the objective function should be modified to include 

the interaction of the ESS, as well the constraints on ESS modeling need to be taken into account. 

5.2.1. Modified Objective Function 

With the interaction of ESS, the objective function is modified as Equation (9). ess

tD is the total 

electricity demand of industrial manufacturing from the electrical grid within the interaction of the 

ESS in time interval (t, t + 1), and it is equal to the energy consumption of all tasks Dt plus the charging 

energy of the ESS Ec,t, minus the discharging energy of the ESS Ed,t: 

ess

t t

t

Cost p D   (9) 

, ,

ess

t t c t d tD D E E    (10) 

where pt and Dt are as in Equation (1). 

5.2.2. Constraints on Energy Storage System modeling 

Figure 8 shows the STN model of the ESS, which consists of state nodes including electricity 

from the power grid, electricity of the ESS, and electricity for tasks; and task nodes including the 

charging and discharging tasks, both of which are regarded as STs. In order to map the charging and 

discharging efficiency of the ESS in actual plants, γc and γd represent charging and discharging 

coefficients, respectively. 

 

Figure 8. STN model of the ESS. 

Equation (11) shows the balance relationship of the stored energy in the ESS. Eess,t is the energy 

storage at time instant t, which is equal to the stored energy at previous time instant t − 1 plus the 

energy input from charging within time interval (t − 1, t) multiplied by the charging efficiency, i.e., 

, 1c t cE   and minus the energy output from discharging within time interval (t − 1, t) divided by the 

discharging efficiency, i.e., , 1d t dE   . 

Charging

Electricity from 

power grid
Electricity of ESS

 c

Discharging

Electricity for tasks

 d

Figure 8. STN model of the ESS.

Equation (11) shows the balance relationship of the stored energy in the ESS. Eess,t is the energy
storage at time instant t, which is equal to the stored energy at previous time instant t − 1 plus the
energy input from charging within time interval (t − 1, t) multiplied by the charging efficiency, i.e.,
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Ec,t−1·γc and minus the energy output from discharging within time interval (t − 1, t) divided by the
discharging efficiency, i.e., Ed,t−1 ÷ γd.

Eess,t = Eess,t−1 + Ec,t−1 · γc − Ed,t−1 ÷ γd ∀t > 0 (11)

0 ≤ Eess,t ≤ Cess ∀t > 0 (12)

0 ≤ Ec,t ≤ θc ·Mc,t ∀t ≥ 0 (13)

0 ≤ Ed,t ≤ θd ·Md,t ∀t ≥ 0 (14)

Mc,t + Md,t ≤ 1 ∀t ≥ 0 (15)

where Eess,t is typically constrained within fixed limits (0, Cess), while Ec,t and Ed,t are typically
constrained with fixed limits (0, θc) and (0, θd), respectively. The binary variables Mc,t and Md,t
indicate whether the ESS is charging or discharging respectively, within time interval (t, t + 1). Mc,t = 1
and Md,t = 1 indicate that the ESS is charging or discharging respectively, during time interval (t, t + 1),
otherwise Mc,t = 0 and Md,t = 0. Equation (15) restricts that the ESS cannot be both charging and
discharging during the same time interval.

6. Results

This section presents the operational scenario and corresponding simulation results of the DR
scheme for the stamping process in Figure 3.

6.1. Operational Scenario

The ACS has five operating points (Table 1), each of which has related parameters including
the cutting frequency of each cutting machine, the parts production amount of the task, and the
corresponding electricity demand of the task.

Table 1. Operating points of the automatic cutting system (ACS) during each time interval.

Operating
Point

NSEA
(pcs/h)

SEA
(pcs/h)

CEA
(pcs/h)

Parts Production
(pcs/h)

Electricity Demand
(kWh)

1 1200 0 0 1200 5
2 1200 0 900 2100 9
3 1200 0 1500 2700 11
4 1200 0 2100 3300 13
5 1200 1800 2700 5700 22

PPS#1 and 2 have only one operating point (Table 2), with related parameters including the
production frequency of each punch machine, the parts production amount of the task, and the
corresponding electricity demand of the task. Among those parameters, the production frequency
indicated the feed consumption rate and the product generation rate of the corresponding punch
machine. For example, the production frequency of NSEpi1 was 600 pcs/h, meaning that NSEpi1
consumed 600 pieces of steel plate and produced 600 pieces of spare parts.

Table 2. Operating points of parts production system (PPS)#1 and 2 during each time interval, i = 1, 2.

Operating
Point

NSEpi1
pcs/h

NSEpi2
pcs/h

NSEpi3
pcs/h

Parts Production
pcs/h

Electricity Demand
kWh

1 600 600 600 600 39

PPS#3, 4 and 5 have five operating points (Table 3), each of which has the related parameters
including the production frequency of each punch machine, the parts production amount of the task,
and the corresponding electricity demand of the task.
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Table 3. Operating points of PPS#3, 4 and 5 during each time interval, i = 3, 4, 5.

Operating
Point

CEpi1
(pcs/h)

CEpi2
(pcs/h)

CEpi3
(pcs/h)

Parts Production
(pcs/h)

Electricity Demand
(kWh)

1 0 0 0 0 0
2 300 300 300 300 30
3 500 500 500 500 36
4 700 700 700 700 42
5 900 900 900 900 48

Table 4 lists the related parameters of steel plate and spare parts. The initial storage and storage
capacity of steel plate were set to 1200 and 5000, respectively, while the initial storage and storage
capacity of spare parts were respectively set to 200 and 3000. In industrial processes, maintaining some
margin for reliable production is preferable. Therefore, we set the parameter SP_Init to 1200 and the
parameter PP_Init to 200 (rather than 0). In the whole production process, the consumption of spare
parts in every hour was 3000 pieces, and the storage capacity of the feed (the steel) was assumed to
be infinite.

Table 4. Parameters for products.

Parameter Description Value

SP_Init Initial storage of steel plate 1200 pieces
SP_Cap Storage capacity of steel plate 5000 pieces
PP_Init Initial storage of parts production 200 pieces
PP_Cap Storage capacity of parts production 3000 pieces

Table 5 lists the parameters related to ESS. The initial storage was 0 kWh and the storage capacity
was assumed to be 300 kWh. The maximum charging/discharging rate was set to 75 kWh, and the
charging/discharging efficiency coefficient was set to 0.9. The rate of electricity charged/discharged
during a given time interval was assumed to be continuously controlled between zero and the
maximum charge/discharge rate. Electricity prices were generated using price data obtained from
Ameren Illinois Power Company (Belleville, MI, USA) [31] as day-ahead hourly electricity prices
(Figure 9).

Table 5. Parameters for the Energy Storage System (ESS).

Parameter Description Value

Iess ESS initial storage 0 kWh
Cess ESS storage capacity 300 kWh
θc ESS maximum charging rate 75 kWh
θd ESS maximum discharging rate 75 kWh
γc ESS charging efficiency 0.9
γd ESS discharging efficiency 0.9
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6.2. Optimization Results

Table 6 shows the determined operating points for STs (including ACS and PPS#3, 4 and 5) during
each time interval. For example, during time interval 0, the ACS was scheduled to work at operating
point 4, so the TMCS of this task controlled the NSEA to cut steel at a speed of 1200 pieces per hour,
the SEA to be off, and the CEA to cut steel at a speed of 2100 pieces per hour. During this time interval,
this task produced 3300 pieces of steel plate and required 13 kWh of electricity (Table 1).

Table 6. Determined operating points for schedulable tasks (STs) during each time interval.

Time
Interval 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ACS 4 3 5 1 5 5 3 4 3 4 3 4 3 4 3 1 1 1 3 4 3 3 4 3
PPS#3 5 5 5 5 5 5 5 1 5 5 5 1 5 1 1 5 1 5 5 5 5 5 5 5
PPS#4 1 5 5 5 5 5 1 5 1 1 5 5 1 5 5 5 1 1 5 5 1 5 5 5
PPS#5 5 1 1 5 5 5 5 5 5 5 1 5 5 5 5 1 1 1 1 1 5 1 1 1

Figure 10 shows the total electricity demand for STs (without interaction of the ESS) during
each time interval. According to the dynamic changes in electricity prices, STs (including ACS and
PPS#3, 4, and 5) were scheduled to operate at different operating points, as shown in Table 6. When
the price was low, STs were scheduled to operate at a high-energy-consumption operating point,
increasing electricity demand. Consequently, more steel plate and spare parts were produced and
stored during these times, as shown in Figures 11 and 12, respectively. When the price was high,
STs were scheduled to operate at a low-energy-consumption operating point, decreasing the electricity
demand. During these periods, STs produced fewer products, and previously stored products were
supplied to subsequent tasks, as shown in Figures 11 and 12, which eventually shifted the load from
peak to off-peak periods.
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Figure 13 shows the electricity demand of the ESS as a function of the electricity price during
each time interval. For electricity demand, positive values indicate charging and negative values
indicate discharging. During low-price periods, the ESS charged from the power grid to store
energy, while during high-price periods, the ESS discharged to provide electrical energy for industrial
manufacturing. During each time interval, the maximum charging/discharging amount of the ESS
was 75 kWh, limited by the maximum charging/discharging rate (Table 5). During time interval 6,
the stored energy reached to 300 kWh, which was the storage capacity of the ESS. And the ESS
completely discharged all of energy during time interval 18. The total discharged electricity was less
than the total charged electricity because of the energy loss during charging and discharging process.
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Figure 14 shows the comparison of total electricity demands involving three different test cases.
Case a was based on a fixed-price, which was constant over all time intervals and set to be equal to the
average of the dynamic price, i.e., no DR function was applied to the FEMS. Case b only considered
a DR function based on day-ahead hourly electricity prices. Case c integrated the ESS into the DR
function. Compared to Case a, Case b consumed more electrical energy during low-price periods
and consumed less electrical energy during high-price periods. In Case c, the energy demand gap
between maximum and minimum became larger. Among the three cases, Case c consumed the most
electrical energy during low-price periods and consumed the least electrical energy during high-price
periods, since the ESS stored energy when prices were low and supplied energy when prices were
high. In Case b, the total cost was reduced by shifting demand from high-price periods to low-price
periods. In Case c, the total cost was reduced even further not only by shifting demand but also by
managing storage through the ESS. Figure 15 shows a cost comparison for the three test cases in 1 day.
The total energy cost for Case c was 11.55% lower than that of Case a.
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7. Conclusions and Future Work

As industrial manufacturing becomes more intelligent, many factories have already implemented
automatic production systems. Thus, process automation systems have infrastructure for adopting
DR-based energy management systems. Against this background, introducing DR into industrial
manufacturing has an effective influence on reducing consumption costs. The contributions of this
paper are mainly embodied in two aspects, the implementation of a STN representation to a discrete
manufacturing system in terms of process operations and energy consumptions, and the application of
a DR energy management scheme using the computationally affordable MILP optimization algorithm
to discrete manufacturing processes in a SG. The aim of this scheme is to balance energy requirements
by shifting electricity demands from peak to off-peak periods and reducing the associated cost.
To evaluate the performance of the DR scheme, a typical discrete manufacturing system—automobile
manufacturing—was chosen as an example for simulation.

The simulation results showed that when the price was low, STs were scheduled to operate at
a high-energy-consumption operating point, increasing electricity demand. Consequently, intermediate
products were produced and stored in greater quantities during these periods. When the price was
high, STs were scheduled to operate at a low-energy-consumption operating point, decreasing the
electricity demand. Less of the corresponding intermediate products were produced and previously
stored products were utilized in subsequent tasks during these periods. In contrast, the ESS charged
from the power grid to store energy during low-price periods, and discharged to provide energy for
industrial manufacturing during high-price periods. Comparing three different test cases: Case a
without DR, Case b with DR only, and Case c with DR and ESS, our results indicated that the total
costs can be reduced by shifting demand from peak to off-peak demand periods, and reduced further
by managing electricity storage through the ESS. Through managing industrial facilities to work at
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these optimal operating points, the DR scheme provides a significant overall cost reduction without
degrading production processes.

In this study, we adopted a simulation model to validate the performance of the proposed DR
algorithm. Because the validity of the DR algorithm was verified by the simulation results, one of
our future works is to implement the DR algorithm to the actual discrete manufacturing system.
Meanwhile, another kind of DERs, the energy generation systems (EGSs) such as solar, wind and
waste heat power plants, can be integrated into the DR scheme to further reduce energy costs.
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Nomenclature

Variables

crk,n,s Consumption rate of state s when schedulable task k operates at operating point n
Cess Energy capacity of the ESS
Cs,k,t Amount of state s consumed by task k within time interval (t, t + 1)
dk,n Electricity demand of schedulable task k that operates at operating point n in one time interval
dk,t Electricity demand of task k within time interval (t, t + 1)
Dt Electricity demand of whole manufacturing (excluding ESSs) within time interval (t, t + 1)
Dess

t Electricity demand of whole manufacturing (including ESSs) within time interval (t, t + 1)
Eess,t Electricity storage of the ESS at time boundary t
Ec,t Amount of electricity charged by the ESS within time interval (t, t + 1)
Ed,t Amount of electricity discharged by the ESS within time interval (t, t + 1)
i Index of system number
k Index of tasks
Mc,t If ESS charges electricity within time interval (t, t + 1), Mc,t = 1; otherwise Mc,t = 0
Md,t If ESS discharges electricity within time interval (t, t + 1), Md,t = 1; otherwise Md,t = 0
Mk,n,t If schedulable task k operates at operating point n within time interval (t, t + 1), Mk,n,t = 1;

Otherwise Mk,n,t = 0
n Index of operating point supported by a schedulable task
NST The set of non-schedulable task
prk,n,s Production rate of state s when schedulable task k operates at operating point n
pt Electricity price purchased from the utility within time interval (t, t + 1)
Ps,k,t Amount of state s produced by task k within time interval (t, t + 1)
s Index of state
Ss

max Maximum storage of state s
Ss

min Minimum storage of state s
SAs,t Storage amount of state s at time boundary (t, t + 1)
ST The set of schedulable task
t Index of time boundary
Tc,s The set of tasks that consume state s
Tp,s The set of tasks that produce state s
θc Maximum charge rate of the ESS
θd Maximum discharge rate of the ESS
γc Conversion coefficient of charge
γd Conversion coefficient of discharge
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Abbreviations

ACS Automatic cutting system
AMPS Automobile manufacturing process system
CE Controllable equipment
DER Distributed energy resource
DR Demand response
DSM Demand side management
EMS Energy management system
ESS Energy storage system
FEMS Factory energy management system
IAN Industrial area network
ICT Information and communication technology
MILP Mixed integer linear programming
NSE Non-shiftable equipment
PPS Parts production system
SE Shiftable equipment
SG Smart grid
STN State task network
TOU Time of use
TEMA Task energy management agent
TMCS Task monitoring and control system
WAN Wide area network
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