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Abstract: Although Permanent Magnet Synchronous Generator (PMSG) wind turbines (WTs) mitigate
gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows
that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent
fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system
aimed at improving wind turbines’ reliability and availability. The influences of random wind
speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis
algorithms for converters. This paper studies open-circuit fault features of wind turbine converters
in variable wind speed situations through systematic simulation and experiment. A new fault
diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used
to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current
monitoring and current vector trajectory pattern approaches. The results show that the proposed
method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in
variable wind speed situations. The impact of the control strategy is also identified. Experimental
results demonstrate its applicability on practical WT condition monitoring system which is used to
improve wind turbine reliability and reduce their maintenance cost.

Keywords: PMSG wind turbine; power converter; fault diagnosis; wind speed; turbulence

1. Introduction

Improving wind turbine (WT) reliability is crucial for reducing the cost of wind energy. Direct
drive WTs with Permanent Magnet Synchronous Generators (PMSGs) are expected to achieve high
reliability by eliminating the gearbox which potentially cause long downtime for gear-drive WTs [1].
However, reliability analysis of wind turbine subassemblies shows that the power converters of direct
drive WTs exhibit higher failure intensities than those in other industries [2]. Early failure of converters
is the main issue for large size WTs that is mostly used at offshore applications [3]. The current
strategies to improve the reliability and availability of power electronic system include condition
monitoring, prognosis, redundancy and fault tolerant operation [4], which essentially relies on an
accurate fault diagnosis of power electronic components.

Two main types of switch failures in converters are short-circuit and open-circuit [5]. Short-circuit
failures lead to destructive consequences so that any protection system should respond by shutting
down the system. While the drive system can continuously operate under open-circuit failure
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conditions with degraded performance, subsequent unstable rotational speeds and loads will be
encountered in the generator and this may lead to further damage to the system. Therefore, fault
detection and diagnosis is necessary for open-switch failures. A variety of techniques are applied to
detect open-circuit faults, which are reviewed in [6,7]. They include: Errors of Normalized Currents
Average Absolute Values (ENCAAV), Current Park Vector Phase and Current Polarity (CPVPCP),
Normalized Current Average Values (NCAV), the Normalized Reference Current Errors (NRCEs).
The methods mentioned are based on Park’s vector approach which normalizes phase currents
against a reference/average/average absolute current to reflect the deviation of the current from the
expected value. A parameter quantifying the errors of the normalized results is defined to detect
single or multiple converter failures. Another Park’s Vector based fault diagnosis approach is through
identifying three phase current signature patterns [8]. It is demonstrated in AC-DC pulse width
modulated (PWM) converter fault detection by observing the variation of the current angle [5,9].

The fault detection methods above are proposed for converters in traditional motor drive
applications. Recent researches have been extended to consider the fault diagnosis problem of
converters in wind turbine systems. For example, a new data mining approach is proposed by
monitoring drifts of converters for its early faults diagnosis [10,11]. A voltage-based detection approach
was developed for online faulty switches identification [12]. Transient loads due to fast wind variation
and turbulence, abrupt torque changes due to WT response both cause complexity of converter fault
diagnosis of WTs. However, current diagnostic methods proposed for generator-side converters of WT
considering the transient wind speed variation and control system impacts are rare. The Park’s vector
modulus normalized approach [13] and the neural network for faulty switch patterns recognition [14]
for WT generator-side converters may not be applicable in fast wind variation situations. Intelligent
fault diagnosis for WT converters with certain control schemes and under random wind speed
conditions is a challenging problem.

To fully understand the challenge of WT converter fault diagnosis, this paper firstly studies
their impacts of wind speed and control scheme on converter fault diagnosis through a PMSG WT
simulation model and emphasize the generator-side converter. A four component wind speed model
is constructed to simulate wind variety. For WT generator-side Maximum Power Point Tracking
(MPPT), a zero d-axis current control strategy is used to generate control signals for the SVPWM
converter. Open-circuit fault features of a representative case of WT generator side converters are
analyzed. Challenges of using normalized current approach and vector pattern recognition for
converter fault diagnosis are illustrated. This paper secondly proposed a new fault diagnosis method
namely Wind Speed Based Normalized Current Trajectory (WSBNCT) for WT PMSG machine-side
converter open-circuit fault diagnosis. Its fault detection capability is investigated through simulation
and experiments. Such a method is finally evaluated and summarized in terms of its capability and
robustness for accurate fault diagnosis under noisy variable wind conditions.

2. PMSG Wind Turbine System Simulation

2.1. Wind Speed Simulation

As WTs operate under variable wind conditions, a sound stochastic wind model presenting a
realistic variety of winds is a premise for WT system simulation. The wind speed signal is composed
by four components: mean wind speed vm, wind speed ramp vr, wind gust vg and turbulence vt [15]:

v “ vm ` vr ` vg ` vt (1)

where mean wind speed is a constant reflecting the average wind speed scale:

vm “ V (2)
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Wind ramp represents the slow variation component of wind speed, which is characterized by
three parameters: wind ramp maximum amplitude Ar (m/h), wind ramp starting time Tsr (s), wind
ramp maximum time Ter (s) in Equation (3):

vr “ Arr1´ pt´ Terq{pTsr ´ Terqs (3)

Wind gust is defined by three parameters: wind gust amplitude Ag (m/h), wind gust starting
time Tsg (s), wind gust end time Teg (s) as shown in Equation (4):

t ă Tsg : vg “ 0

Tsg ď t ď Teg : vg “ Agr1´ cosp2πpt{Dg ´ Tsg{Dgqqs

t ą Teg : vg “ 0 (4)

Dg is the wind gust duration.
Wind turbulence is modeled by its spectral density which essentially presenting the random noisy

component of wind speed:

Sp f q “

1
lnph{z0q

2 ¨ l ¨V

p1` 1.5 f ¨l
V
q

5{3
(5)

where f is the frequency (Hz); h is the height at which the wind speed signal is measured (m), which
normally equals the height of the wind turbine shaft; V is the mean wind speed (m/s); l is the
turbulence length scale (m) which equals 20 if h is less than 30 m and 600 if h is more than 30 m; and z0

is the roughness length (m).

2.2. PMSG Wind Turbine Simulation

The configuration of a PMSG wind turbine system is illustrated in Figure 1. Back-to-back voltage
source converters are used to interface the PMSG with the grid.
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According to the WT blade aerodynamics [16], the wind power captured by a wind turbine is
modeled by:

Pw “
1
2
πρR2V3Cppβ, λq (6)
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where ρ is the air density (kg/m3), R is turbine radius (m), V is wind speed (m/s), Cp(β,λ) is the
turbine power coefficient that describes the WT power extraction efficiency and it is a function of
tip-speed-ratio and the blade pitch angle. It can be calculated using the equation below [17]:

Cppβ, λq “ 0.5176p 116
λ1
´ 0.4βqe´

21
λ1 ` 0.0068λ1

1
λ1
“ 1
λ`0.08β ´

0.035
β3`1

(7)

where β is the blade pitch angle, and other parameters can be empirically determined and adjusted
according to the actually blade model.

When the turbine is operating above rated wind speed, the system controls the pitch angle to
limit the mechanical energy into the WT, while when it is operating under rated wind speed, the WT
is controlling the rotational speed of the mechanical shaft through making the generator produce
reversion torque under either speed or torque control mode. The desired rotational speed is determined
by maximum Cp value where the tip-speed-ratio reaches the optimal value for each wind speed. This
is the principle of the MPPT control strategy for WTs. The resulting optimal power delivered by the
WT has a relationship with the rotor speed, which can be described by:

Popt “ kω3 (8)

where k is a coefficient can be calculated as:

k “ ρπR5cpopt{2λopt, λopt (9)

where λopt is the optimal tip-speed-ratio that is often provided by the wind turbine manufacturers and
cpopt is optimal wind energy utilization coefficient.

2.3. PMSG Control Logic

Back-to-back voltage source converters [18] of a wind turbine include generator-side and grid-side
converters. Generator-side converter is to control the PMSG as response of wind turbine MPPT strategy
that to maximize active power. Grid-side converter is to maintain constant grid voltage by adjusting
zero reactive power, which is equivalent to a regulated power supply subsystem according to the
functional analysis as shown in Figure 1 [19].

PMSG generator stator voltage in the rotating coordinate system voltage is expressed in the
following equations:

$

’

&

’

%

ud “ ´Rid ´ωeψq `
dψd

dt

uq “ ´Riq `ωeψd `
dψq

dt
$

&

%

ψd “ Ldid `ψ f

ψq “ Lqiq

(10)

where subscripts d, q are referring to the corresponding parameters in the d-q axis that are transferred
from three phase parameters in which u is the equivalent voltage; i is the equivalent currents; ψ is the
equivalent flux and L is the stator inductance of PMSG. R is stator phase resistance; ψf is the flux of the
permanent magnets;ωe is the electrical angular speed which can be expressed as follows:

ωe “ Pωr (11)

The electrical torque of the three-phase PMSG can be calculated by formula:

Te “
3
2

P
”

ψ f iq ´ pLd ´ Lqqidiq

ı

(12)
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With zero d-axis current control strategy, generator electromagnetic torque has linear relationship
with stator q-axis current. Therefore, generator electromagnetic torque equation can be written as:

Te “
3
2

Pψ f is (13)

SVPWM converter control model is shown in Figure 2 [19].
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WT optimal rotational speed ωopt is determined by optimal tip-speed-ratio and the wind speed V
as shown in Equation (14):

ωopt “
Vλopt

R
(14)

As shown from Equations (10)–(13) and in Figure 2, the generator electromagnetic torque is
determined by the magnetic flux and the stator current (id, iq). By controlling the q-axis stator current
the rotational speed of the generator can be controlled, while the d-axis stator current is kept at zero
in order to ensure reactive power control. Their coupling effects are considered through voltage
compensation, so the measured generator torque is compared to the optimal rotational speed to
generate suitable SVPWM signals for the generator-side converter in order to realize the MPPT control
strategy. Once a fault occurs in the generator-side converter, the generator speed will become unstable
and the resultant stator currents deviate from the desired value. In addition, as the wind speed varies
simultaneously the converter fault diagnosis needs to distinguish between abnormal symptoms from
the nonlinear response of control system and wind speed fluctuations.

2.4. Generator-Side Converter SVPWM Control Strategy

The three phase voltage of converter can be expressed as Equation (15), where um is the amplitude
and ω is the space vector’s frequency. Park transformation (or abc/dq) is applied to transform the
three phase voltage into two phase frame vector ud, uq with Equation (16). The desired vector ud, uq

are given by the PI controller. Then the voltage vector can be determined by Equation (17). PWM
signals for the converter are generated [9] based on the space vector as illustrated in Figure 3 [20].
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The resulted vector is obtained by adjusting the eight basic vectors from u0 to u7 that are adjacent to
the desired voltage vector with Equation (18).

$

’

’

’

’

&

’

’

’

’

%

uan “ umcosωt

ubn “ umcospωt´ 2π
3 q

ucn “ umcospωt` 2π
3 q

(15)

«

ud
uq

ff

“
2
3

«

cosθ cospθ´ 2
3πq cospθ´ 4

3πq

´sinθ ´sinpθ´ 2
3πq ´sinpθ´ 4

3πq

ff

»

—

–

uan

ubn
ucn

fi

ffi

fl

(16)

$

’

&

’

%

ˇ

ˇ

ˇ
ure f

ˇ

ˇ

ˇ
“

b

ud
2 ` uq2

θ “ tan´1p
ud
uq
q

(17)

ure f “
T1

TS
Vn `

T2

TS
Vn`1 `

T0{2
TS

V0 `
T0{2
TS

V7 (18)
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Faults occurring in the switches of converters will lead to dislocation of the resulting voltage
vector. The phase currents are the common measurable quantities, based on which most fault detection
algorithms are developed.

3. Fault Diagnostic Method

Open-circuit is the main failure mode of concern for converters [12]. Fault diagnosis methods
for such failure mode are classified into two types: direct current detection and current park
vector/trajectory recognition. The first type detects failures by defining characteristic parameters that
are obtained through processing the corresponding current signals. These include the approaches
named NCAV, ENCAAV and NRCEs mentioned in the previous sections [6]. The second type is
to detect faults by the current’s Park vector pattern recognition, which may use neural networks
for the pattern recognition [15]. Although the methods are applicable to most variable speed drive
systems, its effectiveness for wind turbine converters under transient wind speed conditions is not fully
investigated. The impacts of nonlinear control system response and wind turbulence to converter fault
diagnosis are studied in this section. A new diagnosis method is then proposed and its effectiveness
and robustness are compared.
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3.1. Direct Current Detection Method

NCAV, ENCAAV and NRCEs use a current’s park vector to detect and localize converter faults [6].
As a representative example, the ENCAAV method is analyzed here. The ENCAAV method detects
faults by defining errors of normalized phase currents to modulus of currents’ Park vector with
Equations (19)–(21).

Similar to voltage park transformation, the measured motor phase currents (ia, ib, ic) can be
transferred to the d-q axis as shown in Equation (19):

«

id
iq

ff

“

»

–

b

2
3 ´ 1?

6
´ 1?

6
0 ´ 1?

2
´ 1?

2

fi

fl

»

—

–

ia

ib
ic

fi

ffi

fl

(19)

Modulus of the current park’s vector is calculated in Equation (20):

ˇ

ˇis
ˇ

ˇ “

b

id
2
` iq2 (20)

Each phase current is normalized to the modulus and errors of the normalized phase currents’
average absolute value is defined as:

en “ ξ´
@
ˇ

ˇin{
ˇ

ˇis
ˇ

ˇ

ˇ

ˇ

D

(21)

ξ is an empirical constant defined for different application [6]. en is the characteristic parameter of each
phase (index as n). It is defined to detect and localize switch failures. Its capability for wind turbine
converter open-circuit fault detection is investigated in a later section.

3.2. Current Vector/Trajectory Pattern Recognition

This method Current Vector/Trajectory Pattern Recognition (CVTPR) is also based on current’s
park vector transformation as shown in Equations (19) and (20). The vector’s angle is calculated by:

θ “ tan´1piq{idq (22)

The modulus of current vectors is the radius and θ is the vector’s angle in d-q axis space. The
patterns of the current vector in a complete period are used to identify open-circuit faults [15].

3.3. Comparison of the Two Diagnostic Methods

The diagnostic capability of the two approaches to detect wind turbine converter faults under
constant, step and turbulent wind are investigated and compared. A simulation model is developed
using Matlab Simulink. A 30 kW PMSG WT with the parameters listed in Table 1 is simulated. The
wind speed situations are shown in Figure 4. Figure 4a shows the constant wind speed at 5 m/s.
Figure 4b shows the step wind ranging from 3 to 6 m/s with certain wind speed last for one or two
seconds. Figure 4c shows turbulent wind being characterized by its average wind speed of 5 m/s and
turbulent scale of 0.1–0.2.

Open-circuit faults of T1 switches of the converter as shown in Figure 3 are introduced at 2.5
s. Three phase currents of generator-side converter are shown in Figure 5. It shows that the current
distortion of the converter under constant wind can be easily identified, while for the step and turbulent
wind situation, the identification of current distortion in the time domain becomes difficult.
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Figure 4. The three wind speed situations: (a) Constant wind; (b) Step wind; (c) Turbulent wind.

Table 1. PMSG parameters.

Parameters Value

Rated Power 30 kW
Cut in/out Wind Speed 3 m/s & 25 m/s

Rated Wind Speed 7.2 m/s
Power Control Mode Pitch control

Stator Resistance (ohm) 0.362
Inductance L (H) 0.0015

Flux ψ (Wb) 2.34
Pole Pairs P 10

Damping F (N¨ M¨ S) 0.000139
Inertia J (kg¨ m2) 1.2

The fault diagnostic results of applying the ENCAAV and CVTPR methods are shown in Figure 6.
Figure 6a,b shows the result of normalized phase currents |in/|is|| and normalized phase current
average value <|in/|is||> respectively for constant wind and step wind situations. They are two
critical fault diagnostic parameters in the ENCAAV method. From Figure 6, it can be confirmed that
with these two parameters, converter faults can be detected for a constant wind situation while it is
not valid for step winds. It clearly shows that under step wind conditions the diagnostic parameters of
the ENCAAV method deviate from zero under heathy situation. Such a deviation is actually caused by
wind speed variation and may lead to false alarms. Figure 6c,d show the diagnostic result of using
the CVTPR method for step wind and turbulent wind, respectively. Wind speed variation also leads
to untraceable pattern when faults occur. The comparison shows that current pattern recognition
methods become invalid for step wind and turbulent wind situations.
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Figure 5. Three phase currents for the three wind speed situations: (a) Constant wind; (b) Step wind;
(c) Turbulent wind.
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Figure 6. Diagnostic parameters: (a) Normalized phase currents for constant and step wind situations;
(b) Normalized phase current average value for constant and step wind situations; (c) Id-Iq pattern for
step wind situation; (d) Id-Iq pattern for turbulent wind situation.

ENCAAV and CVTPR methods are both effective under constant wind conditions while their
fault detection capabilities become invalid for WT in turbulent wind situations. The ineffectiveness of
the two methods is due to the stochastic wind speed causing uncertain three phase currents’ periods
and unstable values of the current magnitude. For the ENCAAV method, the measured current must
complete one period to obtain an average value of the normalized currents. The current’s period
uncertainty leads to inapplicability of the average operation. By evaluating its fault detection accuracy,
robustness and adaptability, ENCAAV is not a good solution for WT converter fault detection. On the
other hand, the instability of current magnitude will lead to untraceable patterns due to unexpected
current values of the open-circuit converter and thus invalidate the CVTPR method.

3.4. Wind Speed Based Normalized Current Trajectory Detection

To overcome the difficulty of stochastic wind speed-caused uncertainty, a wind speed-based
normalized current trajectory (WSBNCT) method is proposed for a wind turbine generator-side
converter to detect open-circuit faults. It is based on the fact that the three phase currents magnitudes
are essentially monotonic functions of wind speed. Their relationship can be derived and expressed as
Equation (23):

im
˚
“ k3 ˆ

´

v3
¯

` k2 ˆ
´

v2
¯

` k1 ˆ v` k0 (23)

where k3 = 0.0309, k2 = 20842, k1 = 2.677 and k0 = ´4.718 obtained by fitting to the relationship between
current magnitudes to wind speeds. For different WT model, the values of the four parameters may
vary correspondingly. The park vector currents in d-q axis are then normalized to the benchmark
current magnitude calculated for each measured wind speed in Equation (23):

id “

?
6

2 imcospωtq
im˚

iq “

?
6

2 imsinpωtq
im˚

(24)

The whole process of WSBMCT fault detection approach is illustrated in Figure 7. The phase
current’s park vectors are firstly normalized, as Equation (24), in order to benchmark against the
current magnitude that is determined by wind speeds. The pattern of current’s park vectors are then
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used for fault diagnosis. Under the step and turbulent wind speeds as shown in Figure 4b,c, results of
using WSBNCT on current vectors to detect T1 switch open-circuit fault are shown in Figure 8.
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Figure 7. WSBNCT wind turbine converter fault detection method.
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Figure 8. Result of using WSBNCT fault detection method for: (a) Step wind and (b) Turbulent
wind situations.

Figure 8 shows that recognizable fault patterns are produced by wind speed normalization
operation, which essentially eliminates wind speed-induced converter current magnitude fluctuation.
However, ripples are still observed in the patterns. These are due to transient current values induced
by transient responses of the control system at the moment of wind speed change. Optimizing control
parameters can improve the WT system transient response and then smooth the features observed in
Figure 8b. Anyway, WSBNCT is an important premise for intelligent pattern recognition methods that
is applied for automatic fault detection. The effectiveness of WSBNCT is achieved by its capability of
distinguishing fault features from disturbance of stochastic wind. It helps improve the accuracy of WT
converter fault detection under turbulent wind conditions.

4. Experimental Results

To prove the applicability of WSBNCT approach, an experiment is implemented on the platform
illustrated in Figure 9. A 4 kW asynchronous motor (Jinyi Motor Ltd, Shengzhou, China) and its drive
are used and controlled to simulate variable mechanical rotational speed due to stochastic wind speeds.
The asynchronous motor is working under V/F control mode which controls the machine’s rotational
speed. A 3 kW permanent magnetic synchronous generator (PMSG) (Jinyi Motor, Shengzhou, China)
is connected to a converter which is controlled by a F2812 controller board (Yanxu electric technology
Co. Ltd., Nanjing, China) under SVPWM control mode. The load used to consume output power
is a 100 ohm resistor (Chiyu Electronics Co. Ltd., Kunshan, China). The three phase currents are
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measured through a Data Acquisition (DAQ) system that is built on a Labview platform based on
which the monitoring interface is developed. Experimental device parameters are listed in Table 2.
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Table 2. Experimental device parameters.

Asynchronous Motor

Rated Power (kW) 4
Rated Frequency (Hz) 50

Rated Voltage and Current 380 V & 7.9 A
Rotational Speed (rpm) 0–1460

Control Mode V/F

PMSG

Rated Power (kW) 3
Rated Frequency (Hz) 50

Rated Voltage and Current 380 V & 5 A
Rotational Speed (rpm) 0–1500

Converter (Mitsubishi IPM)

Rated Voltage and Current 600 V & 50 A
Rated Power 3.7 kW/220 VAC

Load

Power (kW) 3kW
Resistance (ohm) 100

A converter switch open-circuit fault is induced by removing the signal of the IGBT in the
controller. The WSBNCT method is implemented in the monitoring interface. Figure 10 shows the
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diagnostic result of the WSBNCT under variable rotational speed which is generated corresponding to
a step wind situation. Open-circuit faults are introduced for the whole experimental period. Figure 10a
shows the time domain three phase currents of a converter under healthy situation and constant
rotational speed, while Figure 10b shows three time domain phase currents of a converter with T1
switch open circuit and variable rotational speed. Figure 10c shows that with a constant rotational
speed the system with a healthy converter is delivering an ideal circle of Id-Iq vector pattern. This
is compared to Figure 10d which shows that the step wind has caused a corresponding rotational
speed variation and then the phase currents’ magnitude changes. It shows that without wind speed
normalization operation, the fault feature of converters with open-circuited T1 switches generates
multiple concentric semicircles that are mainly due to the step wind situation, while with operation
of WSBNCT, Figure 10e shows that wind speed-induced disturbance is eliminated and the current’s
park vector pattern converges to a single semicircle. Therefore, the corresponding fault feature is easily
identified. For the failure of T2 to T6 switches, the operation is similar and the fault detection is also
effective. This proves that WSBNCT method is capable and effective to identify converter open-switch
faults for WT applications.
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Figure 10. Experimental results: (a) Time domain phase currents of healthy situation (constant
rotational speed); (b) Time domain phase currents of faulty situation (variable rotational speed);
(c) Id-Iq pattern before T1 failure (constant rotational speed); (d) Id-Iq pattern before WSBNCT
implementation (variable rotational speed); (e) Id-Iq pattern after WSBNCT implementation.
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5. Conclusions

A new method named WSBNCT to detect WT converter open-switch faults under stochastic
wind conditions is proposed in this paper. The fault detection capability of traditional methods such
as the ENCAAV and CVTPR approaches on WT converters are firstly investigated and compared.
Stochastic wind speed causing uncertain three phase currents’ periods and unstable values of the
current amplitudes are the main reasons that invalidate both methods. According to the operational
principle of a WT and the relationship between wind speeds and current magnitudes, WSBNCT
method is then proposed and proved to be applicable for WT applications. The comparison of the
three methods is summarized in Table 3. The evaluations of the three methods for WT converter fault
diagnosis are summarized as follows:

ENCAAV: its fault diagnosis is based on phase currents which need to be averaged for each
complete period. The uncertainty of the period due to stochastic winds make it inapplicable.

CVTPR: its fault diagnosis is based on the current vectors’ pattern in d-q space. The varying
current amplitudes due to stochastic wind lead to variable modulus of the current vector and then
untracable patterns. It is a more robust method than ENCAAV but it may need further improvement
for considering wind speed variation.

WSBNCT: its fault diagnosis is based on the current vectors’ pattern in d-q space like CVTPR.
It benchmarks current vectors in the d-q axis against the expected current value obtained from the
relationship between wind speeds and currents. It further uses the normalized current vectors to
generate pattern in d-q space to detect converter faults.

Table 3. Application of the three fault detection methods.

Methods Constant Wind Step Wind Turbulent Wind

ENCAAV
‘

ˆ ˆ

CVTPR
‘

ˆ ˆ

WSBNCT
‘ ‘ ‘

‘

= applicable, ˆ = inapplicable.

Experiments involving T1 switch open-circuit fault detection prove the effectiveness and
applicability of the WSBNCT approach. The results obtained in this paper confirm the applicability of
WSBNCT for WT condition monitoring systems. It should prove a useful method for WT intelligent
diagnostic system and will contribute to improve WT availability and the efficiency of wind farm
operational management.
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