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Abstract: The combustion characteristics of methane/moist air in micro-tube reactors with different
numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor
with one rectangular protuberance (six different sizes) was studied firstly, and it is shown that
reactions near the protuberance are mainly controlled by diffusion, which has little effect on the
outlet temperature and methane conversion rate. The formation of cavities and recirculation
zones in the vicinity of protuberances leads to a significant increase of the Arrhenius reaction
rate of CH4 and gas velocity. Next, among the six different simulated conditions (0–5 rectangular
protuberances), the micro-tube reactor with five rectangular protuberances shows the highest methane
conversion rate. Finally, the effect of protuberance shape on methane/moist air catalytic combustion
is confirmed, and it is found that the protuberance shape has a greater influence on methane
conversion rate than the number of protuberances. The methane conversion rate in the micro-tube
decreases progressively in the following order: five triangular slight protuberances > five rectangular
protuberances > five trapezoidal protuberances > smooth tube. In all tests of methane/moist air
combustion conditions, the micro-tube with five triangular protuberances has the peak efficiency and
is therefore recommended for high efficiency reactors.

Keywords: micro-tube reactor; slight protuberances; methane/moist air; catalytic combustion

1. Introduction

With micro-combustion gradually becoming a significant technology for energy
production, the miniaturization of devices such as micro-thrusters, micro-engines, micro-robots,
and micro-combustors, etc. in Micro-electromechanical Systems (MEMS) [1–4] has become an
important subject. Compared with traditional combustors, the heating area of a MEMS reactor is
about 1 mm2, or no more than 1% of the size of traditional combustors [5,6]. In the micro-reactor,
the surface-to-volume ratio (S/V) increases and the residence time of gas mixtures in the micro
combustion chamber is reduced, which results in high thermal losses, high free radical losses,
and even flameouts, etc. Most researchers believe that catalytic combustion [7,8] is an effective way in
reducing the heat losses and enhancing the combustion stability under the fuel-lean conditions [9].
Studies [10–12] have shown that catalysts deposited on the combustor walls can sustain chemical
reactions at lower temperatures, reduce thermal/free radical quenching and pollutant emissions.

In the field of micro-scale catalytic combustion for energy production [13–15], most researchers
focus on the use of natural gas, methane, as the main component [16–18], which is regarded as a
clean, renewable and universal fuel [19–21]. Moreover, natural gas is an attractive alternative fossil
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fuel which could reduce pollutant emissions and lower the energy dependence on fossil oil [14,15,22].
However, methane is considered the most stable hydrocarbon and is difficult oxidize, and its catalytic
ignition requires relatively high temperatures even on expensive Pt- or Pd-based catalysts [23–27].
Therefore, preheating the inlet mixture gases [28], adding hydrogen to the methane fuel [29,30] and
improved catalyst layout designs [31,32] have been proposed in succession to improve the combustion
efficiency in micro-reactors.

Previous studies indicated that proper micro-combustor configurations [7,31,33–36] and
well-designed catalyst beds [37–39] can reduce heat/radical losses and improve the combustion
efficiency. Li et al. [9] developed a small-scale wire-mesh catalytic combustor for hydrogen-syngas
combustion, and their experimental results indicated that the double-layer wire-mesh catalytic
combustor could yield a higher CO conversion ratio (>90%) than that of a single-layer wire-mesh
catalyst (<40%). A catalyst segmentation configuration with cavities has also been proposed to
promote methane conversion in a micro-reactor [9]. Baigmohammadi et al. [7] numerically investigated
a micro-reactor equipped with a catalytic bluff body, and showed that compared to the catalytic wall,
the manufacturing process is more convenient when using the catalytic bluff body. Ran et al. [37]
investigated the characteristics of methane catalytic combustion in micro-channels with a concave
or convex wall cavity, they found that temperature reaches a peak in a convex cavity, because
heat transfer in the convex micro-channel is enhanced and the temperature distribution is more
uniform; It is suggested thus that combustors with a convex cavity are more suitable for methane
catalytic combustion at low velocity. Wan et al. [40] studied the impact of channel gap distance on the
“flame splitting limit”, and a non-monotonic dependence of the “flame splitting limit” factor on the
channel gap was found. Zhang et al. [41] have numerically investigated the transient characteristics of
the auto-thermal reforming of methane in a cube micro-combustor with multiple cylinders; the results
revealed that the micro-combustor has the properties of high heat resistance, less thermal expansion
and low cost. Niu et al. [42] numerically investigated the effects of five trapezoidal bluff bodies on the
blowout limit of methane/air combustion in a micro-channel, and the results showed that the shape
changes of bluff bodies have a slight effect on blowout limit for the same blockage ratio, the combustion
recirculation zone is favorable to improve the micro-channel temperature and extend the mixture gas
residence time, while the shape changes of the five trapezoidal bluff bodies have little effect on the
expansion of the combustion recirculation zone.

As for the influence of heat recirculation on flame stability and speed in micro-combustors,
Veeraragavan et al. [43] have developed an analytical model for flame stabilization in meso-scale
channels and categorically shown the influence of heat recirculation on the flame stability and speed.
They found that combustor design parameters (such as the wall thickness ratio, thermal conductivity
ratio and heat loss to the environment) influence the flame speed through their influence on the
total heat recirculation. Recently, the influence of orthotropic wall materials on the flame speed was
investigated by Veeraragavan [44], whereby the effects of orthotropic wall thermal conductivities,
heat loss, and wall thickness on the flame speed were explored, and the results indicated that total
heat recirculation is the primary parameter that controls the flame speed. The first ever experimental
demonstration of the use of orthotropic walls in microcombustors has been realized by Kang and
Veeraragavan [45], who showed that the flammability limits can be enhanced due to the heat conduction
through the plates is enhanced at large mixture flow rates. The first-ever verification procedure using
manufactured solutions for compressible conjugate heat transfer solvers has been executed successfully
by Veeraragavan and co-workers [46], and the newly developed solid heat transfer solver is found to
have no apparent coding errors and such solvers are required for micro-combustor simulations.

However, most literatures focus on the reactor size, different catalyst layouts, catalyst
segmentation with cavities, or the shape and location of bluff bodies, and research on the inner
wall structures is sufficiently advanced, but it is still necessary to obtain comprehensive data on the
catalytic combustion properties, including the effect of wall features. Therefore, the present paper
reports an in-depth study from the point of view of wall structures to improve the methane conversion.
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In this work, the effect of single different sizes of rectangular protuberances in a circular tube reactor
was investigated separately. Then, the number of the rectangular protuberance (0.2 mm ˆ 0.1 mm) in
the circular tube reactor was increased from 0 to 5, and subsequently the distance from the entrance
of the five rectangular protuberances was set at 0.5, 1.7, 3.4, 5.6 and 8.3 mm. Finally, the combustion
characteristics of five rectangular, triangular and trapezoidal protuberances and smooth tube walls
were simulated, respectively.

2. Numerical Methods

2.1. Physical Model

In order to investigate the influence of different inner wall structures on methane/moist air
catalytic combustion, several slight protuberances with different sizes, spacing and shapes were added
to the inner walls of micro-tubes. The physical model is a micro-tube reactor. The material of the
micro-tubes is aluminum and all of the inner walls are coated with platinum (Pt) catalyst. The length,
the inner diameter and the wall thickness of the reactor are 10, 1 and 0.1 mm, respectively. Figure 1A
shows the dimensions of the single rectangular protuberances studied. The shapes and sizes of the
different protuberances on the inside walls are shown in Figure 1B,C. Figure 1C presents the structure
of a smooth tube and micro-tubes with five slight protuberances of different shapes. The distances
of the multiple protuberances of different shapes from the reactor entrance are 0.5, 1.7, 3.4, 5.6 and
8.3 mm, respectively. Three calculation cases and the configurations of the relative reactors are listed
in Table 1.
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Figure 1. Schematic diagram of physical model: (A) the sizes of single rectangular protuberances;
(B) slight protuberance structures of different shape; (C) the case of five protuberances for three
different shapes.
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Table 1. The three calculation cases of the work.

Working
Conditions

Protuberance
Number

Protuberance
Shape Protuberance Size Distance from Entrance

(mm)

Case 1 1 Rectangular Six different sizes
see Figure 1A 0.5

Case 2 1, 2, 3, 4, 5 Rectangular One fixed size:
0.2 mm ˆ 0.1 mm

0.5, 1.7, 3.4, 5.6 and 8.3 for
the rectangular

protuberances numbered 1,
2, 3, 4 and 5, respectively

Case 3 5

Five rectangular
protuberances; The dimensions of

each protuberance
shape are fixed.
see Figure 1B

See Figure 1C: 0.5, 1.7, 3.4,
5.6 and 8.3 for the

protuberances numberd 1,
2, 3, 4 and 5, respectively

Five triangular
protuberances;

Five trapezoidal
protuberances

2.2. Mathematical Model

In this calculation, only surface catalytic reactions are considered. As the size of the combustion
chamber is small and the mixture gas velocity is slow, the fluid volume force and the dissipative
effect can be neglected, and the gas reaction and radiation have not been taken into account either.
The fluid flow is described by the Navier-Stokes Equation. The conservation equations of continuity,
momentum, energy and species are used in this simulation. All the mathematical models [42] are
described as follows:

(1) Continuity equation:
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(4) Composition equation:
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(5) The ideal gas state equation:

P “ ρRT
n

ÿ

i“1

Yi
Mi

pi “ 1, 2, . . . nq (6)

where ρ is the density of the mixture (kg/m3); T is temperature (K); u and v are x-direction velocity
(m/s) and r-direction velocity (m/s), respectively; λ is the thermal conductivity of fluid (W/m¨K);
Yi is the mass fraction of species i; hi is specific enthalpy of species i (J/kg); Ri is the generation or
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consumption rate of species i; Di is mixed average diffusion coefficient of species i; Mi is molecular
weight of species i (kg/mole).

2.3. Grid Method and Boundary Conditions

The CFD software Fluent 6.3 (Fluent Inc., Lebanon, NH, USA) and a 2D model are adopted in
this simulation. Different mesh sizes have been tested to ensure the grid-independence. The grid size
is taken as 0.01 mm, the wall grids as well as slight protuberance grids are handled with encryption
processing. The total mesh grid cells are 34,033 and 35,000–38,000 for the smooth tube and micro-tubes
with slight protuberances, respectively. In addition, the physical model is millimeter scale, inlet velocity
is set as 1 m/s, Reynolds number is about 193, thus, laminar flow and species transport models are
adopted in our present simulation.

As for the boundary conditions, the velocity inlet and pressure outlet are specified at the entrance
and the exit of the combustor, respectively. The inlet temperature is fixed at 573 K, the equivalence
ratio of methane-moist air is 0.8, mass fraction of CH4, O2, H2O are 0.0405, 0.2024, 0.0911, respectively.
Moreover, the outer wall surface is insulating, the inner wall surface is covered with platinum catalyst
and the site density of Pt(s) is set to be 2.72 ˆ 10´9 mol/cm2, fluid-solid coupling is used in the
simulation. All of the governing equations are solved with the SIMPLE algorithm and the second order
upwind discretization. The simulation is considered to converge when the residuals of all governing
equations approached steady state, namely, the absolute criteria of energy equation is smaller than
10´6 and the absolute criteria of other conservation equations (continuity, momentum and species
equations) are all smaller than 10´5.

3. Catalytic Combustion Mechanisms

In terms of micro-scale combustion, the surface area to volume ratio becomes larger, and gas-phase
(homogeneous) combustion is difficult to maintain due to both wall thermal losses and chemical radical
losses [47]. Moreover, the reaction temperature of methane is low, so gas-phase reactions do not occur
under such conditions, and the surface reaction has an inhibitory effect on the space reactions [48],
thus, gas phase reactions of CH4 can be ignored in this work [48–51]. The detailed kinetic reaction
mechanism (Supplementary Materials Table S1) of methane/moist air on the platinum catalytic surface
is applied [52]. The heterogeneous reaction mechanism has 24 elementary steps, which contain
nine kinds of gaseous components (CH4, O2, H2O, CO, CO2, H2, O, H, OH) and 11 surface species
(PT(s), O(s), CH3(s), CH2(s), CH(s), C(s), H(s), OH(s), CO(s), CO2(s), H2O(s)). The 24-step surface
reaction mechanism has been successfully used to investigate the catalytic combustion of methane,
and its accuracy has also been demonstrated in previous works [47,52,53]. The applied reaction
mechanism is used without modification, and as mentioned, gas phase reactions are not taken into
account in this study.

4. Results and Discussion

In this work, methane/moist air equivalence ratio is 0.8, inlet velocity is 1.0 m/s under 0.1 MPa
and 573 K. At first, the combustion characteristics of each circular tube reactor with single different
dimension rectangular protuberances (Figure 1A) are investigated separately, then the rectangular
protuberances (0.2 mm ˆ 0.1 mm) with numbers increasing from 0 to 5, and distances away from
the entrance of 5, 17, 34, 56 and 83 mm, respectively, are studied. Finally, the effects of different
protuberance shapes (Figure 1B,C) on combustion are compared in the paper.

4.1. The Sizes of Single Rectangular Protuberance

Figure 2A indicates that the reaction occurs immediately as the mixture gas enters the micro-tube.
Because the mixing and collision among the mixture gas is severe, the Arrhenius reaction rate of CH4

is high and then tends to stabilize at 1 mm away from the entrance; Moreover, the Arrhenius reaction
rate of CH4 is approximately the same except that in the vicinity of the slight protuberance surfaces.
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All of the CH4 reaction rates in non-smooth tubes are higher than that in smooth tubes, as shown
in the enlarged drawing of Figure 2A. The slight-protuberances on the inner walls promote the heat
transfer and radical diffusion between the flow mixtures and the inner walls. As for the extremely
fast reactions in micro-reactors, residence time is an important parameter for heat transfer and radical
diffusion. In fact, adding rectangular protuberance on the inner wall reduces the radical distance
in the micro-tube, leading to a shorter residence time, CH4 diffuses more quickly from gas phase
to the catalyst surface in the smaller channel under this circumstance, thus the reaction rate of CH4

significantly increases in the vicinity of the protuberance surface.
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Figure 2. The influence of rectangular protuberance sizes on: (A) Arrhenius reaction rate of CH4;
(B) Gas velocity.

Figure 2B shows that in the vicinity of slight protuberances, the centerline velocity along the axis
firstly increases and then decreases quickly, and a recirculation zone which can prolong the inflow
residence time and enhance the contact between radicals and catalyst will be formed. From Figures 3
and 4 the size of these recirculation zones can be seen clearly, and the area of the low velocity zone
increases with the length-height ratio of the protuberances, thus, the fuel has sufficient time to burn.
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Figure 3. Contours of r-direction velocity (m/s) near the protuberance surfaces in the micro-tubes,
the dimensions of protuberances are (A) 0.05 ˆ 0.1; (B) 0.2 ˆ 0.1; (C) 0.3 ˆ 0.1; (D) 0.1 ˆ 0.1; (E) 0.2 ˆ 0.2;
(F) 0.4 ˆ 0.1, units (mm ˆ mm).
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Furthermore, the r (radius)-direction velocity and the recirculation zone increase with the increase
of protuberance height and area, which is in accordance with the tendency of the methane reaction rate.
Zhai et al. [54] found that most of the energy released from the combustion was used to heat the gas
when the reaction took place with a short residence time, therefore, the outlet temperature could rise
greatly. As depicted in Figure 5A, the sizes of rectangular protuberances have little influence on the
centerline temperature. The maximum outlet temperature difference (in Table 1) is about 25 K among
all simulated reactors, which indicates that a single rectangular protuberance has little effect on the
overall residence time. It is inferred that the slight protuberance and cavities can strengthen convective
heat transfer so that the temperature distribution is more uniform. Figure 5B shows the mass fraction
of methane in different micro-tubes, which indicates that effect of different protuberance sizes on
methane conversion rate is slight. Table 2 shows that the methane conversion rates are 87.48%–87.88%
for the different tubes.

Figures 2–5 and Table 2 imply that under all simulated conditions, the Arrhenius reaction rate of
CH4 increases in the vicinity of a single rectangular protuberance, while the axial temperature and
the methane conversion rate are hardly affected by adding a single protuberance to a micro-channel.
One explanation is that the reaction near the protuberance is controlled by diffusion, which is in good
agreement with our previous research [55].
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Figure 5. The influence of rectangular protuberance sizes on (A) axial temperature and (B) mass
fraction of CH4.

Table 2. Outlet temperature, outlet velocity and methane conversion rate in micro-tubes with one
rectangular protuberance.

Protuberance
Type

Protuberance
Sizes (mm ˆ mm)

Outlet
Temperature (K)

Outlet Velocity
(m/s)

Methane Conversion
Rate (%)

(a) 0.1 ˆ 0.05 1565 5.46 87.88
(b) 0.1 ˆ 0.1 1563 5.47 87.82
(c) 0.2 ˆ 0.2 1571 5.48 87.48
(d) 0.2 ˆ 0.1 1588 5.56 87.57
(e) 0.3 ˆ 0.1 1586 5.54 87.50
(f) 0.4 ˆ 0.1 1582 5.53 87.60
(g) Smooth tube 1585 5.57 87.56
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4.2. The Number of Rectangular Protuberances

The addition of slight protuberances on the inner wall leads to an increment of the axial surface
area, but a decrease of the longitudinal distance in the micro-tube. Figure 6A illustrates that the trends
of the effect on methane conversion rate caused by 1–5 rectangle protuberances are almost the same.
After 1 mm from the entrance, the influence of the number of protuberances on the Arrhenius reaction
rate of CH4 decreases as the mixtures flow towards the exit. Researchers have demonstrated that the
residence time can be reduced by augmenting the gas velocity or increasing the operation pressure
while keeping the channel size constant [55]. Figure 6B shows the influence of protuberance number
on the gas velocity. It indicates that the gas velocity has increased to 4.5–7.0 m/s in the vicinity of the
protuberances, while the velocity of a smooth tube gradually increases from 1 to 3.5 m/s, at the inlet
and 2 mm away from the entrance, respectively, then remains stable at 5.5 m/s after 4 mm from the
entrance. The maximum outlet velocity difference between a non-smooth tube and a smooth tube is
about 1.2 m/s.
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Figure 7 shows the contours of x-velocity and r-velocity (m/s) in the micro-tubes with
0–5 rectangular protuberances, the results indicate that adding slight protuberances on the wall
increases the area of the recirculation zones at low velocity, and the protuberance number has a positive
effect on the mixture gas flow in the micro-tube channel. The variations of Arrhenius reaction rate of
CH4 and gas velocity are similar to the experimental observations on the hydrogen-air combustion
characteristics of a small-scale reactor with different catalyst layouts and configuration [51], because
the cavities in a small-scale system can collect radicals and hot gas from upstream, which could serve as
a heat source to promote the reaction and provide a low-velocity region to sustain gas-phase reactions.
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Figure 8A shows that the average temperature of methane/moist air increases sharply and then
basically remains unchanged along the axis of the micro-tube reactors, and the temperature stays
stable after 4 mm away from the inlet (temperature contours in the micro-tubes with 0–5 rectangular
protuberances can be seen in Supplementary Materials Figure S1). The maximum average outlet
temperature difference is about 80 K between the different simulated micro-tubes. Figure 8B indicates
that different protuberance numbers result in slightly different influences on the mass fraction of
methane. In the micro-tube with one rectangular protuberance, the mass fraction of methane is the
highest and the methane conversion rate is the lowest at the outlet. On the contrary, the conversion rate
of methane is the highest in the micro-tube with five rectangular protuberances. Note that, the contour
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line variation of temperature and mass fraction of methane is almost smooth, but the lines of reaction
rate and gas velocity bulged out on/near the protuberances. Two speculations can be put forth to
explain this: (1) after gas velocity increase caused by protuberances, the gas mixture does not have
enough time to diffuse from the gas phase to the catalyst surfaces; (2) the reaction on the protuberance
surface is controlled by gas-phase mass transfer, therefore, the temperature and the conversion rate of
methane shows only a slight change in the micro-tube reactors.
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4.3. The Shape of Protuberances

In Section 4.2, the conversion rate of methane is the highest in the micro-tube with five rectangular
protuberances. To further study the topic, the effect of protuberance shape on methane/moist air
catalytic combustion has been studied in the micro-tubes with five rectangular, five trapezoidal and
five triangular protuberances, respectively. Compared to the smooth tube, the Arrhenius reaction rate
of CH4 near the protuberances on non-smooth tube inner walls increases to a varying extent, while the
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degree of increase reduces gradually as the chemical reactions continue on the protuberance surfaces
as shown in Figure 10A. The smaller the distance from the exit, the less the protuberance impact on the
methane reaction rate. Moreover, the Arrhenius reaction rate of CH4 is the largest in the vicinity of
rectangular protuberances, and is the smallest in the vicinity of trapezoidal protuberances, as shown
in the enlarged drawing of Figure 10A. Figure 10B depicts the influence of the protuberance shape
on the axial velocity variation of gas mixtures in micro-tubes. In the micro-tube with five rectangular
protuberances, the average flow velocity is the highest in the x-axis direction, indicating that the area
of the recirculation zone is also the largest one. It can be obviously figured out that the average velocity
of the smooth tube is the lowest (contours of the x-velocity and r-velocity in the micro-tubes with
different protuberance shapes can be seen in Supplementary Materials Figure S2).
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As shown in Figure 10C, the maximum difference of the outlet temperature is about 200 K
in the micro-tubes (contours of temperature in the micro-tubes with different protuberance shape
can be seen in Supplementary Materials Figure S3). As for the different protuberance shapes,
the outlet temperatures are 1600, 1480 and 1400 K for the five trapezoidal, rectangular and triangular
protuberances, respectively.

When the reaction occurs with a short residence time, most of the heat released from the
combustion is used to heat the mixture gas, which leads to the rise of the outlet temperature. However,
the participation of water steam in the inlet gas and the production of water could impact the outlet
temperature, as with the increasing gas temperature, the specific heat of H2O is reduced under
constant pressure, thus, outlet temperature may also be reduced [55]. With the increase of temperature
along the axial direction the mass fraction of CH4 decreases gradually, as displayed in Figure 10D.
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It is noted that the mass fraction of CH4 at the outlet, is the maximum for the five trapezoidal
protuberances and the minimum for the five triangular protuberances, which is in accordance with
the value of the outlet temperature. As for the variation of methane conversion, the conversion rate
is the highest in the micro-tube with five triangular protuberances, while the lowest one is in the
micro-tube with five trapezoidal protuberances. Therefore, in all simulated methane/moist air catalytic
combustion conditions, the micro-tube with five triangular protuberances has the peak efficiency and
is recommended for high efficiency reactors.

5. Conclusions

A micro-tube reactor with multiple slight protuberances is investigated in this paper. Through
the analysis of methane/moist air catalytic combustion in the micro-tube reactors with different slight
protuberances, the following main conclusions are derived:

(1) The Arrhenius reaction rate of CH4 and flow velocity increase with the increase of protuberance
height and area, while the axial temperature and the methane conversion rate are affected little in
each micro-tube with one single rectangular protuberance.

(2) Cavities and recirculation zones are formed due to the addition of slight protuberances on the
inner wall. For a number of rectangular protuberances from 0–5, the influence of protuberance
number on the reaction rate decreases as the mixture gas flows towards the exit. The conversion
rate of methane is the highest in the micro-tube with five rectangular protuberances.

(3) The shape of slight protuberances has a greater influence than protuberance number. The methane
conversion rate in the micro-tubes decreases progressively in the order five triangular slight
protuberances > five rectangular protuberances > five trapezoidal protuberances > smooth tube.

(4) In all simulated methane/moist air catalytic combustion conditions, the micro-tube with five
triangular protuberances has the peak efficiency and is recommended for high efficiency reactors.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/9/6/421/s1.
Table S1: Mechanism of methane reactions on Pt surface, Figure S1: The contours of temperature (K) in the
micro-tubes with 0–5 rectangular protuberances (0.2 mm ˆ 0.1 mm), Figure S2: The x-velocity and r-velocity (m/s)
contours in the micro-tubes with different protuberance shapes, Figure S3: The contours of temperature (K) in the
micro tubes with different protuberance shapes.
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