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Abstract: In power system control unicontrol with single storage units or centralized control with
multiple storage units to meet different level targets is challenging. Considering the charge and
discharge characteristics of storage devices, this paper proposes a hierarchical configuration structure
of a battery and supercapacitor mixed storage scenario, and develops a convenient control method for
accessing various DC loads and can central manage mass batteries in one place. Aiming at the optimal
management of large scale battery storage, the paper proposes a three-layer battery hierarchical
control structure and the control objects and control circuits are discussed. Simulation studies are
used to verify the control effect of the hierarchical storage system and the results show that the
strategy can effectively decrease photovoltaic output fluctuation.

Keywords: hybrid system; hierarchical storage structure; energy management

1. Introduction

As the cost is continuously decreasing, photovoltaic (PV) generation has become one of the most
important renewable energy sources and is being widely used. Grid-connected solar photovoltaic
power plants are being installed globally at a fast pace. However, for present photovoltaic power
technologies, the output power depends upon the availability of illumination and therefore may not
always be constant. Problems brought by photovoltaics to the security stabilization and control of
power grids are progressively appearing [1], especially when high permeability photovoltaics are
accessed in a system. Additional regulations and standards are expected to be imposed.

A possible solution for regulating the natural oscillating output power of photovoltaics is to
integrate them with an energy storage system [2]. Through a reasonable energy storage control
strategy, the charge and discharge of energy storage can be controlled dynamically, which will make
it possible to balance the energy of power grids and optimize system operation [3,4]. Used as
an emergency power supply and energy buffer device, energy storage can not only balance
photovoltaic output fluctuation, but also improve photovoltaic capacity permeability and utilization
level, optimize the power grid economics, and improve the stability of the entire photovoltaic
system [5]. Reasonable storage configurations and control strategies are therefore of great significance
for photovoltaic and energy-storage hybrid systems in high photovoltaic penetration scenarios.

At present, most research on photovoltaic and energy-storage hybrid system focuses on
predictive techniques, and control methods for modular converters and voltage regulators [6–9].
Control strategies of different time scales are also taken into consideration [10]. Some researchers
have studied storage charge and discharge control strategies based on hybrid energy storage.
Tummuru proposed a fast acting DC-link voltage-based energy management schemes for a hybrid
energy storage system (HES) fed by solar photovoltaic (PV) energy. Using the proposed control
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schemes, fast DC-link voltage, effective energy management and reduced current stress on batteries
are achieved [11]. Feng proposed a HES composed of lithium-ion batteries and supercapacitors that
can be incorporated in the PV-based system to complement the supply-demand mismatches by using
a multimode fuzzy-logic power allocator [12]. Ciobotaru proposed a power management strategy of a
hybrid energy storage system (HESS) to reduce the required power rating of the supercapacitor bank
(SCB) to only one-fifth of the vanadium redox battery (VRB) rating and to avoid the operation of the
VRB at low power levels [13].

Based on the aforementioned review of previous works, it can be found that most research only
considers the control effect of each storage device or hybrid storage in a centralized structure, and
little work has been done to study the configuration pattern of different energy storage systems.
Configuring different energy storages reasonably and hierarchical control strategies still need
further study.

This paper proposes an energy management strategy based on a hierarchical storage structure.
Based on the equivalent circuit models of PV, battery and supercapacitor, the paper introduces a
typical distribution network structure with hierarchical storage, and then analyzes the control effect
of batteries and supercapacitors. An improved configuration structure is proposed and its control
method when some constraint conditions are taken into account is discussed. What’s more, to solve the
problem brought by centralized management of mass batteries, a three-layer management structure is
introduced. Finally, simulation is carried out to verify the control effect.

2. System Description and Modeling

2.1. PV System Modeling

Commonly, PV plants use silicon solar cells, which equivalent circuit is shown in Figure 1 where
Iph is the current of a photo-generated current source, D is a non-linear diode, Rsh and Rs are the
internal parallel and series resistance. respectively, IPV is the photovoltaic output current, VPV is the
photovoltaic output voltage. The volt-ampere characteristic equation is then:

IPV “ Iph ´ Is

ˆ

e
qpVPV`IRsq

AkTPV ´ 1
˙

´
VPV ` IPV Rs

Rsh
(1)

where Is is the diode saturation current, q is a constant (1.602ˆ 10´19C), k is the Boltzmann constant
(1.381ˆ 10´23 J{K ), TPV is absolute temperature when the photovoltaic works, A is a diode feature
fitting coefficient.
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Figure 1. Equivalent circuit of a solar cell. 
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Figure 1. Equivalent circuit of a solar cell.

The photogenerated current is a function of light intensity and PV battery temperature, and it can
be described as:

Iph “

˜

S
Sre f

¸

”

Iph,re f ` CT

´

T´ Tre f

¯ı

(2)
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where S is the actual irradiance, Sref is the irradiance under standard conditions, Tref is the absolute
temperature when the photovoltaic works under standard conditions, CT is the temperature coefficient,
and Iph,ref is the photogenerated current under standard conditions.

2.2. Storage Battery Modeling

The storage battery introduces a non-linear model, which uses a simple controlled voltage source
in series with a constant resistance, as shown in Figure 2.
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Figure 2. Non-linear battery model.

The model assumes the same characteristics for the charge and the discharge cycles. The open
voltage source is calculated with a non-linear equation based on the actual SOC of the battery.
The controlled voltage source is described as:

E “ E0 ´ K
Q

Q´
r

idt
` Aexp

ˆ

´B ¨
ż

idt
˙

(3)

where E is the no-load voltage, E0 is the battery constant voltage, K is the polarisation voltage, Q is the
battery capacity,

r
idt is the actual battery charge, A is the exponential zone amplitude, B is the inverse

exponential zone time constant.
This model represents a non-linear voltage which depends solely on the actual battery charge.

It means that when the battery is almost completely discharged and no current is flowing, the voltage
will be nearly 0. This model yields accurate results and also represents the behaviour of the battery.

2.3. Supercapacitor Modeling

The supercapacitor considered in this paper is double-layer capacitor, its equivalent model circuit
is shown in Figure 3. This model provides three different time constants to model the different charge
transfers, which provides sufficient accuracy to describe the terminal behaviour of the supercapacitor
for the desired span of 30 min.

To reflect the voltage dependence of the capacitance, the first branch is modelled as a voltage
dependent differential capacitor. The differential capacitor consists of a fixed capacitance Ci0 and
a voltage dependent capacitor Ci1 ˆ Vci. A resistor, parallel to the terminals, is added to represent
the self-discharge property. The first or immediate branch, with the elements Ri, Ci0 and the voltage
dependent capacitance Ci1 in [F/V], dominates the immediate behaviour of the supercapacitor in the
time range of seconds in response to a charge action. The second or delayed branch, with parameters
Rd and Cd, dominates the behaviour in the range of minutes. Finally, the third or long term branch,
with parameters Rl and Cl, determines the behaviour for times longer than 10 min [14].
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2.4. Hierarchical Structure

At present, many different kinds of energy storage devices are known, including batteries,
supercapacitors, flywheels, superconducting magnetics and so on, most of which have different
charge and discharge characteristics [15,16]. The bidirectional energy adjustment ability of energy
storage devices make them play an important role in photovoltaic power systems. Compared with the
single-technology energy storage system (ESS), a HESS can combine the advantages of each technology
used, thus being more suitable for large-scale renewable energy systems. Typical combinations may
include a battery and supercapacitor.

However, most storage devices are configured in the same place or just near photovoltaic power
generators, so researchers are not very concerned about the configuration method of the battery and
supercapacitor. This may lead to complex control circuits and inefficient control processes. A typical
distribution network structure with hierarchical storage is shown in Figure 4.
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hierarchical storage.

In this typical structure, the centralized storage refers to a large-scale energy storage system
consisting of mass energy storage devices connected in series or in parallel, that is generally configured
in a particular area. The distributed storage refers to small-scale storage devices which are installed
throughout the distribution network, and are generally configured in the same or nearby nodes of the
photovoltaic system, in order to constitute a combined photovoltaic and storage power-generation
system. Centralized storage is mainly used to implement overall coordinated control of distribution
networks, while distributed storage takes charge of local power balancing of photovoltaics.



Energies 2016, 9, 395 5 of 15

As the control targets of centralized storage and distributed storage are different, it’s necessary
to select suitable storage devices to fit each target. Storage batteries have characteristics of low
self-discharge, low manufacturing cost and high energy density, which makes them suitable for mass
storage for a long time, so they are configured to constitute a centralized storage system (CSS). On the
other hand, supercapacitors have high charge efficiency, high power density and rapid response speed.
They are mainly used to adjust power oscillations of photovoltaics and they are configured to constitute
a distributed storage system (DSS).

According to the configuration scheme, the high-frequency power oscillations are assigned to
supercapacitors and the low-frequency oscillations are handled by storage batteries. Although the
manufacturing cost of supercapacitors is higher than that of storage batteries, the smaller
high-frequency power oscillations lead to smaller required supercapacitor capacity. This also conforms
to the fact that supercapacitors are difficultly to scale at high power ratings due to cell voltage
unbalancing issues.

3. Control Method

3.1. Control of a Single DC Bus Voltage

Firstly, we consider a single distributed storage system with storage batteries. The system structure
is shown in Figure 5.
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In the power allocation type control strategy, the voltage balance of the DC bus is controlled by
both the photovoltaic and the energy storage system. The inverter power is given by the system as
PI_ref. The output of the photovoltaic and load can be obtained by a prediction algorithm. Thus, the
relational expressions of power are:

PL&I_re f “ PL ` PI_re f (4)

PPV ` PESS_re f “ PL&I_re f (5)

PESS_re f “ PSC_re f ` PB_re f (6)

According to the allocation principle of high and low frequency power oscillations, we use a low
pass filter (LPF) to obtain the reference power of the supercapacitor and battery. The control block
diagram is shown in Figure 6.

The transfer function of LPF is G(s) = 1/1+Ts, so the reference power of supercapacitor and
battery are:

PB_re f “
1

1` Ts
ˆ PESS_re f (7)

PSC_re f “ PESS_re f ´
1

1` Ts
ˆ PESS_re f (8)

where T is the time constant of LPF.



Energies 2016, 9, 395 6 of 15

Energies 2016, 9, 395 6 of 15 

 

Now, we discuss the relationship between the time constant and the necessary capacity of the 

storage system. Usually, we can get the forecast power curve of the photovoltaic and load. Setting 

the time constant T, we can get PB_ref and PSC_ref from Equations (4)–(8). Then, we calculate the integral 

for PB_ref and PSC_ref according to the control time. Finally, considering the efficiency and capacity 

margin, we can obtain the needed storage system capacity. 

 




LPF 1/ battV


 PI

1 / scV








1 / dcV

1 / dcV

_ESS refP _B refP

_SC refP



*
battI

*
scI

battI

dcV

battV

battV

PWMD

PWMD

DISCHARGE MODE

CHARGE MODECHARGE MODE

Bidirectional DC/DC

 

Figure 6. Control block diagram of a single distributed storage system with storage batteries. 

3.2. Control of System 

Considering multiple distributed storage systems with a centralized storage system, the paper 

proposes an improved control structure upon construction of the distribution network shown in 

Figure 4. Taking three distributed storage systems as an example, the control structure is shown as 

Figure 7. Except for those installed in series with the photovoltaic array, all DC/DCs are bidirectional. 

 

Figure 7. Control structure of a multiple distributed storage system with centralized storage system. 

Focusing on DSS1, the outputs of photovoltaic, supercapacitor and battery adjust the voltage of 

DC bus1 together. Now PB1 is the required power of battery. According to the aforementioned 

control method, PB1 is: 

Figure 6. Control block diagram of a single distributed storage system with storage batteries.

Now, we discuss the relationship between the time constant and the necessary capacity of the
storage system. Usually, we can get the forecast power curve of the photovoltaic and load. Setting the
time constant T, we can get PB_ref and PSC_ref from Equations (4)–(8). Then, we calculate the integral for
PB_ref and PSC_ref according to the control time. Finally, considering the efficiency and capacity margin,
we can obtain the needed storage system capacity.

3.2. Control of System

Considering multiple distributed storage systems with a centralized storage system, the paper
proposes an improved control structure upon construction of the distribution network shown in
Figure 4. Taking three distributed storage systems as an example, the control structure is shown as
Figure 7. Except for those installed in series with the photovoltaic array, all DC/DCs are bidirectional.
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Focusing on DSS1, the outputs of photovoltaic, supercapacitor and battery adjust the voltage of
DC bus1 together. Now PB1 is the required power of battery. According to the aforementioned control
method, PB1 is:
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PB1 “
1

1` T1s
pPL1 ´ PPV1q (9)

Similarly, we have:

PB2 “
1

1` T2s
pPL2 ´ PPV2q (10)

PB3 “
1

1` T3s
pPL3 ´ PPV3q (11)

Defining Pinv as power vacancy from AC bus, we can obtain the energy control relationship as

PB1 ` PB2 ` PB3 ` Pinv “ PCSS (12)

Through the above analysis, we know that supercapacitors in the distributed storage system are
only used to balance the high-frequency power oscillations of the DC bus. Batteries in a centralized
storage system have two effects, one is to balance the low-frequency power oscillations of DC bus
as PB1, PB2 and PB3, the other is to remain the power balance of AC bus as Pinv. This configuration
structure can manage mass batteries in one place in a centralized way, which can reduce the control
modules that need to be distributed in the distribution network. Moreover, different DC buses have
different voltage grades, thus this is convenient for accessing various DC loads.

3.3. Constraint Condition

The above discussion doesn’t include photovoltaic and energy storage constraints, but actually
the parameters of devices are important and the system restrictions need to be taken into account
when formulating control strategies.

The system power balance constraint is:

n
ÿ

i

PPVi `

l
ÿ

j

PESj ` PSPG “ PL_AC (13)

where PPV is the photovoltaic output power, n is the total number of photovoltaics, PES is the output
power of each energy storage. In this case, it’s only a battery. When it’s positive, energy storage is
discharging, while when it’s negative, energy storage is charging. l is the total number of energy
storage devices. PSPG is the tie-line power of other power grids. PL_AC is the AC load power.

The bus-bar voltage constraint is:

0.95Ue ď UBUS ď 1.05Ue (14)

where Ue is the rated bus-bar voltage and UBUS is the actual bus-bar voltage.
Photovoltaic output constraint is:

PPVimin ď PPVi ď PPVimax (15)

where PPVimin and PPVimax are the inferior and superior power limits for the photovoltaic, respectively.
Battery and supercapacitor power constraints are:

PBmin ď PB ď PBmax (16)

PSCmin ď PSC ď PSCmax (17)

where PB is the actual battery power, PSC is the actual supercapacitor power. PBmin and PBmax are the
inferior and superior power limits of the batteries, respectively. PSCmin and PSCmax are the inferior and
superior power limita of the supercapacitor, respectively.
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The state of charge (SOC) of the battery is calculated as:

SOCBptq “ SOCB0 ´
1

λCN

ż t

0
ηIdt (18)

where SOCB is the actual SOC of the battery, SOCB0 is the initial battery SOC, CN is the rated capacity
of the battery, λ is the influence factor of battery capacity, η is the battery efficiency.

The SOC of supercapacitor is related to its voltage, which can be expressed as:

SOCSCptq “
USC

2ptq
USCmax

2 (19)

where SOCSC is the actual SOC of the supercapacitor, USCptq is the actual voltage of the supercapacitor,
and USCmax is the maximum allowable voltage of the supercapacitor.

Thus, the battery and supercapacitor SOC constraints are:

SOCBmin ď SOCB ď SOCBmax (20)

SOCSCmin ď SOCSC ď SOCSCmax (21)

where SOCBmin and SOCBmaxare the inferior and superior SOC limits for batteries, respectively, and
SOCSCmin and SOCSCmax are the inferior and superior SOC limits for supercapacitors, respectively.

3.4. Centralized Management of Mass Batteries

Mass batteries connected in series or parallel bring problems of current and voltage sharing.
After working for a long time, the SOC of each battery cannot stay the same. Coordination control of
all batteries becomes complex and difficult. Thus a hierarchical management structure of batteries is
proposed, which divides battery management into battery management, battery cluster management
and battery array management, as shown in Figure 8.
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Battery management in the bottom layer takes charge of single battery voltage sampling,
multipoint temperature collection and battery equalization control. Battery cluster management in
middle layer controls all the batteries of a battery cluster, taking charge of the total voltage acquisition
of the battery string, charging and discharging current collection, electric leakage detection, failure
warnings and SOC calculations. It realizes high-voltage management and completes the equilibrium
control of the battery cluster. Battery array management in the top layer controls all battery clusters
in the whole battery system. By collecting data and warning information from battery strings,
it summarizes, counts, analyzes and deals with all the information of the battery system, in order to
make batteries meet the requirements of centralized control [17]. The control circuits of each layer are
shown in Figure 9.
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The single battery management circuit includes a main control, battery monitoring, battery
switching, communication interface and so on. An LTC6802 is an IC for battery monitoring which
is used as the main management chip. The configuration purpose of the power input and auxiliary
charge DC/DC is to balance the SOC of different batteries. Two microprocessors are applied in the
battery cluster management circuit.
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Figure 9. Battery management control circuits: (a) Single battery management and (b) Battery cluster
management and (c) Battery array management.

The master microprocessor is responsible for operational management of the control circuit, while
the slave microprocessor takes charge of current collection and relevant calculations. Up CAN and
Low CAN is respectively used to communicate with the battery array and single battery management
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circuits. Finally, the UI control interface and communication network are arranged in the battery array
management. Through this control structure, we expect to realize coordinated control of batteries.

4. Simulation

The simulation platform is built by PSCAD to assess the performance of the energy management
strategy. The simulation parameters are listed in Table 1.

Table 1. Battery and supercapacitor simulation parameters.

Storage Battery Supercapacitor
Rated Voltage 3.6 V Ci0 270 F

Maximum Voltage 4.2 V Ci1 ˆ Vci 190 F/V
Capacity 1 Ah Cd 100 F

Control Parameters Cl 220 F
Storage Battery P = 35, I = 1.2 ˆ 105 Ri 2.5 mΩ
Supercapacitor P = 45, I = 1.2 ˆ 105 Rd 0.9 Ω
DC Bus Voltage 700 V Rl 5.2 Ω

We select a typical photovoltaic and energy-storage hybrid distribution network, and obtain the
corresponding photovoltaic output prediction curve by some prediction technique such as a grey
forecasting model or neural network [18]. To simplify the simulation process, we assume a constant
DC load Pload = 49 kW.

4.1. Single Control for a Short Time Scale

We take a single DC bus as an example to verify the regulating effect of battery and supercapacitor.
The output waveforms for different time constants are shown in Figure 10. The numbers of batteries in
series and parallel are 110 and 20, respectively, while the numbers of series and parallel supercapacitors
are 150 and 2.

Figure 10a shows that when T = 0.1 s, the supercapacitor output has a fast fluctuation, but its
fluctuation amplitude is small. Part of the high-frequency fluctuating power is adjusted by batteries.
That makes the battery power output change frequently, which will reduce the battery’s service life.
Figure 10d shows that when T = 10 s, the supercapacitor amplitude fluctuation is quite large, but the
supercapacitor can hardly be scaled at a high power rating. What’s more, the battery outputs cannot
track the photovoltaic fluctuations efficiently. Thus, a reasonable time constant can ensure a better
control effect. Through the simulation waveform, we know that when 1 s < T < 5 s, the control effect is
quite ideal.
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4.2. Single Control for a Long Time Scale

Considering single control for a long time scale, we select the daytime output of the photovoltaic
system. Due to the extended control time, larger battery and supercapacitor capacities are required.
Meanwhile, the time constant will be longer than in the former simulation. Now the numbers of
batteries in series and parallel are 110 and 100, respectively, while the numbers of series and parallel
supercapacitors are 150 and 80. The output waveforms for different time constants are shown in
Figure 11.
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When T = 150 s, the output waveform of the battery is unsmooth. Battery power changes acutely,
which will lead to a shorter battery service life. When T = 2400 s, due to the capacity limitations,
the supercapacitor voltage reaches the DC bus voltage after 12:00, which makes supercapacitor unable
to charge. Thus Pload can’t stay stable. This shows that the needed capacity of the storage system must
be taken into account when determining the time constant. When T = 600 s, the output waveform is
better than the other cases.

4.3. Control of Three Distributed Storage Systems

Now we carry out a simulation of the system shown in Figure 7. To simplify the simulation
process, we assume that Pinv = 0, which means the hybrid system is operating under the island mode.
Batteries use constant-voltage control. The simulation parameters are shown in Table 2.

Table 2. Simulation parameters of DC Bus voltage and DC load power.

DC Bus Voltage Load Power

DC Bus 1 220 V Pload1 24.2 kW
DC Bus 2 220 V Pload2 48.4 kW
DC Bus 3 220 V Pload3 30.25 kW
DC Bus 4 700 V /

Supercapacitor
Series Number 50 Parallel Number 2

Based on the previous discussion, we set the time constant T = 3 s. The output waveforms are
shown in Figure 12.
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The results show that supercapacitors in each distributed storage system can stabilize the
high-frequency fluctuating power well. The low-frequency part can be assigned reasonably through
the converging bus (DC Bus 4).

5. Conclusions and Prospects

Energy management of hybrid energy systems is significant against the background of wide
application of photovoltaic generation. This paper models photovoltaics, storage batteries and
supercapacitors, and then introduces a typical distribution network structure with hierarchical storage.
A low pass filter is used to achieve regulation of high and low frequency photovoltaic fluctuations.
The high-frequency power oscillations are assigned to supercapacitors and the low-frequency
oscillations are handled by storage batteries. On this basis, the paper proposes an improved
configuration structure which is convenient for accessing various DC loads and can centrally manage
mass batteries in one place. Compared to traditional hybrid storage structures, this hierarchical
structure can simplify the control circuit and control process, and improve control efficiency. To solve
the problem caused by centralized management of mass batteries, the paper introduces a three-layer
management structure. The control objects and control circuits are discussed.

The simulation results verify the control effect of battery and supercapacitor. When the
time constant 1 s < T < 5 s, a better output waveform can be achieved. More experiments
should be done however to verify the control effectiveness of multiple distributed storage systems.
Power scheduling of centralized storage systems with AC buses should also be taken into consideration.
The hierarchical control structure is expected to optimize the operation of photovoltaic and
energy-storage hybrid systems.
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Nomenclature

Iph current of photo-generated current source
Rsh internal parallel resistance of silicon solar cells
Rs internal series resistance of silicon solar cells
IPV output current of photovoltaic
VPV output voltage of photovoltaic
Is diode saturation current
q a constant ( 1.602ˆ 10´19C)
k Boltzmann constant ( 1.381ˆ 10´23 J{K )
TPV absolute temperature when photovoltaic works
A diode feature fitting coefficient
S the actual irradiance
Sre f irradiance at standard condition
Tre f absolute temperature when photovoltaic works at standard condition
CT temperature coefficient
Iph,re f photo-generated current at standard condition
E no-load voltage
E0 battery constant voltage
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K polarisation voltage
Q battery capacity
ş

idt actual battery charge
A exponential zone amplitude
B exponential zone time constant inverse
Vbatt battery voltage
Ibatt battery current
PI_re f reference value of inverter power
PL_AC AC load power
PL&I_re f power of load and inverter
PESS_re f reference power of storage system
PPV actual power of photovoltaic
PSC_re f reference power of supercapacitor
PB_re f reference power of battery
Vsc supercapacitor voltage
I˚
batt reference value of battery current

I˚
sc reference value of supercapacitor current

Vdc DC bus voltage
DPWM duty ratio of PWM control
T time constant of low pass filter
n the total number of photovoltaic
PES output power of each energy storage
l total number of energy storages
PSPG tie-line power of other power grids
Ue rated voltage of bus-bar
Ubus actual voltage of bus-bar
PPVimin, PPVimax inferior and superior limit of power for photovoltaic
PBmin, PBmax inferior and superior limit of power for batteries
PSCmin, PSCmax inferior and superior limit of power for supercapacitor
SOCB0 initial SOC of battery
CN rated capacity of battery
λ influence factor of battery capacity
η battery efficiency
SOCB actual SOC of battery
SOCSC actual SOC of supercapacitor
USCptq actual voltage of supercapacitor
USCmax max allowable voltage of supercapacitor
SOCBmin, SOCBmax inferior and superior limit of SOC for batteries
SOCSCmin, SOCSCmax inferior and superior limit of SOC for supercapacitor
Pload power of DC load
Pload1, Pload2, Pload3 power of DC load 1, 2, 3
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